US3707143A - Fuel injection system for two cycle engine - Google Patents

Fuel injection system for two cycle engine Download PDF

Info

Publication number
US3707143A
US3707143A US58431A US3707143DA US3707143A US 3707143 A US3707143 A US 3707143A US 58431 A US58431 A US 58431A US 3707143D A US3707143D A US 3707143DA US 3707143 A US3707143 A US 3707143A
Authority
US
United States
Prior art keywords
fuel
engine
cavity
combustion
combustion chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US58431A
Inventor
Gerald D Reese
Gerald G Shank
Lowell D Carlson
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
First National Bank of Minneapolis
Polaris Inc
Original Assignee
Textron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Textron Inc filed Critical Textron Inc
Application granted granted Critical
Publication of US3707143A publication Critical patent/US3707143A/en
Assigned to POLARIS INDUSTRIES, INC., A CORP OF MN reassignment POLARIS INDUSTRIES, INC., A CORP OF MN ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: TEXTRON INC., A DE CORP
Assigned to FIRST NATIONAL BANK OF MINNEAPOLIS reassignment FIRST NATIONAL BANK OF MINNEAPOLIS ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: POLARIS INDUSTRIES L.P., BY: POLARIS INDUSTRIES ASSOCIATES, GENERAL PARTNER
Assigned to POLARIS INDUSTRIES L.P., A DE. LIMITED PARTNERSHIP reassignment POLARIS INDUSTRIES L.P., A DE. LIMITED PARTNERSHIP ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: POLARIS INDUSTRIES, INC., A CORP. OF MN.
Anticipated expiration legal-status Critical
Assigned to POLARIS INDUSTRIES L.P. reassignment POLARIS INDUSTRIES L.P. RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). REEL 4811, FRAMES 696-702, RECORDED ON 9-09-87. Assignors: FIRST BANK NATONAL ASSOCIATION
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/10Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel peculiar to scavenged two-stroke engines, e.g. injecting into crankcase-pump chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B15/00Engines characterised by the method of introducing liquid fuel into cylinders and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/025Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle two
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/12Other methods of operation
    • F02B2075/125Direct injection in the combustion chamber for spark ignition engines, i.e. not in pre-combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2720/00Engines with liquid fuel
    • F02B2720/15Mixture compressing engines with ignition device and mixture formation in the cylinder
    • F02B2720/152Mixture compressing engines with ignition device and mixture formation in the cylinder with fuel supply and pulverisation by injecting the fuel under pressure during the suction or compression stroke
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the fuel is compressibly accumulated when the cavity is covered by the piston during the compression and combustion cycles. As' the piston moves into the fuel intake cycle, the cavity is opened and the fuel charge is discharged therefrom and swept out by the flow of intake air for subsequent vaporization and combustion.
  • Fuel injection eliminates the fuel from the crankcase area and permits usage of a lubricant having a lower viscosity, which enhances cold weather operation of the engine and oil injection system. Further, the elimination of lubricant dilution allows a reduction in the volume of lubricant necessary to satisfactorily lubricate the engine components.
  • direct cylinder fuel injection results from the location at which fuel vaporization takes place.
  • the vaporization of fuel into a gaseous state requires absorption of a considerable amount of heat.
  • the vaporizing fuel absorbs heat from the crankcase, where heat problems ordinarily do not exist.
  • direct cylinder fuel injection the fuel is vaporized in the combustion chamber where it absorbs heat from the piston, cylinder walls and cylinder head, all of which operate at extremely high temperatures. Fuel injection thus enables operation at higher combustion temperatures and lower component temperatures and results in increased efficiency.
  • the piston uncovers the cavity and the fuel is carried out for vaporization and combustion.
  • Our testing makes it appear that the fuel is carried from the cavity immediately by the combined effects of pressure buildup in the cavity and air flow in the chamber from the transfer port. Part of the pressure in the cavity may be caused by vaporization of a portion of the fuel in the cavity by the hot cylinder wall.
  • the inventive low pressure fuel injection system provides a simple, economical and sound method of injecting fuel into the cylinder at the proper time and at the proper volume for an extreme range of operating conditions.
  • FIG. 1 is a view of a two cycle engine and fuel injection system embodying the inventive principle, part thereof being broken away, said engine operating in its combustion cycle.
  • FIG. 2 is a view similar to FIG. 1 but showing only a portion thereof, the engine entering its exhaust cycle.
  • FIG. 3 is similar to FIG. 2, but with the engine entering its air intake cycle; 7
  • FIG. 4 is a view similar to FIG. 2, but with the engine entering its fuel intake cycle
  • FIG. 5 is a view similar to FIG. 2, but with the engine enteringits compression cycle;
  • FIG. 6 is an enlarged fragmentary view of the engine cylinder wall, showing with particularity a'fuel injection cavity or recess;
  • FIG. 7 isa further enlarged sectional view of the fuel injection cavity taken generally along the line 7-7 of FIG. 6.
