US3708158A - Apparatus for transferring molten metal - Google Patents

Apparatus for transferring molten metal Download PDF

Info

Publication number
US3708158A
US3708158A US00156959A US3708158DA US3708158A US 3708158 A US3708158 A US 3708158A US 00156959 A US00156959 A US 00156959A US 3708158D A US3708158D A US 3708158DA US 3708158 A US3708158 A US 3708158A
Authority
US
United States
Prior art keywords
slag
wall portion
molten metal
chamber
ladle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00156959A
Inventor
T Perry
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ltv Steel Co Inc
Republic Steel Corp
Original Assignee
Republic Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Republic Steel Corp filed Critical Republic Steel Corp
Application granted granted Critical
Publication of US3708158A publication Critical patent/US3708158A/en
Assigned to LTV STEEL COMPANY, INC., reassignment LTV STEEL COMPANY, INC., MERGER AND CHANGE OF NAME EFFECTIVE DECEMBER 19, 1984, (NEW JERSEY) Assignors: JONES & LAUGHLIN STEEL, INCORPORATED, A DE. CORP. (INTO), REPUBLIC STEEL CORPORATION, A NJ CORP. (CHANGEDTO)
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D3/00Charging; Discharging; Manipulation of charge
    • F27D3/15Tapping equipment; Equipment for removing or retaining slag
    • F27D3/1545Equipment for removing or retaining slag
    • F27D3/1554Equipment for removing or retaining slag for removing the slag from the surface of the melt
    • F27D3/1572Equipment for removing or retaining slag for removing the slag from the surface of the melt by suction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D35/00Equipment for conveying molten metal into beds or moulds
    • B22D35/04Equipment for conveying molten metal into beds or moulds into moulds, e.g. base plates, runners

