US3710156A - Rotating electric machine with evaporation cooling - Google Patents

Rotating electric machine with evaporation cooling Download PDF

Info

Publication number
US3710156A
US3710156A US00093531A US3710156DA US3710156A US 3710156 A US3710156 A US 3710156A US 00093531 A US00093531 A US 00093531A US 3710156D A US3710156D A US 3710156DA US 3710156 A US3710156 A US 3710156A
Authority
US
United States
Prior art keywords
stator
condensate
separating wall
housing
vapor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00093531A
Inventor
N Laing
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3710156A publication Critical patent/US3710156A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/12Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas
    • H02K5/128Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs
    • H02K5/1282Casings or enclosures characterised by the shape, form or construction thereof specially adapted for operating in liquid or gas using air-gap sleeves or air-gap discs the partition wall in the air-gap being non cylindrical
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/22Arrangements for cooling or ventilating by solid heat conducting material embedded in, or arranged in contact with, the stator or rotor, e.g. heat bridges
    • H02K9/225Heat pipes

Definitions

  • motors having outwardly extending shafts motors having rotors disposed in a liquid medium being conveyed cannot be provided with additional air cooling by means of a fan, unless a second armature is introduced into the same stator field, which would entail the provision of considerable mechanical equipment.
  • the considerable overdimensioning of the stator required in view of the unfavorable cooling conditions is, in accordance with the invention, avoided by means of cooling by evaporation of an electrically nonconductive liquid.
  • Rotating electric machines in which the condensate of a non-conductive liquid is conducted to the stator are known in the refrigerator art. Condensate is conducted over the windings of the electric motor where it evaporates, the gas phase is conveyed to a compressor which compresses the gas, thereafter the gas condenses in an airor water-cooled condenser, in order to be returned to the motor.
  • the object of the invention is the cooling of stators of rotating electric machines having a definite heat sink, particularly pump motors which form part of turbounits,
  • the invention also makes use of a non-conductive liquid. At the internal pressure chosen, the boiling point should be below the temperature of the winding.
  • the solution in accordance with the invention does not require a compressor.
  • the stator of the rotating machine in accordance with the invention is enclosed and hermetically sealed. Its interior is filled with saturated vapor and a small quantity of the condensate of a volatile liquid, e.g., a fluorine hydrocarbon or a silicon compound. In operation the vapor condenses on the separating wall which is in heat-conductive communication with the medium being conveyed, and is then conducted into the motor winding where it evaporates.
  • this method enables approximately twenty-fold heat flows to be achieved for a temperature difference of only a few degrees C between the winding temperature and the heat sink, i.e., the separating wall which is in heat conductive contact with the medium being conveyed.
  • the condensate is conveyed either by capillary action in the laminations or preferably by capillary action in a special slot lining or pole envelope or also by means of special absorbent strips of wicks, one end of which touches the wall which separates the medium being conveyed and which acts as a condenser, or which extends right into the condensate sump.
  • the inventive principle is not limited to semi-wet induction motors which are separated from the armature by a separating wall disposed in the magnet gap, but may also be applied to hermetically sealed motors which drive a magnetic coupling, the arrangement being such that the driving half coupling carries the second half coupling, which is disposed outside the hermetically sealed space, with it via a non-magnetic separating wall.
  • a material is selected for the saturated vapor and the condensate which does not dissolve the lubricant of the motor bearing, in the case of oil, for example, Frigen 113.
  • the condensate itself may also serve as the lubricant, particularly where part of the bearing is in heat conductive contact with a heat sink.