  • an engine represented generally by the numeral 11 is shown to comprise an engine block 12 having a crankcase chamber (not shown), and a housing or cylinder head 13 which defines a cylindrical combustion chamber 14.
  • a piston 15 is arranged to reciprocate in combustion chamber 14 by virtue of its pivotal connection to a crankshaft 16 through a connecting rod 17.
  • a conventional fly wheel 18 is rotatably mounted on crankshaft 16 and carries a pulley 19 which drives an oil injecting pump 21 by a belt 22.
  • Oil pump 21 receives a supply of oil from the engine crankcase, and pumps it through an oil line 23 to the main bearings (not shown) of crankshaft 16 for purposes of lubrication.
  • a butterfly valve 26 is rotatably disposed in air horn 25 and serves to vary the volume of air entering air horn 25 in the usual throttling fashion. Valve 26 is rotatable by a manual control (not shown) to vary the speed of engine 1 l as described below.
  • the top of transfer port 27 is disposed slightly below the top of exhaust port 28 with respect to the cylinder axis, and air inlet port 24 is located a distance below'transfer port 27.
  • a threaded opening 29 is formed in the top of cylinder head 13 to receive a spark plug 31.
  • cavity 32 Fuel is admitted to combustion chamber 14 from a cavity 32 which is formed in the inner cylindrical face of combustion chamber 14.
  • cavity 32 is exaggerated for purposes of clarity.
  • cavity 32 is shown in its preferred form, being generally concave in shape and having a relatively large cross sectional area as compared to its shallow Slim depth. This configuration permits fuel accumulated in cavity 32 to be quickly discharged into combustion chamber 14 when uncovered by piston 15.
  • cavity 32 is disposed between air inlet port 24 and the top of transfer port 27 and is of sufficient size to hold a fresh charge of fuel for subsequent vaporization and combustion in combustion chamber 14.
  • Cavity 32 is connected to a fuel metering apparatus, represented generally by the numeral 33, by a passage 30 in cylinder 13, to which is connected a conduit 34 which includes a ball type check valve 35.
  • Metering apparatus 33 consists of an adjustable main flow valve 36and an adjustable idle flow valve 37 connected in parallel therewith.
  • Main flow valve 36 is controlled through a linkage 38 by a conventional diaphragm actuator 39 which senses crankcase pressure through a conduit 41.
  • Idle flow valve 37 is opened approximately one quarter of a turn with movement of butterfly valve 26 by the manual throttle control through a linkage 42.
  • Metering apparatus 33 receives a supply of fuel from a conventional impulse pump 43, which is also actuated by crankcase pressure through a conduit 44.
  • Pump 43 is adapted for connection to a source of fuel through a fuel line 45.
  • conduit 41 includes a check valve (not shown), or the like, which rectifies the positive and negative pulsing pressure transmitted therethrough, resulting in application of a steady pressure to diaphragm actuator 39 which varies as a function of engine speed.
  • a bleed port (not shown) continuously bleeds pressure in conduit 41 and diaphragm actuator 39 to atmosphere, thereby permitting a controlled pressure build-up as engine speed and crankcase pressure increase.
  • Pump 43 is capable of providing a pulsating flow of fuel greater than the amount required by the engine, but its output is restricted by the position of main flow valve 36. Hence, in response to a given piston stroke, piston 43 provides a discrete quantity of fuel which passes through main flow valve 36 and is accumulated in cavity 32.
  • exhaust port 28 is the first port to be uncovered (FIG. 2), and exhaust of the combusted gas mixture begins.
  • This movement of exhaust gases is assisted with the opening of transfer port 27, as shown in FIG. 3, by the entrance of fresh air from the crankcase into compression chamber 14.
  • Transfer port 27 is designed to direct the fresh air charge through a loop scavenged path, whereby the air passes up the cylinder wall opposite exhaust port 28, across the cylinder head and down the opposite cylinder wall to exhaust port 28. This movement of fresh air assists in driving the combusted fuel mixture out exhaust port 28.
  • piston 15 continues its downward movement to bring the pressure in the engine crankcase to a maximum, and, through impulse pump 43 and metering apparatus 33 thereby accumulate a quantity of fuel under pressure in cavity 32. Piston 15 then uncovers cavity 32, discharging the fuel therein and permitting it to mix with the fresh air charge entering compression chamber 14 through transfer port 27. Cavity 32 is positioned on the cylinder wall of compression chamber 14 so that the leading side of the air transfer pattern, which may escape through exhaust portion 28 before it is closed, carries no fuel vapor. Consequently, none of the fuel-air mixture reaches the open exhaust port before the compression cycle begins. This enhances fuel economy and diminishes the problem of hydrocarbon emission into the atmosphere.
  • H6. 5 shows piston 15 after it has moved through the cycle of air and fuel intake, and as it begins the compression cycle with the closing of cavity 32, air transfer port 27 and exhaust port 28. Further upward movement of piston 15 carries it to theposition shown in FIG. 1, and the two cycle process continues.
