US3708281A - Structural alloy steel containing copper and other alloy elements - Google Patents

Structural alloy steel containing copper and other alloy elements Download PDF

Info

Publication number
US3708281A
US3708281A US00828021*A US3708281DA US3708281A US 3708281 A US3708281 A US 3708281A US 3708281D A US3708281D A US 3708281DA US 3708281 A US3708281 A US 3708281A
Authority
US
United States
Prior art keywords
copper
alloy
iron
ferrous
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00828021*A
Inventor
E Andreotti
S Mcgee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amsted Industries Inc
Original Assignee
Amsted Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amsted Industries Inc filed Critical Amsted Industries Inc
Application granted granted Critical
Publication of US3708281A publication Critical patent/US3708281A/en
Assigned to AMSTED INDUSTRIES INCORPORATED, A CORP. OF DE. reassignment AMSTED INDUSTRIES INCORPORATED, A CORP. OF DE. RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: FIRST NATIONAL BANK OF CHICAGO, AS AGENT
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/02Making ferrous alloys by powder metallurgy
    • C22C33/0242Making ferrous alloys by powder metallurgy using the impregnating technique

Definitions

  • This invention comprises an alloy system fabrication for producing useful steel articles exhibiting tensile strengths on the order of 150,000 p.s.i. with useful ductility on the order of 1% to 21/2% tensile elongation.
  • the alloy system entails suitable metallurgical combinations of iron, carbon, copper, manganese, nickel, tin and minor elements combined through a process of copper liquefication and high temperature capillary infiltration.
  • Ferrous constituents in the alloy group are fabricated using metal powders and powder metallurgy techniques entirely. Cuprous members of this alloy system can be either as powdered components or as cast or wrought components.
  • This invention relates to a ferrous alloy and to metallic articles made of this alloy.
  • it relates to such ferrous alloy metallic articles made of powdered metals which have been sintered and subjected to copper liquefication.
  • Another object of the invention is to produce the material described above with optimum combinations of strength, hardness and ductility using the metal powders as raw materials.
  • the metal powders are compacted and subjected to copper liqueiication. It is characteristic of the metal described that articles made from it have an ultimate tensile strength extending from 90,000 pounds per square inch to 150,000 pounds per square inch. Articles made from this material are also characterized by tensile elongation varying from 3% at the lower strength to 1% elongation at the ultimate strength of 150,000 pounds per square inch. A Rockwell hardness of the order of C38 is typical of this material and of the articles made from it in the higher strength varieties.
  • the ferrous constituents of the alloy are never melted during the process of manufacture which involves, of course, the steps of mixing powdered metal ingredients in chosen proportions, compacting them, sintering them in a process of copper liquecation and, if desired, subjecting them to further heat treatment after cooling from the sintering.
  • a further object of the invention is to produce ferrous alloys and articles made from that alloy which are heattreatable and which can be produced only by particular combinations of metallic elements and processing operations, including compaction of powders of the elements, sintering and, if desired, subsequent heat treatment.
  • EX- perience has shown that such alloys and articles made from them cannot be produced by molten alloying.
  • Such alloys and the articles made from them are produced by what is generally known in the trade today by the expression powder metallurgy.
  • FIG. 1 is an autographic stress strain record of a copper alloyed steel in the as-infiltrated condition.
  • the figure has been constructed around the curve generated by a stressstrain record of an extensometer attached to a tensile test specimen which was broken in tension under load.
  • the composition of the alloy is exactly as described for Example A in col. 5 ⁇ of the disclosure, as was the metallurgical processing, that is, compaction, sintering and inltration. This means that the nominal composition of the alloy in final form is as follows:
  • FIG. 1 Copper-nominally 15% by weight Manganese-nominally 0.5% by weight Nickel-nominally 1.0% by weight Tin-nominally 1.0% by weight Carbon-nominally 0.6% by weight Balance of the alloy being iron of nominally chemical purity
  • the material of FIG. 1 was in the as sintered condition.
  • the graph demonstrates a gauge length extension of 0.018 inch and a tensile elongation of 1.8%.
  • FIG. 2 is an autographical stress-strain record of copper alloyed steel in the as-inltrated and heat treated condition. Processing and composition are exactly identical to the material whose graph is shown in FIG. 1 and heat treatment as follows was carried out.
  • the material before testing was heated to 1525 F. and held at this temperature for one and one-half hours for thorough heating. Heating was carried out under a protective gas mixture of N2, CO, H2 with a controlled amount of water vapor. At the end of the heating period, the test pieces Were quenched into oil maintained at F. and quickly cooled to this temperature. Upon being withdrawn from the oil, the test pieces were next submitted to a tempering treatment which consisted of a one hour holding period at 350 F.
  • the graph demonstrates a gauge length extension of 0.011 inch and a tensile elongation of 1.1%
  • FIG. 3 illustrates the typical microstructure of a copper alloyed steel in the as sintered condition.
  • the microstructure illustrated is seen at 800 diameters magnification and has been chemically etched with a solution of nitric acid and alcohol in order to produce contrast between the constituents present.
  • the chemical analysis of this structure is identical with that described for FIG. 1.
  • the constituents present in the microstructure of FIG. 3 may be described as follows:
  • the predominant constituent consists of pearlite 1, being itself composed of alternate laminae of iron carbide (FeaC) and ferrite (body centered cubic iron). Surrounding these pearlite colonies, the presence of the cuprous constituent containing in solution nickel and tin, primarily for the purpose of strengthening, as well as a saturatio) amount of dissolved iron (also in solution in the cuprou phase), is clearly visible 2.