  • the invention consists in a stator of an electric motor or generator which produces a rotating magnetic field directly or via a rotated softor permanent magnetic pole ring, the rotating magnetic field being conducted through a magnetically permeable separating wall and rotating outside the hermetically encapsulated space a permanentor soft magnetic pole ring, preferably the armature of an electric motor which accelerates the runner of a turbo-machine and thus the medium conveyed in the turbo-machine.
  • the medium being conveyed in the turbo-machine is in good heat conductive communication with a wall region of the hermetically encapsulated space in which the pole ring is enclosed.
  • FIG. 1 is a side sectional view of an electric motor having a rotating part adapted to be immersed in a fluid;
  • FIG. 2 is a side sectional view of an electric motor constructed according to the invention which may be assembled in any desired axial position;
  • FIG. 3 is a sectional view of an electric motor having a rotatable pole ring associated with the motor to drive a pump impellor.
  • FIG. 1 shows an electric motor with a spherical air gap.
  • the separating shell 1 is provided which is connected in gas-tight manner to the housing 2 at its periphery 3.
  • the flange 4 thereby formed is used for suspending the motor in the aperture of a container wall of the container 5 which contains liquid material which is intended to be mixed and caused to flow along the flow lines 6.
  • the stator 7 consists of a spirally wound sheet metal piece having uniformly distributed slots 8 containing windings 9.
  • a wick 10 is arranged at the center of the motor and dips into a sump 11 in which the condensate of the saturated vapor which fills the inside of the motor collects.
  • the condensate 11 rises through the wick 10 and is evaporated by the heat of the windings 9.
  • the vapor then condenses at the coldest point of the interior of the motor, i.e., at the separating shell 1, and thence the condensate drips on to the windings 9, as shown at 13, whereupon it again evaporates.
  • FIG. 2 shows the stator of a rotating electric machine with a spherical air gap 1, which may be assembled in any desired axial position.
  • Strips of sleeves 21 of absorbent material, e.g., glass silk, asbestos or cotton, which touch the shell 1 at 22 are provided between the windings 9 and the poles 20.
  • An insulating extension 23 is provided at, and taken through, the housing 2 which is hermetically sealed and conducts the current therethrough in known manner. It is covered by an extension box 24. In the position shown the condensate 1 l collects in the lowest region.
  • FIG. 3 shows a drive unit for the pump impellor consisting of a motor and a concave magnet ring 31, the latter driving the convex magnet ring 32 of the pump impellor 30 which consists of softor permanent magnetic material, through the separating shell 1.
  • the rotation of the concave magnet ring 31 causes the condensate to be thrown outwardly into the annular region 33 and thence to be conducted through an absorbent cylinder 34, which again may consist of textile or mineral fibers, to the end winding 35 of the motor. There the evaporation takes place, so that even at extremely low temperature differentials heat is withdrawn from the end winding 35 and thus from the entire winding.
  • the concave magnet ring 31 has a conical surface area 42, whereby the condensate runs along the surface up to the outermost edge 43, is then thrown off by centrifugal force and jected and which is above the ambient temperature of said machine at a predetermined operational internal pressure of the housing, a vapor of said condensate substantially filling the unoccupied spaces in said housing, and means for bringing said condensate into thermal contact with heated portions of said stator to cool the same.
  • An electric rotatable machine according to claim 1 wherein an absorbent body forms an electrically insulated jacket for a pole of said stator.
  • An electric rotatable machine having a rotor, a stator and a non-magnetic separating wall positioned between said rotor and stator; the improvement comprising having in addition a hermetically sealed housing enclosing said stator of which said separating wall forms a part, a condensate of electrical non-conductive material in said housing where said material at the desired operating temperature of the separating wall is also in a vapor phase, said vapor substantially filling the unoccupied spaces in said housing, and means for bringing said condensate into thermal contact with heated portions of said stator to cool the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