Definitions

  • the present invention relates to apparatus for transferring molten metal, particularly steel, from one location to another.
  • the invention is particularly useful in the deslagging of steel, and incorporates a cheap and easily replaced paper tube for transferring molten slag out of a ladle.
  • an uptake tube for deslagging molten steel may include inner and outer walls, the outer wall being comprised preferably of steel tube, and the inner wall being preferably fabricated from multiple layers of thermallyinsulating paper which may be readily and periodically replaced.
  • An additional wall fabricated from multiple layers of paper may be disposed about the lower por' tion of the outer wall.
  • FIG. 1 is a diagrammetric view of a process in which the present invention may be utilized.
  • FIG. 2 is a side elevational view of representative apparatus in which the present invention may be incorporated.
  • FIG. 3 is a front elevational view taken along line 3- 3 of FIG. 2.
  • FIG. 4 is a sectional view taken along line 4-4 of FIG. 3 showing the details of an uptake tube embodying the invention.
  • FIG. 5 is an elevational view taken along line 5-5 of FIG. 2.
  • FIG. 6 is a partial side elevational view of an alternative form of uptake tube.
  • FIG. 7 is a partial sectional view of a modified form of uptake tube.
  • FIG. 8 is a partialsectional view of alternative apparatus in accordance with the present invention.
  • a ladle 20 filled with molten metal such as molten steel from a conventional melting furnace (not shown) is first applied to a ladle deslagger 6 for removal of the slag in the ladle.
  • the ladle is transported to a ladle degasser 7 in which the charge within the ladle is degassed.
  • Both deslagging and degassing are accomplished through the use of a large capacity vacuum source 8 coupled individually to the ladle deslagger 6 and the degasser 7 by valves 8a and 8b respectively.
  • the valves are under the control of a control mechanism 9 which determines which of the deslagger and degasser is coupled to the vacuum source.
  • the single vacuum source 8 supplies the necessary vacuum for removing slag and degassing the charge in these two sequential operations performed on molten metal in order to refine it.
  • FIGS. 2 to 8 show the details of a ladle deslag ger 6 in which the invention may be incorporated.
  • the deslagger 6 includes a chamber 10 coupled to the large capacity vacuum source 8 of FIG. 1 by a conduit 12 (FIG. 5) so as to create a vacuum environment within the chamber.
  • An uptake tube 14 is coupled at one end 140 to the chamber 10, and has a second end 14b adapted to contact molten slag 16 forming a layer near the surface of molten steel 18 contained within the ladle 20.
  • a baffle 22 within the chamber 10 is located within the chamber 10 a baffle 22 (FIG.
  • the uptake tube 14 is flared at its lower end to form an end cap having substantially the same crosssectional area as the ladle 20.
  • the vacuum causes both the slag 16 and the molten steel 18 to rise within the uptake tube 14 until the slag is caused to flow into the chamber 10 and then into the slag box 24.
  • a baffle 22 I may also be used with this arrangement to protect the vacuum system.
  • a cascade slag trap 26 is further provided between the chamber 10 and its associated vacuum source 8 to prevent any slag which does not fall into the slag box 24 from entering into and interfering with the operation of the vacuumsource 8.
  • the chamber 10 is a generally cylindrical housing formed in three sections and fabricated from a relatively heat-resistant and high-strength material, e.g. steel.
  • the chamber 10 comprises an open-ended cylindrical wall portion 28, tapered outwardly toward its lower portion when disposed in an upright position so that slag entering the chamber 10 near its top will not stick to the walls of the chamber; a cover portion 30 of generally circular shape and concave in the direction of the interior of the chamber 10; and the slag box 24 which forms the lower end of the chamber 10.
  • Cooperating annular flanges 28a and 30a located on the peripheries of wall portion 28 and cover portion 30, respectively, provide a means for bolting together the wallportion 28 and the cover portion 30.
  • annular flanges 24a and 28b located on the peripheries of the slag box 24 and the wall portion 28, respectively, are arranged so that the slag box 24 may be'readily and detachably secured to thewall portion 28 of the chamber 10 at its lower extermity (which will be described in more detail below).
  • Vacuum from the vacuum source 8 is introduced into the chamber 10 by means of an annular pipe 32 which enters the chamber 10 near the upper extermity of the wall portion 28.
  • the uptake tube is employed to funnel slag 16 from the ladle 20 to the chamber 10.
  • the uptake tube may be formed in two sections, a short section 14a permanently secured to the chamber 10 and disposed about the aperture 33 in the wall portion 28, and a longer section 14b designed to penetrate into the molten slag l6 and which is readily removable from the short section so that the apparatus may be easily relocated, or repaired.
  • different lengths of the longer sections may be used with various sizes of ladles.
  • the uptake tube 14 is preferably substantially straight, as if the tube should be bent or goose-necked, the molten slag 16 passing at high speed through the tube will tend to rapidly disintegrate the wall of the tube at the point of curvature.
  • the short section 14a of the uptake tube 14 flares outwardly toward the aperture 33 so that the velocity of the slag 16 passing through the uptake tube decreases and the baffle 22 erodes less rapidly.
  • the uptake tube 14 shown in FIGS. 2 and 4 is comprised of an inner wall 14d and an outer wall 14c and is beveled outwardly at its lower end.
  • the outer wall 14c is fabricated from a material capable of withstanding the high temperature of the molten material being funneled therethrough, e.g. preferably steel tube, but may also be graphite, a ceramic material, or the like, and is permanent in nature.
  • the inner wall portion 14d is fabricated from multiple layers of char-resistant paper and is adapted to be disposed within and secured to the outer wall 140 to insulate the uptake tube 14 and to prevent the uptake tube 14 from collapsing upon evacuation under high temperature.
  • the inner wall is temporary in nature.
  • the char-resistant inner wall 14d comprises a preformed lining fabricated from a spirally-wound strip of thermally-insulating paper, e.g. Kraft paper, layers of paper interleaved with layers of asbestos, or other impregnated paper or paper-like material.