  • FeaC iron carbide
  • ferrite body centered cubic iron
  • FIGS. 4a and 4b illustrate the powders before con paction.
  • FIG. 4a includes reduced copper oxide 3, milled manganese 4, atomized tin 5, reduced sponge iron 6.
  • the synthetic wax lubricant and natural graphite are found to adhere to the surfaces of the other particles and hence do not show individually in the figures.
  • 7 is the supporting fabric upon which the powders were spread.
  • FIG. 4b includes reduced sponge iron 8. As in FIG. 4a, the synthetic wax and natural graphite are in a condition of adhering to the surfaces of the reduced sponge iron. 9 is the supporting fabric upon which the powder is spread.
  • FIGS. 5a and 5b illustrate the grain compacts of the powdered material before heating.
  • FIG. 5a includes reduced copper oxide 10. All other constituents are in grain boundaries designated 11.
  • FIG. 5b includes reduced sponge iron 12. All other constituents are in grain boundary spaces 13. Natural graphite and synthetic wax lubricant have migrated into the grain boundary spaces.
  • FIGS. 6a and 6b illustrate copper base and iron base briquettes in an early 'stage of sintering and before liqueiication of the alloy components.
  • FIG. 6a includes copper 13, having taken all tin in the solution and recrystallized, iron and manganese remain in grain boundary spaces 15.
  • FIGS. 7a and 7b illustrate an iron base briquette with copper alloy in the early stages of copper infiltration.
  • FIG. 7a includes the pearlitic phase 20 and the cuprous phase 21.
  • FIG. 7b includes the pearlitic phase 20 and the cuprous phase 21.
  • FIG. 8 illustrates the completely infiltrated iron base briquette. 20 is the pearlitic phase and 21 is the cuprous phase.
  • FIG. 9 illustrates the completely infiltrated and heat treated alloy. 21 is the cuprous phase and 22 is the ternpered martensite.
  • FIGS. 5a, 5b, 6a, 6b, 7a, 7b, 8 and 9. are designated in all the figures mentioned as 19.
  • the material of the present invention consists initially of an iron powder which is selected for the purpose of providing basic structural strength. It is modified by the addition of alloying materials which improve its strength and ductility. Among the materials which are added are the following:
  • Carbon which is alloyed with the iron by a process of solid state diffusion This causes increased strength and hardness by means of solid solution strengthening, pearlite formation and martensitic hardening or a combination of these.
  • Copper is alloyed with the iron base material in true liquefication of the copper material only.
  • the ferrous base material is not liquified.
  • the copper serves the purpose of filling void spaces in the iron matrix and also strengthens the iron by solution and precipitation hardening.
  • the copper itself is further strengthened by dissolving a quantity of iron and by other elements which are mentioned below which affect the copper.
  • Nickel is present in the product and serves the purpose of increasing the strength and hardness of the copper which is dispersed in the iron voids.
  • Manganese serves the same purpose as nickel and is preferably added to assist in promoting infiltration of the copper into the base ferrous material. Manganese also strengthens the iron.
  • Tin is present to serve as a strengthener of the copper.
  • Silicon is also preferably added and when present serves as a strengthener of copper.
  • Aluminum is present to add strength to the copper.
  • Chromium is present to add strength to the copper and also to the iron.
  • the product of this invention is produced by a method which includes the following steps:
  • the nonferrous alloying components include copper and one or more of the other nonferrous components listed above.
  • the metal powders are compacted after suitable mixing to produce the shape and dimensions of the desired final object.
  • the ferrous powder is compacte-d into the final shape and dimensions of that gear.
  • the compaction also brings the powder particles into mutual intimate contact and this promotes efficient sintering when that step is later carried out.
  • the compaction of the metal powder also gives to the compacted article the required strength permitting it to be handled thereafter prior to sintering. It is not essential that the nonferrous compact be of precisely the same shape and dimensions as those of the ferrous compact, but it may convenient-ly be produced in the same size and dimensions as those of the ferrous compact.
  • the molten cuprous alloy Upon entering the stage of copper liquification in the temperature range of from about l750 F. to 1981 F., depending upon the alloy selected from those described in this invention, the molten cuprous alloy enters the pore structure of the iron base compact. This pore structure may also be described as the interparticle Void spaces between ferrous particles. The copper enters such Void spaces in conformance with the basic physical laws of surface tension.
  • the alloys of this invention may be cooled to room temperature. 'Upon cooling below the liquificationtemperature range for the copper alloy, this cuprous constituent solidifies within the interparticle spaces of the original iron base compact which has become sintered. Upon further cooling through the austenite transformation temperature range from approximately l650 F. to l300 F., depending upon the specific composition selected, the high temperature austenite present in the alloy, which was formed during initial heating, is transformed to pearlite consisting of alternate lamellae of body centered cubic ferrite and of FeaC. Proeutectoid constituents usually are not present.
  • articles shaped from alloys of this invention are essentially in a condition for use.
  • Typical mechanical properties which the alloys exhibit in this condition are from 90,000 to 110,000 pounds per square inch ultimate tensile strength and from 1.5 to 3.0 tensile elongation.
  • the mechanical properties of these alloys may be further enhanced by simple heat treatment. For example, by means of reheating test bars of the alloys to 1500 F., holding at this temperature for one hour, quenching into oil held at 130 F. and then reheating to 400 F. for one hour, typical untimate tensile strengths on the order of 130,000 to 150,000 pounds per square inch with tensile elongations of 0.8 to 1.2 percent may be obtained.