An electric rotating machine having a stator or a pole ring producing a rotating magnetic field and a rotor supported in the fluid being conveyed where said stator or pole ring is hermetically sealed in a housing which is filled with a saturated vapor of an electrically non-conducting material whose boiling point is below the highest permissible temperature of components producing electric resistance power.

Description

[111 3,710,156 1 Jan.9, 1973 [54] ROTATING ELECTRIC MACHINE WITH EVAPORATION COOLING [76] Inventor: Nikolaus Laing, Hofener-Weg 35- 37, Aldingen near Stuttgart, Germany [22] Filed: Nov. 30,1970
[21] Appl. No.: 93,531
[30] Foreign Application Priority Data 2,683,823 7/1954 Cunningham et al. ..3l0/52 3,294,991 12/1966 Ward et a1 ..310/54 3,438,328 4/1969 Laing 103/87 Primary Examiner-D. F. Duggan [57] ABSTRACT An electric rotating machine having a stator or a pole ring producing a rotating magnetic field and a rotor supported in the fluid being conveyed where said stator or pole ring is hermetically sealed in a housing 4 Dec. 1, Austria is a saturated vapor of an electrically I non-conducting material whose boiling point is below 3 10/ aggy Jig the highest permissible temperature of components 58 Field of Search .310/54', 55, 86, 57, 87, 104; pmducmg elem 'es'stance 5 References Cited 6 Claims, 3 Drawing Figures UNITED STATES PATENTS 2,634,375 4/1953 Guimbal .310/54 x a u, I. Y/////// 6 I3 1 l3 9 i I 9 I 9 J 6 o A 9 ROTATING ELECTRIC MACHINE WITH EVAPORATION COOLING THE PRIOR ART the material requirements correspondingly high. By
contrast with motors having outwardly extending shafts, motors having rotors disposed in a liquid medium being conveyed cannot be provided with additional air cooling by means of a fan, unless a second armature is introduced into the same stator field, which would entail the provision of considerable mechanical equipment. The considerable overdimensioning of the stator required in view of the unfavorable cooling conditions is, in accordance with the invention, avoided by means of cooling by evaporation of an electrically nonconductive liquid.
Rotating electric machines in which the condensate of a non-conductive liquid is conducted to the stator are known in the refrigerator art. Condensate is conducted over the windings of the electric motor where it evaporates, the gas phase is conveyed to a compressor which compresses the gas, thereafter the gas condenses in an airor water-cooled condenser, in order to be returned to the motor.
OBJECT OF THE INVENTION The object of the invention is the cooling of stators of rotating electric machines having a definite heat sink, particularly pump motors which form part of turbounits, The heat from the stators of such turbo-machine motors in which the stators are in heat conductive relationship with the medium being conveyed through a non-magnetic wall, e.g., a split tube or a spherical separating membrane, is given off to the medium being conveyed.
DESCRIPTION OF THE INVENTION The invention also makes use of a non-conductive liquid. At the internal pressure chosen, the boiling point should be below the temperature of the winding. The solution in accordance with the invention however does not require a compressor. The stator of the rotating machine in accordance with the invention is enclosed and hermetically sealed. Its interior is filled with saturated vapor and a small quantity of the condensate of a volatile liquid, e.g., a fluorine hydrocarbon or a silicon compound. In operation the vapor condenses on the separating wall which is in heat-conductive communication with the medium being conveyed, and is then conducted into the motor winding where it evaporates. As compared with conventional cooling methods, this method enables approximately twenty-fold heat flows to be achieved for a temperature difference of only a few degrees C between the winding temperature and the heat sink, i.e., the separating wall which is in heat conductive contact with the medium being conveyed.
In this way cooling of the winding is adequate even where the heat carrier assumes a high temperature, as for example in the case of circulating pumps for heating systems. The condensate is conveyed either by capillary action in the laminations or preferably by capillary action in a special slot lining or pole envelope or also by means of special absorbent strips of wicks, one end of which touches the wall which separates the medium being conveyed and which acts as a condenser, or which extends right into the condensate sump.
The inventive principle is not limited to semi-wet induction motors which are separated from the armature by a separating wall disposed in the magnet gap, but may also be applied to hermetically sealed motors which drive a magnetic coupling, the arrangement being such that the driving half coupling carries the second half coupling, which is disposed outside the hermetically sealed space, with it via a non-magnetic separating wall. In this application a material is selected for the saturated vapor and the condensate which does not dissolve the lubricant of the motor bearing, in the case of oil, for example, Frigen 113. Finally, the condensate itself may also serve as the lubricant, particularly where part of the bearing is in heat conductive contact with a heat sink.
Thus the invention consists in a stator of an electric motor or generator which produces a rotating magnetic field directly or via a rotated softor permanent magnetic pole ring, the rotating magnetic field being conducted through a magnetically permeable separating wall and rotating outside the hermetically encapsulated space a permanentor soft magnetic pole ring, preferably the armature of an electric motor which accelerates the runner of a turbo-machine and thus the medium conveyed in the turbo-machine. The medium being conveyed in the turbo-machine is in good heat conductive communication with a wall region of the hermetically encapsulated space in which the pole ring is enclosed. Its surface which faces the interior of the hermetically encapsulated space forms a condenser for an electrically non-conductive liquid which evaporates below the permissible winding temperature and whose condensate is returned to the winding in suitable manner, particularly through capillary linings.