  • the inner wall 14d is designed to have only a short life, i.e. about five minutes or a long enough period to funnel all the slag 16 from the ladle 20 of molten steel, and to be readily removable and replaceable.
  • the inner wall 14d should be approximately one-half inch in thickness, which is adequate to withstand the flow of slag for the time necessary to funnel the slag 16 from the ladle 20 to the chamber 10.
  • the inner wall is disposed within the outer wall 14c throughout the entire length of the outer wall 140 from end 140 to end 14b and is held in place only at its bottom end by refractory cement or other suitable adhesive.
  • An additional wall portion 14e may be disposed about and secured to the outer wall portion 140 near the end portion 14b of the uptake tube 14 which penetrates the slag 16 contained within the ladle 20.
  • This additional wall portion 14e may also be fabricated from multiple layers of thermally-insulating paper or other suitable material but need only cover the outer wall 140' for a distance from the end 14b of the uptake tube 14 sufficient to protect the tube against direct contact with the slag, i.e. about 12 to 14 inches, the usual depth of the slag 16.
  • the inner wall 14d and the additional wall portion l4e may be fabricated in one piece, being connected at their lower ends by paper connecting piece 14f which also serves the function of protecting the outer wall 140 from deterioration. If the inner wall 14d and the wall portion l4e are not constructed integrally, the lower portion of the outer wall 140 should be protected by a suitable adhesive or the like.
  • the long section 14b of the uptake tube 14 may terminate in a cylindrical cup,17 located at the lower end of the tube and adapted to be disposed within the molten slag 16, as shown in FIG. 7.
  • the cup 17 may be fabricated from thermally-insulating paper, e.g. of the type used for inner wall 14d, or additional wall portion 142 and is intended to be discarded after removing the slag from one ladle of molten metal.
  • cup 17 purpose of the cup 17 is to provide a smoother (less turbulent) entrance of the slag 16 into the uptake tube 14.
  • a probe 34 for determin proximity of the uptake tube 14 to the steel slag interface.
  • the probe 34 is coupled to an electrical source (not shown) and relies upon the difference in conductivity of the molten steel 18 and the slag 16 to signal when the probe, which is disposed approximately one-fourth inch below the end 14b of the uptake tube 14, has contacted the molten steel 18. Thus a predetermined amount of the slag may be removed without removing any of the molten steel.
  • the deslagging apparatus desirably remains fixed in one position, it becomes necessary that the ladle 20 be transported and raised until the slag portion 16 contained within the ladle 20 contacts the end 14b of the uptake tube 14.
  • An operator may easily position the ladle 20 by means of positioning arms 36 that movably support the ladle. The operator may manipulate the ladle 20 such that the uptake tube 14 contacts the slag 16 uniformly about the surface of the molten liquid, i.e., such as a vacuum cleaner is moved about a floor being cleaned.
  • the ladle In order to being the molten slag 16 closer to the open upper end of the ladle 20, the ladle may be tilted before the vacuum is applied by means of the uptake tube 14. Depending upon the viscosity of the slag layer, movement of the ladle may not be necessary. It should be understood, however, that the deslagging apparatus may also be moved into contact with the ladle 20. It is ordinarily easier for the operator to position the ladle with respect to the deslagging apparatus as part of the ladle movement from the furnace in which the steel is prepared to the ladle degassing station, which is normally a part of the process for producing high quality steel.
  • the baffle 22 Disposed within the chamber 10 is the baffle 22, which is suspended from the cover portion 30 in a position directly opposite the aperture 33 communicating with the uptake tube 14.
  • the baffle 22 may deflect slag which has been rapidly funneled by the uptake tube 14 into the chamber 10 from a path which would permit the slag to enter the pipe 32, which is disposed diametrically opposite the aperture 33 and ,which connects the vacuum source 8 to the chamber.
  • a suitable member 38 e.g., a removable steel member or refractory material
  • the reinforcement member 38 is not necessary to the operation of the deslagging apparatus just described, it is more economic to utilize a replaceable massive block on the baffle 22 than to make the baffle 22 massive itself.
  • the baffle 22 should not be disposed too close to the aperture 13 as the rapidly moving slag will cause the baffle to disintegrate too quickly.
  • FIG. 6 Another method of preventing the rapidly moving slag from striking the baffle 22 at too fast a'rate is illustrated in FIG. 6.
  • a stream of gas e.g. inert nitrogen gas or air
  • the inert gas or air deflects the molten slag 16 from its path of travel to prevent the slag from impinging too vigorously against the baffle 22.
  • the inert gas or air is preferably introduced into the pipe 19 at a pressure of about 20 p.s.1.g.
  • the long section 14b of the uptake tube 14 terminates in a flared substantially cylindrical end cap 15, as shown in FIG. 8.
  • the end cap of the modified em bodiment is comprised of an outer wall 15a fabricated from the same material as the uptake tube 14 and an inner wall 15b fabricated from thermally-insulating material, e.g. thermally-insulating paper such as that used to form inner wall 14d or additional wall portion 14c, or, preferably a refractory material.
  • the end cap 15 hassubstantially the same cross-sectional area as the ladle and is just able to be disposed within the ladle.
  • the end cap is partially immersed within the molten material.
  • the pressure acting on the portion of the molten slag and metal outside the perimeter of the end cap 15 is counterbalanced by the weight of a vertical column of metal of unit cross-sectional area and of a height the same as the difference in levels between the slag outside the end cap and the upper end of the uptake tube (designated in FIG. 8) plus the pressure within the chamber 10.
  • Both the slag l6 and molten metal 18 are allowed to rise within the uptake tube 14.
  • By carefully controlling the vacuum level produced by the vacuum source 8 only the slag will be drawn off the top of the uptake tube 14 and will enter the chamber 10.
  • the pressure difference between the chamber .and the surface ofthe slag layer outside the end cap 15 is controlled (by regulation of the vacuum source 8) so that it is sufficient to support a column filling the uptake 14 of slag alone or molten metal and slag but not molten'metal alone.