  • EXAMPLE A Step l Reduced sponge iron powder of 98.8% purity and 99.9%-100 mesh, 27.0%-325 mesh screen analysis was blended with .75% of Texas natural graphite of 0.7 micron average particle size and 1.0% synthetic amide stearate powder of microns average particle size added as 1.0 weight percent of the total iron and graphite. Mixing was carried out for thirty-five minutes in a blender. 1000 grams of powder were prepared.
  • test bars were compacted using the powder just described, using a carbide lined die and hardened steel punches of the required dimensions, placed in a sixty ton capacity hydraulic press. Compacting pressure was twenty-five tons per square inch exerted on the powder. The green or as-compacted density of each test bar was 6.21 gm./cm.3.
  • Step 2 Reduced copper powder of 99.0% purity and 100%- 150 mesh, 65%-325 mesh screen analysis was blended with the following additives:
  • the traveling mesh belt hearth was eighteen inches wide.
  • the furnace selected was continuously purged with a 20% CO, 40% H2, 1.0% CH4, 1.0% CO2, 0.2% H2O, 37.8% N2 gas mixture flowing at a rate of 2,000 c.f.h. to prevent either oxidation or decarburization of the laminated work pieces passing through the furnace.
  • Each laminated work piece thus experienced approximately twelve minutes at 1500 F., followed by twelve minutes at 2075 F. under the protective atmosphere described.
  • the laminates Upon leaving the second hot zone of the furnace, the laminates entered a cooling section which returned the laminates to room temperature in thirty minutes while held under protective atmosphere.
  • body centered cubic ferrite iron present in the iron base compact transformed to face centered cubic austenitic iron upon being heated through 1670 F. and at the same time began to dissolve graphite, partly by means of CO acting as a carrier gas between austenitic iron and graphite particle surfaces. Sintering between adjacent austenite iron grains began at this stage also.
  • the tin saturated copper began to melt and thereupon commenced to dissolve the nickel, manganese and iron contained in the copper base briquette.
  • the liquid copper alloy so formed thereupon penetrated the pore structure of the iron base compact under the influence of surface tension as a basic driving force.
  • the copper-nickelmanganese-tin-iron alloy which had infiltrated the iron base compact pore structure solidified.
  • the carbon saturated austenitic iron transformed to a pearlitic mixture of Fe3C and ferritic iron to produce the desired end microstructure consisting of a high strength copper-nickel-manganese-tin bronze dispersed in the intergranular regions of a full)1 pearlitic copper saturated steel.
  • Step 4 EXAMPLE B Step 1 Step 1 in Example B was identical to Step l for Example A, except that the graphite content of the iron compacts was maintained at 0.35%.
  • Step 2 Step 2 in Example B was identical to Step 2 for Example A, except that the composition of the copper base briquettes was modied by omitting manganese and iron powder from the copper base briquettes. atomized aluminum powder of 99.9% purity and 100%-100 mesh screen analysis was substituted.
  • Step 3 Step 3 in Example B was carried out in essentially the same procedure as for Step 3 for Example A but omitting manganese reactions.
  • the iinal structure consisted of a high strength copper-nickeltin-aluminum bronze dispersed in the intergranular regions of a fully pearlitic copper saturated steel.
  • Step 4 in Example B is essentially the same as Step 4 for Example A with these exceptions:
  • the final density of the alloy steel test bar was 7.62 gm./cc., outer ber stress at the breaking point was 203,103 pounds per square inch, and the total deflection was 0.032 inch. 'Ihese properties are equivalent to 101,000 pounds per square inch ultimate tensile strength and 3.2% tensile elongation.
  • EXAMPLE C Step 1 In the blending procedure of the iron base composition, the steps were as describedin Examples A and B and the graphite content was 1.0% of the total. Instead of test bars as used and tested in Examples Aand B, ASTM tensile test specimens according to the specication E8-61T (Tensile Testing) were compacted to 6.6 gm./cc. green density. These specimens have a fiat projected crosssection area of 1.00 square inch and are designed to present a 1.00 inch long gauge length, 0.225 inch wide. Each specimen weighed 27.1 grams. Twelve compacts were made.
  • Step 2 The composition and blending procedure for the copper base compacts or briquettes was the same as described for Step 2 of Example A. These were compacted in the tensile bar die described in Step 1 for Example C above to 6.6 gm./ cc. density. Twelve briquettes were made.
  • Step 3 All the procedures were the same as for Step 3 of Example A except that iron base compacts were of 6.6
  • Step 4 The twelve copper alloy steel test bars obtained were yof 7.55 gm./cc. density. Three Were tensile tested as iniiltrated, the remaining nine bars were heated to 1500 F., quenched in oil and then tempered one hour in air at temperatures of 400 F., 800 F. and 1200 F. in sets of three. Tensile properties obtained in standard tests were as follows:
  • Step l for Example D was identical to Step 1 for Example C except that the iron base compacts contained 0.7% graphite.
  • Step 2 Step 2 for Example D was identical to Step 2 for Example C except that nickel and tin were omitted from the copper base briquettes.
  • Step 3 Step 3 was identical to Step 3 of Example C.
  • Step 4 The procedure of Step 4 for Example D was identical to that for Step 4 of Example C. The following Atensile results Were obtained:
  • au article of manufacture a member formed mainly of iron and alloyed with nonferrous components, the finished article consisting of carbon steel alloyed with copper, manganese, tin, silicon, aluminum and chromium, the nonferrous elements being present in approximately the proportions of:
  • the balance being iron.
  • said steel consisting essentially of carbon in the range of from about .2% to about 1.0%
  • said alloy steel having an ultimate tensile strength of at least 90,000 p.s.i.
  • the alloy steel of claim 2 further characterized in that the copper strengthening elements include one or more of elements selected from the group consisting essentially of manganese, nickel and aluminum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