The invention will be explained in greater detail with reference to the drawings;
DESCRIPTION OF THE DRAWINGS FIG. 1 is a side sectional view of an electric motor having a rotating part adapted to be immersed in a fluid;
FIG. 2 is a side sectional view of an electric motor constructed according to the invention which may be assembled in any desired axial position; and
FIG. 3 is a sectional view of an electric motor having a rotatable pole ring associated with the motor to drive a pump impellor.
FIG. 1 shows an electric motor with a spherical air gap. Between the stator 7 which is in the form of a sheet iron spiral structure, and the rotating rotor 12 consisting of soft iron and, if desired, a squirrel cage winding for driving the runner 15 of a mixer, the separating shell 1 is provided which is connected in gas-tight manner to the housing 2 at its periphery 3. The flange 4 thereby formed is used for suspending the motor in the aperture of a container wall of the container 5 which contains liquid material which is intended to be mixed and caused to flow along the flow lines 6. The stator 7 consists of a spirally wound sheet metal piece having uniformly distributed slots 8 containing windings 9. A wick 10 is arranged at the center of the motor and dips into a sump 11 in which the condensate of the saturated vapor which fills the inside of the motor collects. The condensate 11 rises through the wick 10 and is evaporated by the heat of the windings 9. The vapor then condenses at the coldest point of the interior of the motor, i.e., at the separating shell 1, and thence the condensate drips on to the windings 9, as shown at 13, whereupon it again evaporates.
FIG. 2 shows the stator of a rotating electric machine with a spherical air gap 1, which may be assembled in any desired axial position. Strips of sleeves 21 of absorbent material, e.g., glass silk, asbestos or cotton, which touch the shell 1 at 22 are provided between the windings 9 and the poles 20. By this means the condensate which has precipitated on the shell migrates into the interstices between the winding 9 and the magnet irons 7, into the motor and is there evaporated. An insulating extension 23 is provided at, and taken through, the housing 2 which is hermetically sealed and conducts the current therethrough in known manner. It is covered by an extension box 24. In the position shown the condensate 1 l collects in the lowest region.
FIG. 3 shows a drive unit for the pump impellor consisting of a motor and a concave magnet ring 31, the latter driving the convex magnet ring 32 of the pump impellor 30 which consists of softor permanent magnetic material, through the separating shell 1. The rotation of the concave magnet ring 31 causes the condensate to be thrown outwardly into the annular region 33 and thence to be conducted through an absorbent cylinder 34, which again may consist of textile or mineral fibers, to the end winding 35 of the motor. There the evaporation takes place, so that even at extremely low temperature differentials heat is withdrawn from the end winding 35 and thus from the entire winding. In flattened or recessed regions 36 of the pole ring 38 the absorbent material of the cylinder 34 is continued to the other side of the pole ring 38, so that the end windings 35' are also cooled. The armature 37 and the concave magnet ring 31 are supported in bearings 39/39 which are attached to the separating shell 1 and the outer housing respectively. The concave magnet ring 31 has a conical surface area 42, whereby the condensate runs along the surface up to the outermost edge 43, is then thrown off by centrifugal force and jected and which is above the ambient temperature of said machine at a predetermined operational internal pressure of the housing, a vapor of said condensate substantially filling the unoccupied spaces in said housing, and means for bringing said condensate into thermal contact with heated portions of said stator to cool the same.
2. An electric rotatable machine according to claim 1 wherein said separating wall forms a condenser which condenses part of said vapor into said condensate and having in addition absorbent bodies for removing said condensate from said separating wall to the heated portion of said stator by capillary action.
3. An electric rotatable machine according to claim 1 wherein an absorbent body forms an electrically insulated jacket for a pole of said stator.
4. An electric rotatable machine according to claim 1 wherein said separating wall serves to cool and condense the vapor in the housing and wherein the stator has a laminated core with narrow strips therein through which the condensate may penetrate to the interior of the stator to cool the same.
5. An electric rotatable machine according to claim 1 wherein said separating wall is in heat conductive contact with ambient temperature exterior of the housing and wherein heated portions of said stator are positioned below said separating wall.
6. An electric rotatable machine having a rotor, a stator and a non-magnetic separating wall positioned between said rotor and stator; the improvement comprising having in addition a hermetically sealed housing enclosing said stator of which said separating wall forms a part, a condensate of electrical non-conductive material in said housing where said material at the desired operating temperature of the separating wall is also in a vapor phase, said vapor substantially filling the unoccupied spaces in said housing, and means for bringing said condensate into thermal contact with heated portions of said stator to cool the same.