  • the pressure difference forces slag (floating at the top of molten metal) upwardly and outwardly through the uptake tube into the chamber until all slag within the end cap has been removed.
  • the uptake tube is filled with molten metal and a small amount of slag at the upper end.
  • the vacuum may be controlled so that the pres sure difference is not great enough to support any more molten metal in the uptake tube, and hence the move-, merit of molten material out the uptake tube ceases. In this way all the slag but no molten metal is forced out the uptake tube.
  • the vacuum within the chamber may be varied during this operation so as to provide a rapid flow'of slag initially (higher vacuum) followed by a slowing of slag flow (lower vacuum) toward theend of the operation to ensure that no molten metal is withdrawn into the chamber.
  • the ladle 20 is raised relative to the uptake tube 14 as the molten slag is removed.
  • the end cap 15 may be disengaged from the molten metal in the ladle 20 when any of the molten metal begins to flow into the chamber 10, thus breaking the vacuum and allowing the remaining molten metal in the uptake tube 14 to run back into the ladle 20.
  • the receptacle for the slag is disposed at a level beneath that of the ladle 20.
  • the present apparatus does not utilize the same principles as a vacuum-initiated siphon, since in the instant device the vacuum is continuously in operation.
  • the baffle 22 may also be used with this form of apparatus to prevent slag being drawn. into the pipe 32 in the event that the vacuum is initiated at too'high a rate. Thus, it is desirable to maintain a baffle 22 within the chamber 10 regardless of which fonn of apparatus is employed in order to avoid interference with the vacuum system.
  • the slag box 24 comprising a part of the -chamber 10 and located beneath the baffle 22.
  • the slag box 24 is adapted tobe readilyremoved from the chamber 10 upon its being filled.
  • a plurality of wing-nut-and-bolt mechanisms 40 are employed to secure the slag box 24 to the lower periphery of the wall portion 28 of the chamber 10 at the corresponding annular flanges 24a and 28b.
  • the slag box 24 may be transported away from and into its position in the deslagging apparatus by a transfer crane 41, for example.
  • the slag box 24 is adapted to contain molten slag 16, it should be lined with refractory brick 42 or other suitable material, although by the time the slag 16 is received within the slag box 24, the slag has substantially decreased in temperature.
  • the slag box 24 receives the great proportion of the slag l6 removed from the ladle 20, some of the slag, particularly gaseous and finely divided solid matter, may manage to elude the slag box 24 and find its way to the pipe 32 which connects the vacuum source 8 to the chamber 10.
  • the cascade slag trap 26 is provided to collect this slag.
  • the cascade 44 having their lower end portions sealed with caps 46 I and 48 designed to catch the portion of the slag which settles in the pipes. In operation (asbest seen in FIG.
  • the gaseous and finely divided solid matter of the slag enters the pipe 32, which has a horizontal portion 32a leading to the cascade slag trap 26 and a downwardly directed open-ended'vertical'portion 32b disposed within the first vertical pipe 42 of the'cascade slag trap.
  • Substantially all of the slag matterexisting from the open end of the vertical portion 32b of the connecting pipe 32 settles on the cap46 at the base of the vertical pipe 42.
  • some of the slag matter may manage to rise within the pipe 42 and enter the second pipe 44 of the cascade slag trap 26 at the point of connection of the pipes 42 and 44 near their upper ends. Again substantially all the remaining slag matter will settle on the cap 48 at the bottom of the second pipe 44.
  • a horizontal pipe 50 which leads directly to the vacuum source 8-through a flexible connector 52 and a valve 54.
  • the valve 54 corresponds to. the valve 8a shown in FIG. 1.
  • the valve 54 is manually controlled.
  • a cascade slag trap 26 containing two vertical pipes 42 and 44 is illustrated, it should be understood thatone pipe may be sufficient to settle a substantial portion of the slag mattenA plurality of pipes will increase the efficiency of the system while not hindering the maintaining of the vacuum.
  • a tortuous path is provided to collect the portion of the slag not received by the slag box 24 before it can enter into and interfere with the operation of the vacuum source 8.
  • the entire deslagging apparatus may be supported by a pair of flanges 60, 62 located on the wall portion 28 of the chamber 10 which rest upon a pair of horizontal high-strength I-beams 56, 58.
  • the vacuum source 8 is preferably of larger capacity than necessary for adequately deslagging the molten steel 18. If the vacuum source 8 is of sufficiently large capacity, it may be used to provide a vacuum environment for the ladle vacuum degassing system. Common controls may also be utilized to determine the application of vacuum, as shown and described above in connection with FIG. 1. Thus both the slag portion 16 and the gaseous matter contained within the molten steel may be removed from the steel while the steel remains within the ladle 20. It is further desirable that the vacuum source 8 be of greater than adequate capacity so that a high vacuum may be placed in communication with the chamber 10 when such is desired, rather than having to reduce the pressure gradually.
  • FIGS. 2-7 allows for intermittent operation near the end of the deslagging cycle, which is helpful in removing the slag 16.
  • the coupling together of slag and uptake tube is discontinued to prevent sucking molten steel into the chamber 10.
  • the lost remnants of slag are then sucking into the chamber with intermittent coupling of uptake tube and slag.
  • Such intermittent operation is not possible with the alternative arrangement, since once the tube and slag are decoupled no more sucking can take place.
  • the present invention provides apparatus for transferring molten metal from one location to another, e.g., useful in the deslagging of steel, and incorporates a paper tube for such purpose.
  • Apparatus for transferring molten metal comprismg:
  • an inside wall portion fabricated from multiple layers of thermally-insulating paper and adapted to be disposed within and secured to said outside wall portion.
  • Apparatus according to claim 1 including an additional wall portion fabricated from multiple layers of thermally-insulating paper adapted to be disposed about and secured to said outside wall portion on the surface of said outside wall portion which contacts said molten metal.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