  • the intake cycle includes separate intakes of fuel and air and begins as piston 15 moves downward to uncover transfer port 27.
  • the intake cycle continues as cavity 32 is uncovered and terminates as piston 15 reverses direction, covering cavity 52 and, finally, transfer port 27 i
  • the compression cycle begins as piston 15 continues upward and completely covers exhaust port 28, and ends as piston 15 reaches its upper most position in chamber 14.
  • the combustion cycle begins with ignition of the fuel charge by spark plug 31, which is at or near the end of the compression cycle.
  • the combustion cycle continues with downward movement of piston 15 and ends as exhaust port 28 is opened, at which time the exhaust cycle begins.
  • the exhaust cycle completely encompasses the intake cycle in regard to time, extending through the opening and closing of both transfer port 28 and cavity 32 and terminating as piston 15 moves upward to close exhaust port 28.
  • idle flow valve 37 is adjusted to provide sufficient fuel along with the volume of air entering through butterfly valve 26.
  • Main flow valve 36 is adjusted so that the crankcase pressure operating on diaphragm actuator 39 through linkage 38 is insufficient to open it.
  • the linkage 42 between butterfly valve 26 and idle flow valve 37 opens valve 37 approximately one quarter of a turn until the engine demand, as reflected by crankcase pressure, builds up sufficiently to drive actuator 39.
  • the aforementioned bleed port in diaphragm actuator 39 reduces the control pressure therein as engine speed and crankcase pressure decrease, thus enabling main flow valve 36 to move toward a closed position and thereby diminish the output of pump 43.
  • inventive principle of providing a fuel accumulating cavity proximate the combustion chamber, and accumulating fuel therein at a time other than during the intakecycle for subsequent free and instantaneous discharge during the intake cycle is applicable to engines other than two cycle engines; and such other engines can benefit equally through the elimination of costly high pressure pumping equipment and simpler fuel control.
  • storage cavity means disposed proximate the combustion chamber for accumulating and storing a quantity of fuel sufficient to produce engine combustion
  • the cavity means being disposed sufficiently close to the combustion chamber so that the quantity of fuel accumulated therein can freely and instantaneously enter the combustion chamber when said fluid communication is established;
  • the cavity means and fuel supply means being separate from the air supplying means.
  • valve means disposed in the conduit means for metering a flow of fuel to the cavity means
  • valve means c. and means for controlling the position of the valve means as a function of engine demand.
  • a housing defining a chamber
  • piston means sealably movable within said chamber in accordance with said cycles and arranged to divide said chamber into firstand second variable volume subchambers;
  • conduit means connected to the cavity means and adapted for connection to a source of fuel
  • control means disposed in the conduit means for metering a flow of fuel to the cavity means during at least a portion of the time the cavity means is closed to accumulate said quantity of fuel therein;
  • the cavity means being disposed sufficiently close to the combustion chamber so that the quantity of fuel accumulated therein can freely and instantaneously enter the combustion chamber when said fluid communication is established.
  • control means comprises:
  • valve actuator means responsive to pressure in the first subchamber for positioning the valve means in accordance with the first subchamber pressure.
  • p 11 The engine as defined by claim 5, and further comprising throttle means for varying the volume of air entering the air inlet port.
  • a two cycle internal combustion engine operable through combined cycles of intake, compression, combustion and exhaust
  • the engine including piston means sealably movable against the face of a combustion chamber to vary the volume thereof, and further including means for supplying air to the combustion chamber during the intake cycle and means for exhausting combusted gases from the combustion chamber during the exhaust cycle, the improvement comprising:
  • storage cavity means opening on the face of the combustion chamber for accumulating and storing a quantity of fuel sufficient to produce engine combustion, the cavity means constructed and arranged to be covered and closed to the chamber by the piston means during the compression and combustion cycles and to be uncovered and opened to the chamber by the piston means during the intake cycle;
  • the cavity means being disposed so that the quantity of fuel accumulated therein can freely and instantaneously enter the combustion chamber when uncovered and opened to the chamber by the piston means;
  • the cavity means and fuel supply means being separate from the air supply means.

Abstract

A low pressure fuel injection system for a two cycle internal combustion engine. Fuel is introduced into the combustion chamber during the intake cycle from a cavity in the wall of the combustion chamber supplied with fuel by metering apparatus that controls the flow of fuel in accordance with engine demand. The fuel is compressibly accumulated when the cavity is covered by the piston during the compression and combustion cycles. As the piston moves into the fuel intake cycle, the cavity is opened and the fuel charge is discharged therefrom and swept out by the flow of intake air for subsequent vaporization and combustion.

Description

United States Patent Reese et a1.
[54] FUEL INJECTION SYSTEM FOR TWO CYCLE ENGINE [72] Inventors: Gerald D. Reese; Gerald G. Shank, both of Roseau; Lowell D. Carlson,
Pencer, all of Minn.
[73] Assignee: Textron, Inc., Providence, RI.