Claims (6)

1. An electric rotatable machine having a rotor, a stator and a non-magnetic separating wall positioned between said rotor and stator; the improvement comprising having in addition a hermetically sealed housing enclosing said stator of which said separating wall forms a part, a condensate of an electrical nonconductive material in said housing where said material has a boiling point which is less than the highest permissible operating temperature to which said stator may be subjected and which is above the ambient temperature of said machine at a predetermined operational internal pressure of the housing, a vapor of said condensate substantially filling the unoccupied spaces in said housing, and means for bringing said condensate into thermal contact with heated portions of said stator to cool the same.
2. An electric rotatable machine according to claim 1 wherein said separating wall forms a condenser which condenses part of said vapor into said condensate and having in addition absorbent bodies for removing said condensate from said separating wall to the heated portion of said stator by capillary action.
3. An electric rotatable machine according to claim 1 wherein an absorbent body forms an electrically insulated jacket for a pole of said stator.
4. An electric rotatable machine according to claim 1 wherein said separating wall serves to cool and condense the vapor in the housing and wherein the stator has a laminated core with narrow strips therein through which the condensate may penetrate to the interior of the stator to cool the same.
5. An electric rotatable machine according to claim 1 wherein said separating wall is in heat conductive contact with ambient temperature exterior of the housing and wherein heated portions of said stator are positioned below said separating wall.
6. An electric rotatable machine having a rotor, a stator and a non-magnetic separating wall positioned betweeN said rotor and stator; the improvement comprising having in addition a hermetically sealed housing enclosing said stator of which said separating wall forms a part, a condensate of electrical non-conductive material in said housing where said material at the desired operating temperature of the separating wall is also in a vapor phase, said vapor substantially filling the unoccupied spaces in said housing, and means for bringing said condensate into thermal contact with heated portions of said stator to cool the same.
US00093531A 1969-12-01 1970-11-30 Rotating electric machine with evaporation cooling Expired - Lifetime US3710156A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT1120369A AT308888B (en) 1969-12-01 1969-12-01 Electric motor with evaporative cooling

Publications (1)

Publication Number Publication Date
US3710156A true US3710156A (en) 1973-01-09

Family

ID=3627409

Family Applications (1)

Application Number Title Priority Date Filing Date
US00093531A Expired - Lifetime US3710156A (en) 1969-12-01 1970-11-30 Rotating electric machine with evaporation cooling

Country Status (9)

Country Link
US (1) US3710156A (en)
AT (1) AT308888B (en)
BE (1) BE759613A (en)
CA (1) CA923183A (en)
DE (1) DE2054507A1 (en)
FR (1) FR2073022A5 (en)
GB (1) GB1339539A (en)
NL (1) NL7017164A (en)
SE (1) SE378334B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771910A (en) * 1970-09-11 1973-11-13 Laing Nikolaus Axial thrust compensation for centrifugal pumps
US4352646A (en) * 1975-01-13 1982-10-05 Ingeborg Laing Rotodynamic pump with spherical motor
US5770903A (en) * 1995-06-20 1998-06-23 Sundstrand Corporation Reflux-cooled electro-mechanical device
GB2345387A (en) * 1998-11-18 2000-07-05 Schlumberger Holdings Submersible electromechanical actuator
WO2002037648A1 (en) * 2000-11-06 2002-05-10 Satcon Technology Corporation Passive, phase-change, stator winding end-turn cooled electric machine
US20050151431A1 (en) * 2004-01-14 2005-07-14 Caterpillar Inc. Cooling system for an electric motor
US20060013714A1 (en) * 2004-07-19 2006-01-19 Jung-Te Wu Magnetic axleless liquid circulator
US20060119205A1 (en) * 1999-07-16 2006-06-08 Matsushita Electric Industrial Co., Ltd. Permanent magnet synchronous motor
US20100026123A1 (en) * 2008-07-30 2010-02-04 Feng Xueqing Permanent-magnet (pm) rotors and systems
US20100034680A1 (en) * 2006-05-10 2010-02-11 Felix Arnold Rotary Piston Machine
US20100052455A1 (en) * 2008-08-28 2010-03-04 Teco-Westinghouse Motor Company Permanent-Magnet (PM) Rotors and Systems
US20100133941A1 (en) * 2008-12-01 2010-06-03 Teco-Westinghouse Motor Company Permanent-Magnet (PM) Rotors and Systems
DE102012021155A1 (en) * 2012-10-29 2014-04-30 Eads Deutschland Gmbh Elektroantriebsbaueinheit
US20160010647A1 (en) * 2005-03-16 2016-01-14 Ecotech, Inc. Bracketless magnetic pump
US20170074270A1 (en) * 2010-08-23 2017-03-16 Ecotech Marine, Llc Pump and pump assembly