Apparatus for transferring molten metal such as steel from one location to another, including a paper tube through which the molten metal passes.

Description

[ Jan. 2, 1973 United States Patent [191 Perry [54] APPARATUS FOR TRANSFERRING [58] Field of Search .........75/46, 49; 266/1 R, 34 PT, MOLTEN METAL 266/34 V, 37, 38
References Cited UNITED STATES PATENTS 3,206,l83 3/1972 Marwick....... ....................266/34 PT land, Ohio [22] Filed: June 25, 1971 [21] Appl. No.: 156,959
Primary Examiner-Gerald A. Dost Attorney-Robert P. Wright et al.
Related US. Application Data ABSTRACT [62] Divisim 0f 841,026 July 1969' Apparatus for transferring molten metal such as steel from one location to another, including a paper tube through which the'molten metal passes.
[51] Int Cl 266/34 PT ....A0lg 23/08 7 Claims, 8 Drawing Figures PATENTEDJAH 2191s 3 708 158 SHEET 2 [IF 3 1 Zia.
Add 25 APPARATUS FOR TRANSFERRING MOLTEN 1 METAL CROSS REFERENCE TO RELATED APPLICATION This application is a division of my co-pending application Ser. No. 841,026, filed July 11, 1969 for AP- PARATUS AND PROCESS FOR DESLAGGING STEEL, now US. Pat. No. 3,632,096 issued Jan. 4, 1972.
BACKGROUND AND BRIEF DESCRIPTION OF THE INVENTION The present invention relates to apparatus for transferring molten metal, particularly steel, from one location to another.
The invention is particularly useful in the deslagging of steel, and incorporates a cheap and easily replaced paper tube for transferring molten slag out of a ladle.
In accordance with the invention, an uptake tube for deslagging molten steel, for example, may include inner and outer walls, the outer wall being comprised preferably of steel tube, and the inner wall being preferably fabricated from multiple layers of thermallyinsulating paper which may be readily and periodically replaced. An additional wall fabricated from multiple layers of paper may be disposed about the lower por' tion of the outer wall.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagrammetric view of a process in which the present invention may be utilized.
FIG. 2 is a side elevational view of representative apparatus in which the present invention may be incorporated.
FIG. 3 is a front elevational view taken along line 3- 3 of FIG. 2.
FIG. 4 is a sectional view taken along line 4-4 of FIG. 3 showing the details of an uptake tube embodying the invention.
FIG. 5 is an elevational view taken along line 5-5 of FIG. 2.
FIG. 6 is a partial side elevational view of an alternative form of uptake tube.
FIG. 7 is a partial sectional view of a modified form of uptake tube. a
FIG. 8 is a partialsectional view of alternative apparatus in accordance with the present invention.
DETAILED DESCRIPTION Referring to FIG. 1, a ladle 20 filled with molten metal such as molten steel from a conventional melting furnace (not shown) is first applied to a ladle deslagger 6 for removal of the slag in the ladle. Following the slag removing operation the ladle is transported to a ladle degasser 7 in which the charge within the ladle is degassed. Both deslagging and degassing are accomplished through the use of a large capacity vacuum source 8 coupled individually to the ladle deslagger 6 and the degasser 7 by valves 8a and 8b respectively. The valves are under the control of a control mechanism 9 which determines which of the deslagger and degasser is coupled to the vacuum source. Thus the single vacuum source 8 supplies the necessary vacuum for removing slag and degassing the charge in these two sequential operations performed on molten metal in order to refine it.
FIGS. 2 to 8 show the details of a ladle deslag ger 6 in which the invention may be incorporated. The deslagger 6 includesa chamber 10 coupled to the large capacity vacuum source 8 of FIG. 1 by a conduit 12 (FIG. 5) so as to create a vacuum environment within the chamber. An uptake tube 14 is coupled at one end 140 to the chamber 10, and has a second end 14b adapted to contact molten slag 16 forming a layer near the surface of molten steel 18 contained within the ladle 20. In one form of the apparatus (FIGS. 2-7), within the chamber 10 is located a baffle 22 (FIG. 4) disposed such that molten slag 16 being funneled through the uptake tube 14 is deflected by the baffle 22 into a slag box 24 forming a part of the chamber 10 and located beneath the baffle 22. In the form shown in FIG. 8, the uptake tube 14 is flared at its lower end to form an end cap having substantially the same crosssectional area as the ladle 20.The vacuum causes both the slag 16 and the molten steel 18 to rise within the uptake tube 14 until the slag is caused to flow into the chamber 10 and then into the slag box 24. A baffle 22 I may also be used with this arrangement to protect the vacuum system. A cascade slag trap 26 is further provided between the chamber 10 and its associated vacuum source 8 to prevent any slag which does not fall into the slag box 24 from entering into and interfering with the operation of the vacuumsource 8. V
The chamber 10 is a generally cylindrical housing formed in three sections and fabricated from a relatively heat-resistant and high-strength material, e.g. steel. Thus, the chamber 10 comprises an open-ended cylindrical wall portion 28, tapered outwardly toward its lower portion when disposed in an upright position so that slag entering the chamber 10 near its top will not stick to the walls of the chamber; a cover portion 30 of generally circular shape and concave in the direction of the interior of the chamber 10; and the slag box 24 which forms the lower end of the chamber 10. Cooperating annular flanges 28a and 30a, located on the peripheries of wall portion 28 and cover portion 30, respectively, provide a means for bolting together the wallportion 28 and the cover portion 30. Similarly, cooperating annular flanges 24a and 28b, located on the peripheries of the slag box 24 and the wall portion 28, respectively, are arranged so that the slag box 24 may be'readily and detachably secured to thewall portion 28 of the chamber 10 at its lower extermity (which will be described in more detail below). Vacuum from the vacuum source 8 is introduced into the chamber 10 by means of an annular pipe 32 which enters the chamber 10 near the upper extermity of the wall portion 28.
Diametrically opposite the pipe 32 which permits the vacuum to be introduced within the chamber 10 isan aperture 33 in the wall portion 28 communicating with the uptake tube 14. The uptake tube is employed to funnel slag 16 from the ladle 20 to the chamber 10. The uptake tube may be formed in two sections, a short section 14a permanently secured to the chamber 10 and disposed about the aperture 33 in the wall portion 28, and a longer section 14b designed to penetrate into the molten slag l6 and which is readily removable from the short section so that the apparatus may be easily relocated, or repaired. In addition, different lengths of the longer sections may be used with various sizes of ladles. It should be noted that the uptake tube 14 is preferably substantially straight, as if the tube should be bent or goose-necked, the molten slag 16 passing at high speed through the tube will tend to rapidly disintegrate the wall of the tube at the point of curvature. Preferably also, the short section 14a of the uptake tube 14 flares outwardly toward the aperture 33 so that the velocity of the slag 16 passing through the uptake tube decreases and the baffle 22 erodes less rapidly.