[221 Filed: July 27, 1970 [21] Appl. No.: 58,431
521 U.S. c1 ..123I65 A, 123/32 B, 123/73 0, 123/73 CB, 123/74 R, 123/75 B, 123/139 AJ, 123/140 MP 51 Int. Cl ..F02b 33/04, F0213 19/16, F02b 33/00 58 Field of Search..123/65 A, 73 c, 73 CB, 73 CA, 123/73 cc, 75 B, 74 R, 139 AW, 140 MC,
140 MP, 73 R, 32 B, 139 AJ [56] References Cited UNITED STATES PATENTS 840,178 1/1907 Tuttle.... 1,438,887 12/1922 Atwood. 1,219,512 3/1917 Weiss ..123/73 1451 Dee.26,1972
2,012,998 9/1935 Junkers ..123/73 2,898,901 8/1959 Glenn ..123/l39.17 2,876,755 3/1959 Gold et al ..l23/l39.17 2,893,712 2/1959 l-luse ..123/139.l7 1,725,418 8/1929 Prindle ..l23/75 B Primary ExaminerWendell E. Burns Attorney-Merchant & Gould [5 7 ABSTRACT A low pressure fuel injection system for a two cycle internal combustion engine. Fuel is introduced into the combustion chamber during the intake cycle from a cavity in the wall of the combustion chamber supplied with fuel by metering apparatus that controls the flow of fuel in accordance with engine demand. The fuel is compressibly accumulated when the cavity is covered by the piston during the compression and combustion cycles. As' the piston moves into the fuel intake cycle, the cavity is opened and the fuel charge is discharged therefrom and swept out by the flow of intake air for subsequent vaporization and combustion.
14 Claims, 7 Drawing Figures PATENTEDnm I912 3.707.143
[/Vl E/VTORS. GERALD .D. REESE GERALD G. SHANK LOg X ELL D. OAELSO V MERCHHNT Gouw A T TORNEYS reversed as the piston changes directions. At one point during the fuel and air intake cycle of a conventionally fueled two cycle engine, the transfer and exhaust ports are opened simultaneously and a portion of the combined fuel-air charge entering through the transfer port is lost to atmosphere before the exhaust port closes. This fuel loss occurs even at the engine design speed, which normally occupies a range of 1,000 to 1,500 rpms; but the problem worsens considerably at speeds outside this optimum operating range. The result is a significant decrease in both engine efficiency and economy of operation. Also of considerable significance is the hydrocarbon emission which results from the exhaust of unburned fuel to the atmosphere. Although these problems are significant only at speeds outside the design speed range, few engines operate in that range the majority of the time. Fuel injection alleviates these problems because it permits the fuel to be admitted to the chamber at a time or location such that it is impossible for fuel to be lost through the exhaust port.
Another advantage of fuel injection arises from the fact that in conventional two cycle operation the fuelair charge is drawn through the crankcase. Even with direct oil injection to the main bearings of the engine, the oil is immediately diluted by the fuel. Consequently, a lubricant having a relatively high viscosity rating is required under these conditions. Fuel injection eliminates the fuel from the crankcase area and permits usage of a lubricant having a lower viscosity, which enhances cold weather operation of the engine and oil injection system. Further, the elimination of lubricant dilution allows a reduction in the volume of lubricant necessary to satisfactorily lubricate the engine components.
Another advantage realized by direct cylinder fuel injection results from the location at which fuel vaporization takes place. The vaporization of fuel into a gaseous state requires absorption of a considerable amount of heat. Under conventional two cycle operation, the vaporizing fuel absorbs heat from the crankcase, where heat problems ordinarily do not exist. With direct cylinder fuel injection, the fuel is vaporized in the combustion chamber where it absorbs heat from the piston, cylinder walls and cylinder head, all of which operate at extremely high temperatures. Fuel injection thus enables operation at higher combustion temperatures and lower component temperatures and results in increased efficiency.
Further, due to the erratic flow of fresh fuel-air charge through the transfer ports into the combustion chamber, conventional two cycle engines that are designed for high specific power output tend to have poor low speed and idle characteristics. Properly timed injection of fuel into the cylinder in precisely metered amounts improves these low speed characteristics.
Lastly, since no fuel is admitted through the air inlet in fuel injected systems there is no back flow of vaporized fuel through the air inlet port. This greatly simplifies the design of air cleaners and sound attenuators.
Notwithstanding these considerable advantages, fuel injection is rarely used on two cycle engines. The major problem that has precluded its application has been the extremely short cycle time involved and the resultant short period of time in which the fuel can be injected. For example, in a two cycle 8000 rpm engine the time alloted for the injection cycle cannot exceed approximately 110 of crankshaft rotation, and injection must take place 8000 times per minute.