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2634375A (en) * 1949-11-07 1953-04-07 Guimbal Jean Claude Combined turbine and generator unit
US2683823A (en) * 1953-01-19 1954-07-13 Gen Electric Cooling of electrical apparatus
US3294991A (en) * 1963-01-07 1966-12-27 Task Corp Induced vaporization cooling of rotary electrical machines
US3438328A (en) * 1967-11-27 1969-04-15 Nikolaus Laing Magnetic torque transmission device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2634375A (en) * 1949-11-07 1953-04-07 Guimbal Jean Claude Combined turbine and generator unit
US2683823A (en) * 1953-01-19 1954-07-13 Gen Electric Cooling of electrical apparatus
US3294991A (en) * 1963-01-07 1966-12-27 Task Corp Induced vaporization cooling of rotary electrical machines
US3438328A (en) * 1967-11-27 1969-04-15 Nikolaus Laing Magnetic torque transmission device

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3771910A (en) * 1970-09-11 1973-11-13 Laing Nikolaus Axial thrust compensation for centrifugal pumps
US4352646A (en) * 1975-01-13 1982-10-05 Ingeborg Laing Rotodynamic pump with spherical motor
US5770903A (en) * 1995-06-20 1998-06-23 Sundstrand Corporation Reflux-cooled electro-mechanical device
GB2345387A (en) * 1998-11-18 2000-07-05 Schlumberger Holdings Submersible electromechanical actuator
US20060119205A1 (en) * 1999-07-16 2006-06-08 Matsushita Electric Industrial Co., Ltd. Permanent magnet synchronous motor
US7183686B2 (en) * 1999-07-16 2007-02-27 Matsushita Electric Industrial Co., Ltd. Permanent magnet synchronous motor
US20070108862A1 (en) * 1999-07-16 2007-05-17 Matsushita Electric Industrial Co., Ltd. Permanent magnet synchronous motor
US7372183B2 (en) 1999-07-16 2008-05-13 Matsushita Electric Industrial Co., Ltd. Permanent magnet synchronous motor
US6515383B1 (en) 2000-11-06 2003-02-04 Satcon Technology Corporation Passive, phase-change, stator winding end-turn cooled electric machine
WO2002037648A1 (en) * 2000-11-06 2002-05-10 Satcon Technology Corporation Passive, phase-change, stator winding end-turn cooled electric machine
US20050151431A1 (en) * 2004-01-14 2005-07-14 Caterpillar Inc. Cooling system for an electric motor
US7009317B2 (en) 2004-01-14 2006-03-07 Caterpillar Inc. Cooling system for an electric motor
US20060013714A1 (en) * 2004-07-19 2006-01-19 Jung-Te Wu Magnetic axleless liquid circulator
US9534602B2 (en) * 2005-03-16 2017-01-03 Ecotech Marine, Llc Bracketless magnetic pump
US20160010647A1 (en) * 2005-03-16 2016-01-14 Ecotech, Inc. Bracketless magnetic pump
US11635079B2 (en) * 2005-03-16 2023-04-25 Ecotech, Inc. Bracketless magnetic pump
US10975870B2 (en) * 2005-03-16 2021-04-13 Ecotech, Inc. Bracketless magnetic pump
US10662951B2 (en) * 2005-03-16 2020-05-26 Ecotech, Inc. Bracketless magnetic pump
US20180372105A1 (en) * 2005-03-16 2018-12-27 Ecotech, Inc. Bracketless magnetic pump
US10047750B2 (en) 2005-03-16 2018-08-14 Ecotech, Inc. Bracketless magnetic pump
US8360748B2 (en) * 2006-05-10 2013-01-29 Cor Pumps + Compressors Ag Rotary piston machine