The uptake tube 14 shown in FIGS. 2 and 4 is comprised of an inner wall 14d and an outer wall 14c and is beveled outwardly at its lower end. The outer wall 14c is fabricated from a material capable of withstanding the high temperature of the molten material being funneled therethrough, e.g. preferably steel tube, but may also be graphite, a ceramic material, or the like, and is permanent in nature. The inner wall portion 14d is fabricated from multiple layers of char-resistant paper and is adapted to be disposed within and secured to the outer wall 140 to insulate the uptake tube 14 and to prevent the uptake tube 14 from collapsing upon evacuation under high temperature. The inner wall is temporary in nature. In more detail, the char-resistant inner wall 14d comprises a preformed lining fabricated from a spirally-wound strip of thermally-insulating paper, e.g. Kraft paper, layers of paper interleaved with layers of asbestos, or other impregnated paper or paper-like material. The inner wall 14d is designed to have only a short life, i.e. about five minutes or a long enough period to funnel all the slag 16 from the ladle 20 of molten steel, and to be readily removable and replaceable. The inner wall 14d should be approximately one-half inch in thickness, which is adequate to withstand the flow of slag for the time necessary to funnel the slag 16 from the ladle 20 to the chamber 10. The inner wall is disposed within the outer wall 14c throughout the entire length of the outer wall 140 from end 140 to end 14b and is held in place only at its bottom end by refractory cement or other suitable adhesive. An additional wall portion 14e may be disposed about and secured to the outer wall portion 140 near the end portion 14b of the uptake tube 14 which penetrates the slag 16 contained within the ladle 20. This additional wall portion 14e may also be fabricated from multiple layers of thermally-insulating paper or other suitable material but need only cover the outer wall 140' for a distance from the end 14b of the uptake tube 14 sufficient to protect the tube against direct contact with the slag, i.e. about 12 to 14 inches, the usual depth of the slag 16. The inner wall 14d and the additional wall portion l4e may be fabricated in one piece, being connected at their lower ends by paper connecting piece 14f which also serves the function of protecting the outer wall 140 from deterioration. If the inner wall 14d and the wall portion l4e are not constructed integrally, the lower portion of the outer wall 140 should be protected by a suitable adhesive or the like.
Alternatively, the long section 14b of the uptake tube 14 may terminate in a cylindrical cup,17 located at the lower end of the tube and adapted to be disposed within the molten slag 16, as shown in FIG. 7. The cup 17 may be fabricated from thermally-insulating paper, e.g. of the type used for inner wall 14d, or additional wall portion 142 and is intended to be discarded after removing the slag from one ladle of molten metal. The
purpose of the cup 17 is to provide a smoother (less turbulent) entrance of the slag 16 into the uptake tube 14.
Located near the end 14b of the uptake tube 14 which penetrates into the slag 16 is a probe 34 for determin proximity of the uptake tube 14 to the steel slag interface. The probe 34 is coupled to an electrical source (not shown) and relies upon the difference in conductivity of the molten steel 18 and the slag 16 to signal when the probe, which is disposed approximately one-fourth inch below the end 14b of the uptake tube 14, has contacted the molten steel 18. Thus a predetermined amount of the slag may be removed without removing any of the molten steel.
As the'uptake tube 14 is preferably stationary relative to the chamber 10, and the deslagging apparatus desirably remains fixed in one position, it becomes necessary that the ladle 20 be transported and raised until the slag portion 16 contained within the ladle 20 contacts the end 14b of the uptake tube 14. An operator may easily position the ladle 20 by means of positioning arms 36 that movably support the ladle. The operator may manipulate the ladle 20 such that the uptake tube 14 contacts the slag 16 uniformly about the surface of the molten liquid, i.e., such as a vacuum cleaner is moved about a floor being cleaned. In order to being the molten slag 16 closer to the open upper end of the ladle 20, the ladle may be tilted before the vacuum is applied by means of the uptake tube 14. Depending upon the viscosity of the slag layer, movement of the ladle may not be necessary. It should be understood, however, that the deslagging apparatus may also be moved into contact with the ladle 20. It is ordinarily easier for the operator to position the ladle with respect to the deslagging apparatus as part of the ladle movement from the furnace in which the steel is prepared to the ladle degassing station, which is normally a part of the process for producing high quality steel.
Disposed within the chamber 10 is the baffle 22, which is suspended from the cover portion 30 in a position directly opposite the aperture 33 communicating with the uptake tube 14. Thus the baffle 22 may deflect slag which has been rapidly funneled by the uptake tube 14 into the chamber 10 from a path which would permit the slag to enter the pipe 32, which is disposed diametrically opposite the aperture 33 and ,which connects the vacuum source 8 to the chamber. As the baffle 22 is directly in the path of rapidly moving, high temperature slag, it is necessary to reinforce the baffle with a suitable member 38, e.g., a removable steel member or refractory material, to lengthen the life of the baffle. Although the reinforcement member 38 is not necessary to the operation of the deslagging apparatus just described, it is more economic to utilize a replaceable massive block on the baffle 22 than to make the baffle 22 massive itself. The baffle 22 should not be disposed too close to the aperture 13 as the rapidly moving slag will cause the baffle to disintegrate too quickly.
Another method of preventing the rapidly moving slag from striking the baffle 22 at too fast a'rate is illustrated in FIG. 6. A stream of gas, e.g. inert nitrogen gas or air, may be introduced transversely to the flowing molten slag by means of a pipe 19 and a valve 21 connecting a source of inert gas or air or both (not shown) to the short section 14a of the uptake tube 14 at a point close to the aperture 33 of the chamber 10. The inert gas or air deflects the molten slag 16 from its path of travel to prevent the slag from impinging too vigorously against the baffle 22. The inert gas or air is preferably introduced into the pipe 19 at a pressure of about 20 p.s.1.g.
In a modified form of apparatus of the present invention, the long section 14b of the uptake tube 14 terminates in a flared substantially cylindrical end cap 15, as shown in FIG. 8. The end cap of the modified em bodiment is comprised of an outer wall 15a fabricated from the same material as the uptake tube 14 and an inner wall 15b fabricated from thermally-insulating material, e.g. thermally-insulating paper such as that used to form inner wall 14d or additional wall portion 14c, or, preferably a refractory material.
The end cap 15 hassubstantially the same cross-sectional area as the ladle and is just able to be disposed within the ladle. The end cap is partially immersed within the molten material. The pressure acting on the portion of the molten slag and metal outside the perimeter of the end cap 15 is counterbalanced by the weight of a vertical column of metal of unit cross-sectional area and of a height the same as the difference in levels between the slag outside the end cap and the upper end of the uptake tube (designated in FIG. 8) plus the pressure within the chamber 10. Both the slag l6 and molten metal 18 are allowed to rise within the uptake tube 14. By carefully controlling the vacuum level produced by the vacuum source 8, only the slag will be drawn off the top of the uptake tube 14 and will enter the chamber 10.