To the best of our knowledge, there is no simple, low pressure fuel injection system available for a two cycle engine. In order to impart to a predetermined quantity of fuel the momentum necessary to overcome its inertia and effect its infection into the combustion chamber duringsuch a short period of time (which is on the order of a few milliseconds), it is necessary to use extremely high pressure equipment which is both complex and costly. Although satisfactory operation is possible with such high pressure systems, their cost often approaches or exceeds the manufacturing cost of the engine itself. An example of such a complex system is shown in U.S. Pat. No. 3,198,180, issued Aug. 3, 1965.
We have found that by deviating from the usual procedure of forcibly injecting a quantity of fuel into the cylinder during the normal injection cycle, we can achieve the intended results with a minimum of components that are economical and simple to produce and operate. Rather than injecting fuel into the cylinder only during the short degree of crankshaft rotation previously assumed to be mandatory, our procedure is to begin injecting fuel into a small pocket or cavity in the cylinder wall during the time the cavity is covered by the piston; viz., during the compression and combustion cycles. Since a small volume of air is trapped in the cavity when it is covered by the piston, the fuel is compressed as it enters. During the air transfer period,
' the piston uncovers the cavity and the fuel is carried out for vaporization and combustion. Our testing makes it appear that the fuel is carried from the cavity immediately by the combined effects of pressure buildup in the cavity and air flow in the chamber from the transfer port. Part of the pressure in the cavity may be caused by vaporization of a portion of the fuel in the cavity by the hot cylinder wall.
Because fuel accumulates in the cavity during the longer off-injection cycle, there is no need for expensive, high pressure pumps to force fuel into the cavity. Instead, in the preferred embodiment, we employ an inexpensive impulse pump which is operated by crankcase pressure. Although the impulse pump is preferred, it is also possible to use a gravity feed to the cavity if a sufficient pressure head exists between the fuel level and engine.
Coupled with appropriate fuel metering apparatus, the inventive low pressure fuel injection system provides a simple, economical and sound method of injecting fuel into the cylinder at the proper time and at the proper volume for an extreme range of operating conditions.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a view of a two cycle engine and fuel injection system embodying the inventive principle, part thereof being broken away, said engine operating in its combustion cycle.
FIG. 2 is a view similar to FIG. 1 but showing only a portion thereof, the engine entering its exhaust cycle.
FIG. 3 is similar to FIG. 2, but with the engine entering its air intake cycle; 7
FIG. 4 is a view similar to FIG. 2, but with the engine entering its fuel intake cycle;
FIG. 5 is a view similar to FIG. 2, but with the engine enteringits compression cycle; v
FIG. 6 is an enlarged fragmentary view of the engine cylinder wall, showing with particularity a'fuel injection cavity or recess; and
FIG. 7 isa further enlarged sectional view of the fuel injection cavity taken generally along the line 7-7 of FIG. 6.
DESCRIPTION OF THE PREFERRED EMBODIMENT In FIG. 1, an engine represented generally by the numeral 11 is shown to comprise an engine block 12 having a crankcase chamber (not shown), and a housing or cylinder head 13 which defines a cylindrical combustion chamber 14. A piston 15 is arranged to reciprocate in combustion chamber 14 by virtue of its pivotal connection to a crankshaft 16 through a connecting rod 17. A conventional fly wheel 18 is rotatably mounted on crankshaft 16 and carries a pulley 19 which drives an oil injecting pump 21 by a belt 22. Oil pump 21 receives a supply of oil from the engine crankcase, and pumps it through an oil line 23 to the main bearings (not shown) of crankshaft 16 for purposes of lubrication.
Opening on the inner cylindrical face of combustion chamber 14 is an air inlet port 24 which communicates with atmosphere through an air horn 25. A butterfly valve 26 is rotatably disposed in air horn 25 and serves to vary the volume of air entering air horn 25 in the usual throttling fashion. Valve 26 is rotatable by a manual control (not shown) to vary the speed of engine 1 l as described below.
Also opening on the inner cylindrical face of combustion chamber 14 are an air transfer port 27 and an exhaust port 28, the former of which communicates with the engine crankcase by a passage (not shown) formed in the engine block 12. As FIG. 1 indicates, the top of transfer port 27 is disposed slightly below the top of exhaust port 28 with respect to the cylinder axis, and air inlet port 24 is located a distance below'transfer port 27.
A threaded opening 29 is formed in the top of cylinder head 13 to receive a spark plug 31.
Fuel is admitted to combustion chamber 14 from a cavity 32 which is formed in the inner cylindrical face of combustion chamber 14. In FIGS. 1-5, the size of cavity 32 is exaggerated for purposes of clarity. In FIGS. 6 and 7 cavity 32 is shown in its preferred form, being generally concave in shape and having a relatively large cross sectional area as compared to its shallow Slim depth. This configuration permits fuel accumulated in cavity 32 to be quickly discharged into combustion chamber 14 when uncovered by piston 15.
With respect to the cylindrical axis, cavity 32 is disposed between air inlet port 24 and the top of transfer port 27 and is of sufficient size to hold a fresh charge of fuel for subsequent vaporization and combustion in combustion chamber 14. Cavity 32 is connected to a fuel metering apparatus, represented generally by the numeral 33, by a passage 30 in cylinder 13, to which is connected a conduit 34 which includes a ball type check valve 35.