US20100034680A1 (en) * 2006-05-10 2010-02-11 Felix Arnold Rotary Piston Machine
US8471424B2 (en) 2008-07-30 2013-06-25 Teco-Westinghouse Motor Company Permanent-magnet (PM) rotors and systems
US20100026123A1 (en) * 2008-07-30 2010-02-04 Feng Xueqing Permanent-magnet (pm) rotors and systems
US8772994B2 (en) 2008-08-28 2014-07-08 Teco-Westinghouse Motor Company Permanent-magnet (PM) rotors and systems
US20100052455A1 (en) * 2008-08-28 2010-03-04 Teco-Westinghouse Motor Company Permanent-Magnet (PM) Rotors and Systems
US8461737B2 (en) 2008-12-01 2013-06-11 Teco-Westinghouse Motor Company Permanent-magnet (PM) rotors and systems
US20100133941A1 (en) * 2008-12-01 2010-06-03 Teco-Westinghouse Motor Company Permanent-Magnet (PM) Rotors and Systems
US20170074270A1 (en) * 2010-08-23 2017-03-16 Ecotech Marine, Llc Pump and pump assembly
US10519956B2 (en) * 2010-08-23 2019-12-31 Ecotech Marine, Llc Pump and pump assembly
US11293443B2 (en) 2010-08-23 2022-04-05 Ecotech, Llc Pump and pump assembly
US11859618B2 (en) * 2010-08-23 2024-01-02 Ecotech, Llc Pump and pump assembly
DE102012021155B4 (en) * 2012-10-29 2014-09-25 Airbus Defence and Space GmbH Elektroantriebsbaueinheit
DE102012021155A1 (en) * 2012-10-29 2014-04-30 Eads Deutschland Gmbh Elektroantriebsbaueinheit

Also Published As

Publication number Publication date
GB1339539A (en) 1973-12-05
CA923183A (en) 1973-03-20
BE759613A (en) 1971-06-01
AT308888B (en) 1973-07-25
NL7017164A (en) 1971-06-03
FR2073022A5 (en) 1971-09-24
DE2054507A1 (en) 1971-07-15
SE378334B (en) 1975-08-25

Similar Documents

Publication Publication Date Title
US3710156A (en) Rotating electric machine with evaporation cooling
US3715610A (en) Dynamoelectric machine cooled by a rotating heat pipe
US2897383A (en) Alternating current dynamoelectric machine
US3727085A (en) Electric motor with facility for liquid cooling
US5220233A (en) Dynamoelectric machines
US2898484A (en) Refrigeration cooling of electrical machines
US3685926A (en) Submersible pump assembly
US3838947A (en) Rotating electrical machine with evaporation cooling
US3914630A (en) Heat removal apparatus for dynamoelectric machines
CN110243211B (en) Heat conduction pipe, rotor and rotating electrical machine
US2772046A (en) Electric blower
JPH0728526B2 (en) Synchronous device with superconducting windings
US3445695A (en) Cooling system for hermetic dynamoelectric devices
US3663848A (en) High-speed alternating current generators
US2522985A (en) Supporting structure for machines
US3075106A (en) Dynamoelectric machine
Wrobel et al. A feasibility study of heat pipes for thermal management of electrical machines
US3911299A (en) High speed commutatorless D.C. motor
US3135882A (en) Fan-cooled dynamoelectric machine
US3862443A (en) Cooling means for bearing structure in dynamoelectric machine
JPS59129553A (en) Rotary electric machine
US3207934A (en) Electric motor with improved cooling means
US3530320A (en) Stator cooling means for dynamo-electric machines
US2854188A (en) Electric blower-vibrator
EP3509197B1 (en) Electrical machine