That is, the pressure difference between the chamber .and the surface ofthe slag layer outside the end cap 15 is controlled (by regulation of the vacuum source 8) so that it is sufficient to support a column filling the uptake 14 of slag alone or molten metal and slag but not molten'metal alone. In this way the pressure difference forces slag (floating at the top of molten metal) upwardly and outwardly through the uptake tube into the chamber until all slag within the end cap has been removed. At this point the uptake tube is filled with molten metal and a small amount of slag at the upper end. The vacuum may be controlled so that the pres sure difference is not great enough to support any more molten metal in the uptake tube, and hence the move-, merit of molten material out the uptake tube ceases. In this way all the slag but no molten metal is forced out the uptake tube. The vacuum within the chamber may be varied during this operation so as to provide a rapid flow'of slag initially (higher vacuum) followed by a slowing of slag flow (lower vacuum) toward theend of the operation to ensure that no molten metal is withdrawn into the chamber.
Preferably, the ladle 20 is raised relative to the uptake tube 14 as the molten slag is removed. The end cap 15 may be disengaged from the molten metal in the ladle 20 when any of the molten metal begins to flow into the chamber 10, thus breaking the vacuum and allowing the remaining molten metal in the uptake tube 14 to run back into the ladle 20. There is no necessity for the receptacle for the slag to be disposed at a level beneath that of the ladle 20. The present apparatus does not utilize the same principles as a vacuum-initiated siphon, since in the instant device the vacuum is continuously in operation.
The baffle 22 may also be used with this form of apparatus to prevent slag being drawn. into the pipe 32 in the event that the vacuum is initiated at too'high a rate. Thus, it is desirable to maintain a baffle 22 within the chamber 10 regardless of which fonn of apparatus is employed in order to avoid interference with the vacuum system.
After the slag 16 has been deflected by the baffle 22 within or has flowed into the chamber 10, a large proportion of the slag is received within the slag box 24 comprising a part of the -chamber 10 and located beneath the baffle 22. The slag box 24 is adapted tobe readilyremoved from the chamber 10 upon its being filled. To this end, a plurality of wing-nut-and-bolt mechanisms 40 are employed to secure the slag box 24 to the lower periphery of the wall portion 28 of the chamber 10 at the corresponding annular flanges 24a and 28b. The slag box 24 may be transported away from and into its position in the deslagging apparatus by a transfer crane 41, for example. As the slag box 24 is adapted to contain molten slag 16, it should be lined with refractory brick 42 or other suitable material, although by the time the slag 16 is received within the slag box 24, the slag has substantially decreased in temperature.
While the slag box 24 receives the great proportion of the slag l6 removed from the ladle 20, some of the slag, particularly gaseous and finely divided solid matter, may manage to elude the slag box 24 and find its way to the pipe 32 which connects the vacuum source 8 to the chamber 10. To prevent this portion of the slag from subsequently entering into and interfering with the operation of the vacuum source 8, the cascade slag trap 26 is provided to collect this slag. The cascade 44 having their lower end portions sealed with caps 46 I and 48 designed to catch the portion of the slag which settles in the pipes. In operation (asbest seen in FIG. 5), the gaseous and finely divided solid matter of the slag enters the pipe 32, which has a horizontal portion 32a leading to the cascade slag trap 26 and a downwardly directed open-ended'vertical'portion 32b disposed within the first vertical pipe 42 of the'cascade slag trap. Substantially all of the slag matterexisting from the open end of the vertical portion 32b of the connecting pipe 32 settles on the cap46 at the base of the vertical pipe 42. However, some of the slag matter may manage to rise within the pipe 42 and enter the second pipe 44 of the cascade slag trap 26 at the point of connection of the pipes 42 and 44 near their upper ends. Again substantially all the remaining slag matter will settle on the cap 48 at the bottom of the second pipe 44. Extending from the central region of the second pipe 44 is a horizontal pipe 50 which leads directly to the vacuum source 8-through a flexible connector 52 and a valve 54. The valve 54 corresponds to. the valve 8a shown in FIG. 1. In this case, the valve 54 is manually controlled. Although a cascade slag trap 26 containing two vertical pipes 42 and 44 is illustrated, it should be understood thatone pipe may be sufficient to settle a substantial portion of the slag mattenA plurality of pipes will increase the efficiency of the system while not hindering the maintaining of the vacuum. Thus a tortuous path is provided to collect the portion of the slag not received by the slag box 24 before it can enter into and interfere with the operation of the vacuum source 8.
The entire deslagging apparatus may be supported by a pair of flanges 60, 62 located on the wall portion 28 of the chamber 10 which rest upon a pair of horizontal high-strength I- beams 56, 58.
The vacuum source 8 is preferably of larger capacity than necessary for adequately deslagging the molten steel 18. If the vacuum source 8 is of sufficiently large capacity, it may be used to provide a vacuum environment for the ladle vacuum degassing system. Common controls may also be utilized to determine the application of vacuum, as shown and described above in connection with FIG. 1. Thus both the slag portion 16 and the gaseous matter contained within the molten steel may be removed from the steel while the steel remains within the ladle 20. It is further desirable that the vacuum source 8 be of greater than adequate capacity so that a high vacuum may be placed in communication with the chamber 10 when such is desired, rather than having to reduce the pressure gradually. It should be noted that when a probe 34 is employed, a thin layer of slag will remain upon completion of the deslagging process; this is desirable as it provides temporary protection of the molten steel 18 during the time that the ladle 20 is being moved from the deslagging station to the degassing station.
The apparatus shown in FIGS. 2-7 allows for intermittent operation near the end of the deslagging cycle, which is helpful in removing the slag 16. As the end point of slag removal is reached, the coupling together of slag and uptake tube is discontinued to prevent sucking molten steel into the chamber 10. The lost remnants of slag are then sucking into the chamber with intermittent coupling of uptake tube and slag. Such intermittent operation is not possible with the alternative arrangement, since once the tube and slag are decoupled no more sucking can take place.
Thus, the present invention provides apparatus for transferring molten metal from one location to another, e.g., useful in the deslagging of steel, and incorporates a paper tube for such purpose.
I claim:
1. Apparatus for transferring molten metal, comprismg:
a. an outside wall portion fabricated from a material capable of withstanding the high temperature of molten metal; and
b. an inside wall portion fabricated from multiple layers of thermally-insulating paper and adapted to be disposed within and secured to said outside wall portion.
2. Apparatus according to claim 1, including an additional wall portion fabricated from multiple layers of thermally-insulating paper adapted to be disposed about and secured to said outside wall portion on the surface of said outside wall portion which contacts said molten metal.
3. Apparatus according to claim 1, wherein said inside wall portion is adapted to be readily removed and replaced.
4. Apparatus according to claim 1, wherein said outside wall portion is fabricated from graphite.
5. Apparatus according to claim wherein said out-