Metering apparatus 33 consists of an adjustable main flow valve 36and an adjustable idle flow valve 37 connected in parallel therewith. Main flow valve 36 is controlled through a linkage 38 by a conventional diaphragm actuator 39 which senses crankcase pressure through a conduit 41. Idle flow valve 37 is opened approximately one quarter of a turn with movement of butterfly valve 26 by the manual throttle control through a linkage 42.
Metering apparatus 33 receives a supply of fuel from a conventional impulse pump 43, which is also actuated by crankcase pressure through a conduit 44. Pump 43 is adapted for connection to a source of fuel through a fuel line 45.
In operation, it is initially assumed that a fresh charge of fuel and air has already been admitted to combustion chamber, and engine 11 has compressed the charge and is entering the combustion cycle as shown in F IG. 1. At this point, piston 15 is blocking transfer port 27, exhaust port 28 and cavity 32, and the engine ignition system causes spark plug 31 to ignite the mixture. The resulting combustion begins to drive piston 15 downward through its power stroke.
As shown in FIG. 1, when piston 15 is in its upper position, air can be drawn in through air horn 25, butterfly valve 26 and air inlet port 24 to the crankcase. As piston 15 moves downward, air inlet 24 is sealed and pressure within the crankcase begins to increase. This increasing pressure is sensed by impulse pump 43 which pumps a discrete quantity of fluid through metering apparatus 33. The increasing crankcase pressure is also sensed by diaphragm actuator 39, which causes linkage 38 to open main flow valve 36 and pass the discrete quantity of fuel through conduit 34 to cavity 32. Preferably, conduit 41 includes a check valve (not shown), or the like, which rectifies the positive and negative pulsing pressure transmitted therethrough, resulting in application of a steady pressure to diaphragm actuator 39 which varies as a function of engine speed. A bleed port (not shown) continuously bleeds pressure in conduit 41 and diaphragm actuator 39 to atmosphere, thereby permitting a controlled pressure build-up as engine speed and crankcase pressure increase. Pump 43 is capable of providing a pulsating flow of fuel greater than the amount required by the engine, but its output is restricted by the position of main flow valve 36. Hence, in response to a given piston stroke, piston 43 provides a discrete quantity of fuel which passes through main flow valve 36 and is accumulated in cavity 32.
Because residual air has been caught in cavity 32 and held thereby the face of the piston 15, the discrete quantity of fuel is lightly compressed therein. Check valve 35 prevents fuel from backing up in conduit 34 once it has been pumped into cavity 32.
As piston continues to move downward, exhaust port 28 is the first port to be uncovered (FIG. 2), and exhaust of the combusted gas mixture begins. This movement of exhaust gases is assisted with the opening of transfer port 27, as shown in FIG. 3, by the entrance of fresh air from the crankcase into compression chamber 14. Transfer port 27 is designed to direct the fresh air charge through a loop scavenged path, whereby the air passes up the cylinder wall opposite exhaust port 28, across the cylinder head and down the opposite cylinder wall to exhaust port 28. This movement of fresh air assists in driving the combusted fuel mixture out exhaust port 28. g
As shown in FIG. 4 piston 15 continues its downward movement to bring the pressure in the engine crankcase to a maximum, and, through impulse pump 43 and metering apparatus 33 thereby accumulate a quantity of fuel under pressure in cavity 32. Piston 15 then uncovers cavity 32, discharging the fuel therein and permitting it to mix with the fresh air charge entering compression chamber 14 through transfer port 27. Cavity 32 is positioned on the cylinder wall of compression chamber 14 so that the leading side of the air transfer pattern, which may escape through exhaust portion 28 before it is closed, carries no fuel vapor. Consequently, none of the fuel-air mixture reaches the open exhaust port before the compression cycle begins. This enhances fuel economy and diminishes the problem of hydrocarbon emission into the atmosphere.
H6. 5 shows piston 15 after it has moved through the cycle of air and fuel intake, and as it begins the compression cycle with the closing of cavity 32, air transfer port 27 and exhaust port 28. Further upward movement of piston 15 carries it to theposition shown in FIG. 1, and the two cycle process continues.
From the operational description of engine 11, it may be observed that the intake cycle includes separate intakes of fuel and air and begins as piston 15 moves downward to uncover transfer port 27. The intake cycle continues as cavity 32 is uncovered and terminates as piston 15 reverses direction, covering cavity 52 and, finally, transfer port 27 i The compression cycle begins as piston 15 continues upward and completely covers exhaust port 28, and ends as piston 15 reaches its upper most position in chamber 14.
The combustion cycle begins with ignition of the fuel charge by spark plug 31, which is at or near the end of the compression cycle. The combustion cycle continues with downward movement of piston 15 and ends as exhaust port 28 is opened, at which time the exhaust cycle begins. The exhaust cycle completely encompasses the intake cycle in regard to time, extending through the opening and closing of both transfer port 28 and cavity 32 and terminating as piston 15 moves upward to close exhaust port 28.