THIS INVENTION COMPRISES AN ALLOY SYSTEM FABRICATION FOR PRODUCING USEFUL STEEL ARTICLES EXHIBITING TENSILE STRENGTH ON THE ORDER OF 150,000 P.S.I. WITH USEFUL DUCTILITY ON THE ORDER OF 1% TO 21/2% TENSILE ELONGATION. THE ALLOY SYSTEM ENTAILS SUITABLE METALLURGICAL COMBINATIONS OF IRON, CARBON, COPPER, MANGANESE, NICKEL, TIN AND MINOR ELEMENTS COMBINED THROUGH A PROCESS OF COPPER LIQUEFICA-

TION AND HIGH TEMPERATURE CAPILLARY INFILTRATION. FERROUS CONSTITUENTS IN THE ALLOY GROUP ARE FABRICATED USING METAL POWDERS AND POWER METALLURGY TECHNIQUES ENTIRELY. CUPROUS MEMBERS OF THIS ALLOY SYSTEM CAN BE EITHER AS POWDERED COMPONENTS OR AS CAST OR WROUGHT COMPONENTS.

Description

Jn- 2, 1973 E.R.ANDREo1"r| ETAL 3,708,281
STRUCTURAL ALLOY STEEL CONTAINING COPPER AND OTHER ALLOY ELEMENTS Original Filed June 28, 1967 7 Sheets-Sheet 1 e e l I l l v l I. awa/ffm* r/fz l T j Wi/Waff.
Jan..2, 1973 E. R. ANDREOTTI ET Al- S TRUGTURAL ALLOY STEEL CONTAINING COPPER AND OTHER ALLOY ELEMENTS Original Filed June 28. 1967 7 Sheets-Sheet 2 Jan. 2, 1973 E, R, ANDREQTTl ETAL 3,708,281
STRUCTURAL ALLOY STEEL CONTAINING COPPER AND OTHER ALLOY ELEMENTS Original Filed June 28, 1967 7 Sheets-Sheet 3 Jan 2, 1973 E. R. ANDREOTTI Er AL 3,708,281
STRUCTURAL ALLOY STEEL OONTAINING COPPER A AND OTHER ALLOY ELEMENTS Original Filed June 28, 1967 7 Sheets-Sheet '4 Jan. 2, 1973 E. R. ANDREOTTI E'r A. 3,708,281
STRUCTURAL ALLOY STEEL CONTAINING COPPER AND OTHER ALLOY ELEMENTS Original Filed June 28, 1967 7 Sheets-Sheet 5 Jan. 2, 1973 Original Filed June 28, 1967 l Y EQR. ANDREOTTI EFM- STRUCTURAL ALLOY STEEL CONTINING COPPER AND OTHER ALLOY ELEMENTS 7 sheets-sheet 6y Jan. 2, 1973 E. R. ANDREoTTl ET Al- 3,708,281
STRUCTURAL ALLOY STEEL CONTAINING COPPER AND OTHER'ALLOY ELEMENTS Uriginal Filed June 28, 1967 7 Sheets-SheetI 7 United States Patent Oce Patented Jan. 2, 1973 3,708,281 STRUCTURAL ALLOY STEEL CONTAINING COPPER AND OTHER ALLOY ELEMENTS Eugene R. Andreotti, Geneva, and Sherwood W. McGee, Lisle, Ill., assignors to Amsted Industries Incorporated Original application June 28, 1967, Ser. No. 650,570, now Patent No. 3,459,547. Divided and this application Jan. 21, 1969, Ser. No. 828,021
Int. Cl. C22c 37/10 U.S. Cl. 75-124 3 Claims ABSTRACT F THE DISCLOSURE This invention comprises an alloy system fabrication for producing useful steel articles exhibiting tensile strengths on the order of 150,000 p.s.i. with useful ductility on the order of 1% to 21/2% tensile elongation. The alloy system entails suitable metallurgical combinations of iron, carbon, copper, manganese, nickel, tin and minor elements combined through a process of copper liquefication and high temperature capillary infiltration. Ferrous constituents in the alloy group are fabricated using metal powders and powder metallurgy techniques entirely. Cuprous members of this alloy system can be either as powdered components or as cast or wrought components.
This application is a division of copending application Ser. No. 650,570, iiled June 28, 1967 now U.S. Pat. No. 3,459,547.
This invention relates to a ferrous alloy and to metallic articles made of this alloy. In particular, it relates to such ferrous alloy metallic articles made of powdered metals which have been sintered and subjected to copper liquefication.
It has for one object to provide a ferrous metallic article of sintered powder in which alloy steels with carefully proportioned chemical compositions and microstructures are combined with other non-ferrous powdered metals to obtain a new type of alloy steel.
Another object of the invention is to produce the material described above with optimum combinations of strength, hardness and ductility using the metal powders as raw materials. The metal powders are compacted and subjected to copper liqueiication. It is characteristic of the metal described that articles made from it have an ultimate tensile strength extending from 90,000 pounds per square inch to 150,000 pounds per square inch. Articles made from this material are also characterized by tensile elongation varying from 3% at the lower strength to 1% elongation at the ultimate strength of 150,000 pounds per square inch. A Rockwell hardness of the order of C38 is typical of this material and of the articles made from it in the higher strength varieties.
It is recognized that steel and other ferrous alloys have been prepared and are generally known in which copper appears as an alloying element. ln molten ferrous alloying, however, because of the immiscibility between molten iron and copper, cast or wrought ferrous alloys with copper content are essentially unknown.
In preparation of the material of this invention, it is characteristic that the ferrous constituents of the alloy are never melted during the process of manufacture which involves, of course, the steps of mixing powdered metal ingredients in chosen proportions, compacting them, sintering them in a process of copper liquecation and, if desired, subjecting them to further heat treatment after cooling from the sintering.
It is another object of the invention to provide a material which is distinguished from cast and wrought products in that it may be shaped directly to the desired form and size of the nal article by compaction at room ternperature. This is possible because the starting material is metal powder.
A further object of the invention is to produce ferrous alloys and articles made from that alloy which are heattreatable and which can be produced only by particular combinations of metallic elements and processing operations, including compaction of powders of the elements, sintering and, if desired, subsequent heat treatment. EX- perience has shown that such alloys and articles made from them cannot be produced by molten alloying. Such alloys and the articles made from them are produced by what is generally known in the trade today by the expression powder metallurgy.
The drawings are described as follows:
FIG. 1 is an autographic stress strain record of a copper alloyed steel in the as-infiltrated condition. The figure has been constructed around the curve generated by a stressstrain record of an extensometer attached to a tensile test specimen which was broken in tension under load. The composition of the alloy is exactly as described for Example A in col. 5 `of the disclosure, as was the metallurgical processing, that is, compaction, sintering and inltration. This means that the nominal composition of the alloy in final form is as follows:
Copper-nominally 15% by weight Manganese-nominally 0.5% by weight Nickel-nominally 1.0% by weight Tin-nominally 1.0% by weight Carbon-nominally 0.6% by weight Balance of the alloy being iron of nominally chemical purity In final form before testing, the material of FIG. 1 was in the as sintered condition. The graph demonstrates a gauge length extension of 0.018 inch and a tensile elongation of 1.8%.
FIG. 2 is an autographical stress-strain record of copper alloyed steel in the as-inltrated and heat treated condition. Processing and composition are exactly identical to the material whose graph is shown in FIG. 1 and heat treatment as follows was carried out.
The material before testing was heated to 1525 F. and held at this temperature for one and one-half hours for thorough heating. Heating was carried out under a protective gas mixture of N2, CO, H2 with a controlled amount of water vapor. At the end of the heating period, the test pieces Were quenched into oil maintained at F. and quickly cooled to this temperature. Upon being withdrawn from the oil, the test pieces were next submitted to a tempering treatment which consisted of a one hour holding period at 350 F.