Claims (7)

1. Apparatus for transferring molten metal, comprising: a. an outside wall portion fabricated from a material capable of withstanding the high temperature of molten metal; and b. an inside wall portion fabricated from multiple layers of thermally-insulating paper and adapted to be disposed within and secured to said outside wall portion.
2. Apparatus according to claim 1, including an additional wall portion fabricated from multiple layers of thermally-insulating paper adapted to be disposed about and secured to said outside wall portion on the surface of said outside wall portion which contacts said molten metal.
3. AppaRatus according to claim 1, wherein said inside wall portion is adapted to be readily removed and replaced.
4. Apparatus according to claim 1, wherein said outside wall portion is fabricated from graphite.
5. Apparatus according to claim 1, wherein said outside wall portion is fabricated from a ceramic material.
6. Apparatus according to claim 1, wherein said outside wall portion comprises a steel tube.
7. Apparatus for transferring molten metal from one location to another, comprising a paper tube bridging the two locations through which the molten metal passes.
US00156959A 1971-06-25 1971-06-25 Apparatus for transferring molten metal Expired - Lifetime US3708158A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15695971A 1971-06-25 1971-06-25

Publications (1)

Publication Number Publication Date
US3708158A true US3708158A (en) 1973-01-02

Family

ID=22561794

Family Applications (1)

Application Number Title Priority Date Filing Date
US00156959A Expired - Lifetime US3708158A (en) 1971-06-25 1971-06-25 Apparatus for transferring molten metal

Country Status (1)

Country Link
US (1) US3708158A (en)

Similar Documents

Publication Publication Date Title
US3632096A (en) Apparatus and process for deslagging steel
US3125440A (en) Tlbr b
US4105438A (en) Continuous metal melting, withdrawal and discharge from rotary furnaces
AU706193B2 (en) Metallurgical furnace vacuum slag removal
US3867132A (en) Method of deslagging molten metal
US5083754A (en) Apparatus for retaining slag during the discharge of molten metal from a tundish
US3337329A (en) Method of treating molten metal under vacuum
US3708158A (en) Apparatus for transferring molten metal
US3146288A (en) Apparatus for vacuum treatment of molten metal
US3704013A (en) Apparatus for deslagging and degassing molten metal
US2510932A (en) Apparatus for melting and treating metal
NO783225L (en) PROCEDURE FOR EXHAUSTING ADDITIONAL MATERIAL
US3145095A (en) Method and apparatus for continuously tapping and degassing molten metal into ingot molds
GB1595732A (en) Pouring tubes for casting metals under gas pressure
US3332474A (en) Apparatus and method for continuous vacuum degassing and casting of steel and other metals
US917257A (en) Process of and apparatus for casting metal.
US2190209A (en) Apparatus for eliminating pipe, etc., in metals
US3819842A (en) Method and furnace for maintaining the temperature level of metal melts
US3971549A (en) Process and apparatus for treating and transferring metal in the liquid state
US3333626A (en) Apparatus for teeming degassed molten metal
US1554367A (en) Process and apparatus for making steel
US3648763A (en) Machine for centrifugally casting tubular metal bodies
SU539674A1 (en) Chute for transporting molten metal
US3689050A (en) Apparatus for controlling dispensing of molten metal
SU372024A1 (en) Library library

Legal Events

Date Code Title Description
AS Assignment

Owner name: LTV STEEL COMPANY, INC.,

Free format text: MERGER AND CHANGE OF NAME EFFECTIVE DECEMBER 19, 1984, (NEW JERSEY);ASSIGNORS:JONES & LAUGHLIN STEEL, INCORPORATED, A DE. CORP. (INTO);REPUBLIC STEEL CORPORATION, A NJ CORP. (CHANGEDTO);REEL/FRAME:004736/0443

Effective date: 19850612