At idling speed, idle flow valve 37 is adjusted to provide sufficient fuel along with the volume of air entering through butterfly valve 26. Main flow valve 36 is adjusted so that the crankcase pressure operating on diaphragm actuator 39 through linkage 38 is insufficient to open it. During the initial stage of acceleration, the linkage 42 between butterfly valve 26 and idle flow valve 37, opens valve 37 approximately one quarter of a turn until the engine demand, as reflected by crankcase pressure, builds up sufficiently to drive actuator 39. The aforementioned bleed port in diaphragm actuator 39 reduces the control pressure therein as engine speed and crankcase pressure decrease, thus enabling main flow valve 36 to move toward a closed position and thereby diminish the output of pump 43.
It will be appreciated that the inventive principle of providing a fuel accumulating cavity proximate the combustion chamber, and accumulating fuel therein at a time other than during the intakecycle for subsequent free and instantaneous discharge during the intake cycle, is applicable to engines other than two cycle engines; and such other engines can benefit equally through the elimination of costly high pressure pumping equipment and simpler fuel control.
' It is evident that the particular type of metering apparatus used is unimportant so long as it provides the functionof metering fuel for accumulation in cavity 32 during the compression and combustion cycles. Of primary importance is the provision of structure, such as a cavity proximate the combustion chamber, for the accumulation of fuel during the compression and combustion cycles, which accumulation is disposed sufficiently close ,to compression chamber 14 to allow the accumulated fuel to be freely and instantaneously discharged into the compression chamber 14 without having to impart great inertial energy to the fuel charge.
What is claimed is:
1. In an internal combustion engine operable through cycles of intake, compression, combustion and exhaust, the engine including piston means sealably movable to vary the volume of a combustion chamber, and further including means for supplying air to the combustion chamber during the intake cycle and means for exhausting combusted gases from the combustion chamber during the exhaust cycle, the improvement comprising:
storage cavity means disposed proximate the combustion chamber for accumulating and storing a quantity of fuel sufficient to produce engine combustion;
means for establishing fluid communication between the combustion chamber and the storage cavity means during the intake cycle, and for blocking communication between the combustion chamber and the storage cavity means for a time other than during the intake cycle;
and means for supplying fuel to the storage cavity means during the time communication with the combustion chamber is blocked to accumulate said quantity of fuel therein;
the cavity means being disposed sufficiently close to the combustion chamber so that the quantity of fuel accumulated therein can freely and instantaneously enter the combustion chamber when said fluid communication is established;
the cavity means and fuel supply means being separate from the air supplying means.
2. The internal combustion engine as defined by claim 1, wherein the engine combustion chamber is cylindrical and the piston means is reciprocally movable therein, and the cavity means is disposed on the a. conduit means connected to the cavity means and adapted for connection to a source of fuel;
b. valve means disposed in the conduit means for metering a flow of fuel to the cavity means;
c. and means for controlling the position of the valve means as a function of engine demand.
5. A two cycle internal combustion engine operable through combined cycles of intake, compression, combustion and exhaust, comprising:
a housing defining a chamber;
piston means sealably movable within said chamber in accordance with said cycles and arranged to divide said chamber into firstand second variable volume subchambers;
an air inlet port communicating with the first subchamber;
an air transfer passage establishing fluid communication between the first and second subchambers, the air transfer passage terminating in an air transfer port in the second subchamber;
means for opening the air transfer port during the intake cycle and for closing the air transfer port during the compression and combustion cycles;
an exhaust port communicating with the second subchamber;
means for opening the exhaust port during the exhaust cycle and for closing the exhaust port during the compression and combustion cycles;
fuel injection cavity means in the housing disposed proximate to and communicating with the second subchamber for accumulating and storing a quantity of fuel sufficient to produce engine com bustion;
means for closing the cavity means to the second subchamber during the compression and combustion cycles, and for opening the cavity means to the second subchamber during the intake cycle;
conduit means connected to the cavity means and adapted for connection to a source of fuel;
and control means disposed in the conduit means for metering a flow of fuel to the cavity means during at least a portion of the time the cavity means is closed to accumulate said quantity of fuel therein;
the cavity means being disposed sufficiently close to the combustion chamber so that the quantity of fuel accumulated therein can freely and instantaneously enter the combustion chamber when said fluid communication is established.
6. The internal combustion engine as defined by claim 5, wherein the second subchamber is cylindrical and the piston means is reciprocally movable therein.
7. The engine as defined by claim 6, wherein the cavity means is disposed on the cylindrical wall of the second subchamber in open communication therewith.
8. The engine as defined by claim 7, wherein the air transfer and exhaust ports open on the cylindrical wall of the second subchamber, and the means for opening and closing the air transfer port, the exhaust port and the cavity means comprises the piston means.