The graph demonstrates a gauge length extension of 0.011 inch and a tensile elongation of 1.1%
FIG. 3 illustrates the typical microstructure of a copper alloyed steel in the as sintered condition. The microstructure illustrated is seen at 800 diameters magnification and has been chemically etched with a solution of nitric acid and alcohol in order to produce contrast between the constituents present. The chemical analysis of this structure is identical with that described for FIG. 1. The constituents present in the microstructure of FIG. 3 may be described as follows:
The predominant constituent consists of pearlite 1, being itself composed of alternate laminae of iron carbide (FeaC) and ferrite (body centered cubic iron). Surrounding these pearlite colonies, the presence of the cuprous constituent containing in solution nickel and tin, primarily for the purpose of strengthening, as well as a saturatio) amount of dissolved iron (also in solution in the cuprou phase), is clearly visible 2.
FIGS. 4a and 4b illustrate the powders before con paction.
FIG. 4a includes reduced copper oxide 3, milled manganese 4, atomized tin 5, reduced sponge iron 6. The synthetic wax lubricant and natural graphite are found to adhere to the surfaces of the other particles and hence do not show individually in the figures. 7 is the supporting fabric upon which the powders were spread.
FIG. 4b includes reduced sponge iron 8. As in FIG. 4a, the synthetic wax and natural graphite are in a condition of adhering to the surfaces of the reduced sponge iron. 9 is the supporting fabric upon which the powder is spread.
FIGS. 5a and 5b illustrate the grain compacts of the powdered material before heating.
FIG. 5a includes reduced copper oxide 10. All other constituents are in grain boundaries designated 11.
FIG. 5b includes reduced sponge iron 12. All other constituents are in grain boundary spaces 13. Natural graphite and synthetic wax lubricant have migrated into the grain boundary spaces.
FIGS. 6a and 6b illustrate copper base and iron base briquettes in an early 'stage of sintering and before liqueiication of the alloy components.
FIG. 6a includes copper 13, having taken all tin in the solution and recrystallized, iron and manganese remain in grain boundary spaces 15.
FIGS. 7a and 7b illustrate an iron base briquette with copper alloy in the early stages of copper infiltration.
FIG. 7a includes the pearlitic phase 20 and the cuprous phase 21.
FIG. 7b includes the pearlitic phase 20 and the cuprous phase 21.
FIG. 8 illustrates the completely infiltrated iron base briquette. 20 is the pearlitic phase and 21 is the cuprous phase.
FIG. 9 illustrates the completely infiltrated and heat treated alloy. 21 is the cuprous phase and 22 is the ternpered martensite.
Certain voids appear in FIGS. 5a, 5b, 6a, 6b, 7a, 7b, 8 and 9. They are designated in all the figures mentioned as 19.
The material of the present invention consists initially of an iron powder which is selected for the purpose of providing basic structural strength. It is modified by the addition of alloying materials which improve its strength and ductility. Among the materials which are added are the following:
(1) Carbon which is alloyed with the iron by a process of solid state diffusion. This causes increased strength and hardness by means of solid solution strengthening, pearlite formation and martensitic hardening or a combination of these.
(2) Copper is alloyed with the iron base material in true liquefication of the copper material only. The ferrous base material is not liquified. The copper serves the purpose of filling void spaces in the iron matrix and also strengthens the iron by solution and precipitation hardening. The copper itself is further strengthened by dissolving a quantity of iron and by other elements which are mentioned below which affect the copper.
(3) Nickel is present in the product and serves the purpose of increasing the strength and hardness of the copper which is dispersed in the iron voids.
(4) Manganese serves the same purpose as nickel and is preferably added to assist in promoting infiltration of the copper into the base ferrous material. Manganese also strengthens the iron.
(5) Tin is present to serve as a strengthener of the copper.
(6) Silicon is also preferably added and when present serves as a strengthener of copper.
(7) Aluminum is present to add strength to the copper.
8) Chromium is present to add strength to the copper and also to the iron.
The preferred ranges of proportions of the materials mentioned are listed below. Although each of the alloying elements mentioned is known and the effect of each separately is known, the combinations of these elements as listed and for the purposes and results stated, create aI series of new and useful alloys. l
The product of this invention is produced by a method which includes the following steps:
l) Consolidating separately a ferrous and a nonferrous mass of components in powder form. The nonferrous alloying components include copper and one or more of the other nonferrous components listed above.
(2) These two masses of ferrous and nonferrous materials are thereafter placed in contact with each other and sintered together, preferably in a controlled atmosphere. During sintering, the liquefication of copper occurs and infiltration into the ferrous mass occurs.
(3) Other of the ingredients may be liquified during this step and may be infiltrated into the ferrous compact.
(4) During the 'sintering cycle, liquid-solid diffusion into the ferrous compact mass occurs.
(5) After the sintering, cooling of the now infiltrated ferrous mass is carried out and solidification of the cuprous phases occurs.
(6) After solidification and cooling, further heat treatment is generally given to the infiltrated ferrous mass to improve its physical properties.
The metal powders are compacted after suitable mixing to produce the shape and dimensions of the desired final object. Thus, if the final object is to be a gear, the ferrous powder is compacte-d into the final shape and dimensions of that gear. The compaction also brings the powder particles into mutual intimate contact and this promotes efficient sintering when that step is later carried out. The compaction of the metal powder also gives to the compacted article the required strength permitting it to be handled thereafter prior to sintering. It is not essential that the nonferrous compact be of precisely the same shape and dimensions as those of the ferrous compact, but it may convenient-ly be produced in the same size and dimensions as those of the ferrous compact.
During initial sintering at temperatures of from about 1000 F. to l750 F., the alloying of the copper with the iron occurs and the alloying of the copper and tin also occurs. These alloying effects occur in the separate compacts which are held in contact with each other in a protective atmosphere to prevent oxidation.
Upon entering the stage of copper liquification in the temperature range of from about l750 F. to 1981 F., depending upon the alloy selected from those described in this invention, the molten cuprous alloy enters the pore structure of the iron base compact. This pore structure may also be described as the interparticle Void spaces between ferrous particles. The copper enters such Void spaces in conformance with the basic physical laws of surface tension.
When copper liquification has proceded to its maximum extent, the iron base compact pore structure has been essentially filled completely with the liquified copper a loy.
As sintering continues, a differential interchange to produce further alloying of the components tends to proceed. Thus, there occurs a partitioning of copper, manganese and nickel, when present, which passes from the molten copper alloy to the ferrous austenitic grains. Carbon also diffuses within the austenite grains and produces greater degree of homogeneity than that which is obtained in the early stages of sintering. Furthermore, the liquid copper at this stage comes approximately into compositional equilibrium with the iron and with the available quantities of tin, nickel, manganese, chromium, aluminum or silicon in the quantities which may be present in a given mixture.
After having been subjected to a holding period in the copper alloy liquication temperature range, suitably chosen to produce the required degree of diffusion alloying, the alloys of this invention may be cooled to room temperature. 'Upon cooling below the liquificationtemperature range for the copper alloy, this cuprous constituent solidifies within the interparticle spaces of the original iron base compact which has become sintered. Upon further cooling through the austenite transformation temperature range from approximately l650 F. to l300 F., depending upon the specific composition selected, the high temperature austenite present in the alloy, which was formed during initial heating, is transformed to pearlite consisting of alternate lamellae of body centered cubic ferrite and of FeaC. Proeutectoid constituents usually are not present.
After being cooled to room temperature, articles shaped from alloys of this invention are essentially in a condition for use. Typical mechanical properties which the alloys exhibit in this condition are from 90,000 to 110,000 pounds per square inch ultimate tensile strength and from 1.5 to 3.0 tensile elongation.
Although the process just described utilizes the simultaneous introduction of both the cuprous and ferrous base components of the alloy into a suitable furnace under protective atmosphere, it should be understood also that the same invention may be practiced by the introduction of the cuprous component into such furnace along with the ferrous component in an already sintered condition. This variation of the process is especially suitable for the manufacture of articles weighing more than five pounds.
The mechanical properties of these alloys may be further enhanced by simple heat treatment. For example, by means of reheating test bars of the alloys to 1500 F., holding at this temperature for one hour, quenching into oil held at 130 F. and then reheating to 400 F. for one hour, typical untimate tensile strengths on the order of 130,000 to 150,000 pounds per square inch with tensile elongations of 0.8 to 1.2 percent may be obtained.
The fol-lowing examples in which procedures which have actually been carried out successfully are described. In these examples, the results indicated above are achieved.
EXAMPLE A Step l Reduced sponge iron powder of 98.8% purity and 99.9%-100 mesh, 27.0%-325 mesh screen analysis was blended with .75% of Texas natural graphite of 0.7 micron average particle size and 1.0% synthetic amide stearate powder of microns average particle size added as 1.0 weight percent of the total iron and graphite. Mixing was carried out for thirty-five minutes in a blender. 1000 grams of powder were prepared.
Following mixing, six test bars were compacted using the powder just described, using a carbide lined die and hardened steel punches of the required dimensions, placed in a sixty ton capacity hydraulic press. Compacting pressure was twenty-five tons per square inch exerted on the powder. The green or as-compacted density of each test bar was 6.21 gm./cm.3.
Step 2 Reduced copper powder of 99.0% purity and 100%- 150 mesh, 65%-325 mesh screen analysis was blended with the following additives:
Percentage by weight Carbonyl nickel powder 3 micron particle size,
99.9% purity 6.0 Manganese powder (milled), 100%-100 mesh, 80%- 200 mesh screen analysis 99.0% purity 10.0 Tin powder (atomized), 96%-200 mesh, 99.5%-
purity 6.0 Reduced sponge iron powder 99.9%-100 mesh,
27.0%-325 mesh 98.8% purity 5.0
Percentage by weight Graphite (Natural Texas Graphite) 0.7 micron particle size 5.0 Copper powder as described above Balance Synthetic amide stearate lubricant, 5 micron particle size 1% of total Step 3 Each of the iron base compacts from Step 1 was covered on the top face with a single copper base briquette from Step 2 to form six two layer laminates. These were in turn placed upon a sixteen mesh stainless steel screen which had been oxidized previously. The sets of laminates carried on the screen were thereafter placed on the alloy mesh belt traveling hearth of a high temperature refractory lined furnace. The furnace used had two internal temperature zones, each controlled separately, through which the traveling mesh belt hearth already mentioned conveyed the laminates or work pieces to be heated. The traveling mesh belt hearth was eighteen inches wide. The furnace selected was continuously purged with a 20% CO, 40% H2, 1.0% CH4, 1.0% CO2, 0.2% H2O, 37.8% N2 gas mixture flowing at a rate of 2,000 c.f.h. to prevent either oxidation or decarburization of the laminated work pieces passing through the furnace.
The laminated work pieces, placed upon a screen, as described, were carried through the rst temperature zone of this furnace which was held at 1500 F. The rst zone was four feet long. The belt moved at a speed rate of four inches per minute and continued through the second temperature zone of the furnace, which was held at 2075 F. and was also four feet long at the same speed. Each laminated work piece thus experienced approximately twelve minutes at 1500 F., followed by twelve minutes at 2075 F. under the protective atmosphere described. Upon leaving the second hot zone of the furnace, the laminates entered a cooling section which returned the laminates to room temperature in thirty minutes while held under protective atmosphere.
The metallurgical changes brought about during this furnace cycle within each of the laminates is stated below. These were in a sequence as follows:
During passage through the 1500 F. temperature zone, all amide stearate lubricant was evaporated from the laminates which in turn were brought to 1500 F. Within the copper base briquettes, tin melted and next dissolved into the solid copper powder grains. Some limited sintering of the copper grains may have occurred also at the 1500 temperature.
Upon sintering in the 2075 F. furnace temperature zone, body centered cubic ferrite iron present in the iron base compact transformed to face centered cubic austenitic iron upon being heated through 1670 F. and at the same time began to dissolve graphite, partly by means of CO acting as a carrier gas between austenitic iron and graphite particle surfaces. Sintering between adjacent austenite iron grains began at this stage also. At approximately 1800 F., the tin saturated copper began to melt and thereupon commenced to dissolve the nickel, manganese and iron contained in the copper base briquette. The liquid copper alloy so formed thereupon penetrated the pore structure of the iron base compact under the influence of surface tension as a basic driving force. In this process of liquefcation, approximately three-quarters of the manganese content and one-half of the nickel and tin content of the copper alloy formed were oxidized by the water content of the furnace atmosphere to form an oxide dross which remained on the surface of the iron base compact until brushed olf. As heating continued through the full 2075 F. temperature, approximately 70% of the graphite content of the iron base compact became dissolved in austenitic iron, the balance of graphite being largely lost to oxidation. Likewise, a saturation amount of copper dissolved in the austenite, while excess copper-nickel-tin-manganese alloy remained in the intergranular spaces of the original iron compact.
Upon exiting from the 2075 P. temperature zone and cooling below approximately 1800 F., the copper-nickelmanganese-tin-iron alloy which had infiltrated the iron base compact pore structure solidified. Upon further cooling through approximately l300 F., the carbon saturated austenitic iron transformed to a pearlitic mixture of Fe3C and ferritic iron to produce the desired end microstructure consisting of a high strength copper-nickel-manganese-tin bronze dispersed in the intergranular regions of a full)1 pearlitic copper saturated steel.
Step 4 EXAMPLE B Step 1 Step 1 in Example B was identical to Step l for Example A, except that the graphite content of the iron compacts was maintained at 0.35%.
Step 2 Step 2 in Example B was identical to Step 2 for Example A, except that the composition of the copper base briquettes was modied by omitting manganese and iron powder from the copper base briquettes. atomized aluminum powder of 99.9% purity and 100%-100 mesh screen analysis was substituted.
Step 3 Step 3 in Example B was carried out in essentially the same procedure as for Step 3 for Example A but omitting manganese reactions. Upon cooling below 1300 F., the iinal structure consisted of a high strength copper-nickeltin-aluminum bronze dispersed in the intergranular regions of a fully pearlitic copper saturated steel.
Step 4 Step 4 in Example B is essentially the same as Step 4 for Example A with these exceptions:
The final density of the alloy steel test bar was 7.62 gm./cc., outer ber stress at the breaking point was 203,103 pounds per square inch, and the total deflection was 0.032 inch. 'Ihese properties are equivalent to 101,000 pounds per square inch ultimate tensile strength and 3.2% tensile elongation.
EXAMPLE C Step 1 In the blending procedure of the iron base composition, the steps were as describedin Examples A and B and the graphite content was 1.0% of the total. Instead of test bars as used and tested in Examples Aand B, ASTM tensile test specimens according to the specication E8-61T (Tensile Testing) were compacted to 6.6 gm./cc. green density. These specimens have a fiat projected crosssection area of 1.00 square inch and are designed to present a 1.00 inch long gauge length, 0.225 inch wide. Each specimen weighed 27.1 grams. Twelve compacts were made.
Step 2 The composition and blending procedure for the copper base compacts or briquettes was the same as described for Step 2 of Example A. These were compacted in the tensile bar die described in Step 1 for Example C above to 6.6 gm./ cc. density. Twelve briquettes were made.
Step 3 All the procedures were the same as for Step 3 of Example A except that iron base compacts were of 6.6
gm./ cc. density and were of tensile bar shape, as were the copper base briquettes.
Step 4 The twelve copper alloy steel test bars obtained were yof 7.55 gm./cc. density. Three Were tensile tested as iniiltrated, the remaining nine bars were heated to 1500 F., quenched in oil and then tempered one hour in air at temperatures of 400 F., 800 F. and 1200 F. in sets of three. Tensile properties obtained in standard tests were as follows:
Step l for Example D was identical to Step 1 for Example C except that the iron base compacts contained 0.7% graphite.
Step 2 Step 2 for Example D was identical to Step 2 for Example C except that nickel and tin were omitted from the copper base briquettes.
Step 3 Step 3 was identical to Step 3 of Example C.
Step 4 The procedure of Step 4 for Example D was identical to that for Step 4 of Example C. The following Atensile results Were obtained:
Ultimate tensile strength Tensile Tempering temperature or condition (p.s.l.) elongation None, as iultrated 150,000 1. As quenched 117, 919 0.8 Tempered l F.-- 150, 721 1. 0 Tempered 800 F 125, 557 0. 7 Tempered 1,200D F 94, 767 3. 0
Other experiments have shown that aluminum may be substituted for all or part of the manganese content of the copper briquettes described in Step 2 of the preceding Examples A, B, C and D. Silicon has also been substituted for all or part of the manganese. Results of these experiments indicate that exactly similar aluminum-nickel-manganese-tin and siiicon-nickel-manganese-tin bronzes may be obtained as strengthening microconstituents in structural alloy steels of the type described herein.
Further modiiications in the process may include the following steps:
(1) Sintering under vacuum for more complete penetration of cuprous alloy into the ferrous pore structure.
(Z) Vibrational compaction of the ferrous and cuprous members as distinct from press compaction.
(3) Vibrational compaction with pressure of the ferrous and cuprous members as distinguished from press compaction alone.
(4) The use of surface active agents to assist penetration of the cuprous phase into the ferrous pore structure.
Whereas the preferred form of the invention has been described and illustrated, it should be realized that there are many modifications, substitutions and alterations thereto within the scope of the claims.
We claim:
1. As au article of manufacture, a member formed mainly of iron and alloyed with nonferrous components, the finished article consisting of carbon steel alloyed with copper, manganese, tin, silicon, aluminum and chromium, the nonferrous elements being present in approximately the proportions of:
Copper, 10.0 to 25.0 weight percent of the alloy,
Nickel of the order of 6.0 percent of the alloy,
Manganese of the order of 10.0 percent of the alloy,
Tin of the order of 6.0 percent of the alloy,
Carbon of the order of 0.2 to 1.0 percent of the alloy,
the balance being iron.
2. A carbon containing alloy steel,
said steel consisting essentially of carbon in the range of from about .2% to about 1.0%,
copper in the range of from about to about 25%,
and
a significant alloying quantity of at least one of the copper strengthening elements selected from the group consisting essentially of 10 Mn: .005 to 1.25% Ni: .005 to 1.25% Si: .005 to .5% A1: .05 to 1.25%
less usual processing losses, including oxidation losses,
silicon and aluminum when present being present in any selected ratio with respect to one another, said alloy steel having an ultimate tensile strength of at least 90,000 p.s.i.
3. The alloy steel of claim 2 further characterized in that the copper strengthening elements include one or more of elements selected from the group consisting essentially of manganese, nickel and aluminum.
References Cited UNITED STATES PATENTS 1,759,605 5/1930 De Vries 75-124 1,763,421 6/1930 De Vries 75-124 2,609,285 9/1952 Thomas 75--125 3,471,343 10/1969 Koehler 75-125 3,472,706 10/ 1969 Kattus 75-125 FOREIGN PATENTS 2,902 11/ 1857 Great Britain 75-125 264,414 1/ 1927 Great Britain 75-125VV` 319,899 l0/1929 Great Britain 75-125 HYLAND BIZOT, Primary Examiner U.S. Cl. X.R. -125
US00828021*A 1967-06-28 1969-01-21 Structural alloy steel containing copper and other alloy elements Expired - Lifetime US3708281A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US65057067A 1967-06-28 1967-06-28
US82802169A 1969-01-21 1969-01-21

Publications (1)

Publication Number Publication Date
US3708281A true US3708281A (en) 1973-01-02

Family

ID=27095898

Family Applications (1)

Application Number Title Priority Date Filing Date
US00828021*A Expired - Lifetime US3708281A (en) 1967-06-28 1969-01-21 Structural alloy steel containing copper and other alloy elements

Country Status (1)

Country Link
US (1) US3708281A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4455354A (en) * 1980-11-14 1984-06-19 Minnesota Mining And Manufacturing Company Dimensionally-controlled cobalt-containing precision molded metal article
US4491558A (en) * 1981-11-05 1985-01-01 Minnesota Mining And Manufacturing Company Austenitic manganese steel-containing composite article
US20100227188A1 (en) * 2006-01-30 2010-09-09 Takemori Takayama Ferrous Sintered Multilayer Roll-Formed Bushing, Producing Method of the Same and Connecting Device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4455354A (en) * 1980-11-14 1984-06-19 Minnesota Mining And Manufacturing Company Dimensionally-controlled cobalt-containing precision molded metal article
US4491558A (en) * 1981-11-05 1985-01-01 Minnesota Mining And Manufacturing Company Austenitic manganese steel-containing composite article
US20100227188A1 (en) * 2006-01-30 2010-09-09 Takemori Takayama Ferrous Sintered Multilayer Roll-Formed Bushing, Producing Method of the Same and Connecting Device
US8283046B2 (en) * 2006-01-30 2012-10-09 Komatsu Ltd. Ferrous sintered multilayer roll-formed bushing, producing method of the same and connecting device

Similar Documents

Publication Publication Date Title
Krauss Steels: processing, structure, and performance
US4913739A (en) Method for powder metallurgical production of structural parts of great strength and hardness from Si-Mn or Si-Mn-C alloyed steels
US3889350A (en) Method of producing a forged article from prealloyed water-atomized ferrous alloy powder
US2435511A (en) Method of making metal bodies
US3459547A (en) Method of making a structural alloy steel containing copper and other alloy elements
Zellagui et al. Effect of heat treatments on the microstructure, mechanical, wear and corrosion resistance of casted hadfield steel
US2342799A (en) Process of manufacturing shaped bodies from iron powders
El-Fallah et al. Effect of nickel aluminide on the bainite transformation in a Fe-0.45 C–13Ni–3Al–4Co steel, and associated properties
Rana High-performance ferrous alloys
US3897618A (en) Powder metallurgy forging
Cull Mechanical and metallurgical properties of powder forgings
Candela et al. Fracture mechanisms in sintered steels with 3.5%(wt.) Mo
US3708281A (en) Structural alloy steel containing copper and other alloy elements
Blackmore et al. Structure-property relationships in graphitic cast irons
US2284638A (en) Metallurgy of ferrous metals
Mapelli et al. Microstructural investigation on a medieval sword produced in 12th century AD
James et al. New High Performance P/M Alloy Substitutes for Malleable and Ductile Cast Irons
Aweda et al. Rapid cyclic heating of mild steel and its effects on microstructure and mechanical properties
Mondal et al. Effect of heat treatment on mechanical properties of FeMnAlC alloys
Nabeel Diffusion of elemental additives during sintering
Dudrova et al. PROCESSING, MICROSTRUCTURE AND PROPERTIES OF 2-4% Mn AND 0. 3/0. 7% C SINTERED STEELS
Semel Ancorloy premixes: Binder-treated analogs of the diffusion alloyed steels
JPH09157805A (en) High strength iron base sintered alloy
US4321091A (en) Method for producing hot forged material from powder
US2295334A (en) Metallurgy of ferrous metals

Legal Events

Date Code Title Description
AS Assignment

Owner name: AMSTED INDUSTRIES INCORPORATED, A CORP. OF DE., IL

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:FIRST NATIONAL BANK OF CHICAGO, AS AGENT;REEL/FRAME:005070/0731

Effective date: 19880831