9. Theengine as defined by claim 8, wherein the exhaust port, the air transfer port and the cavity means are respectively arranged so that the exhaust port is the first to be opened and the last to be closed, and the cavity means is the last to be opened and the first to be closed.
10. The engine as defined by claim 5, wherein the control means comprises:
valve means;
and valve actuator means responsive to pressure in the first subchamber for positioning the valve means in accordance with the first subchamber pressure. p 11. The engine as defined by claim 5, and further comprising throttle means for varying the volume of air entering the air inlet port.
12. The engine as defined by claim 5, and further comprising means disposed in the conduit means for pumping fuel therethrough to the fuel injection cavity means.
13. The engine as defined by claim 12, wherein the pumping means is actuated by pressure in the first subchamber.
14. In a two cycle internal combustion engine operable through combined cycles of intake, compression, combustion and exhaust, the engine including piston means sealably movable against the face of a combustion chamber to vary the volume thereof, and further including means for supplying air to the combustion chamber during the intake cycle and means for exhausting combusted gases from the combustion chamber during the exhaust cycle, the improvement comprising:
storage cavity means opening on the face of the combustion chamber for accumulating and storing a quantity of fuel sufficient to produce engine combustion, the cavity means constructed and arranged to be covered and closed to the chamber by the piston means during the compression and combustion cycles and to be uncovered and opened to the chamber by the piston means during the intake cycle; 7
and means for supplying fuel to the cavity means for accumulation therein during the combustion cycle;
the cavity means being disposed so that the quantity of fuel accumulated therein can freely and instantaneously enter the combustion chamber when uncovered and opened to the chamber by the piston means;
the cavity means and fuel supply means being separate from the air supply means.

Claims (14)

1. In an internal combustion engine operable through cycles of intake, compression, combustion and exhaust, the engine including piston means sealably movable to vary the volume of a combustion chamber, and further including means for supplying air to the combustion chamber during the intake cycle and means for exhausting combusted gases from the combustion chamber during the exhaust cycle, the improvement comprising: storage cavity means disposed proximate the combustion chamber for accumulating and storing a quantity of fuel sufficient to produce enginE combustion; means for establishing fluid communication between the combustion chamber and the storage cavity means during the intake cycle, and for blocking communication between the combustion chamber and the storage cavity means for a time other than during the intake cycle; and means for supplying fuel to the storage cavity means during the time communication with the combustion chamber is blocked to accumulate said quantity of fuel therein; the cavity means being disposed sufficiently close to the combustion chamber so that the quantity of fuel accumulated therein can freely and instantaneously enter the combustion chamber when said fluid communication is established; the cavity means and fuel supply means being separate from the air supplying means.
2. The internal combustion engine as defined by claim 1, wherein the engine combustion chamber is cylindrical and the piston means is reciprocally movable therein, and the cavity means is disposed on the cylinder wall in open communication with the combustion chamber.
3. The engine as defined by claim 2, wherein the engine operates through combined cycles of intake, compression, combustion and exhaust, and the means for establishing and blocking communication between the cavity means and the combustion chamber comprises the piston means.
4. The engine as defined by claim 1, wherein the fuel supplying means comprises: a. conduit means connected to the cavity means and adapted for connection to a source of fuel; b. valve means disposed in the conduit means for metering a flow of fuel to the cavity means; c. and means for controlling the position of the valve means as a function of engine demand.
5. A two cycle internal combustion engine operable through combined cycles of intake, compression, combustion and exhaust, comprising: a housing defining a chamber; piston means sealably movable within said chamber in accordance with said cycles and arranged to divide said chamber into first and second variable volume subchambers; an air inlet port communicating with the first subchamber; an air transfer passage establishing fluid communication between the first and second subchambers, the air transfer passage terminating in an air transfer port in the second subchamber; means for opening the air transfer port during the intake cycle and for closing the air transfer port during the compression and combustion cycles; an exhaust port communicating with the second subchamber; means for opening the exhaust port during the exhaust cycle and for closing the exhaust port during the compression and combustion cycles; fuel injection cavity means in the housing disposed proximate to and communicating with the second subchamber for accumulating and storing a quantity of fuel sufficient to produce engine combustion; means for closing the cavity means to the second subchamber during the compression and combustion cycles, and for opening the cavity means to the second subchamber during the intake cycle; conduit means connected to the cavity means and adapted for connection to a source of fuel; and control means disposed in the conduit means for metering a flow of fuel to the cavity means during at least a portion of the time the cavity means is closed to accumulate said quantity of fuel therein; the cavity means being disposed sufficiently close to the combustion chamber so that the quantity of fuel accumulated therein can freely and instantaneously enter the combustion chamber when said fluid communication is established.
6. The internal combustion engine as defined by claim 5, wherein the second subchamber is cylindrical and the piston means is reciprocally movable therein.
7. The engine as defined by claim 6, wherein the cavity means is disposed on the cylindrical wall of the second subchamber in open communication therewith.
8. The engine as defined by claim 7, wherein the air transfer and exhaust ports open on the cylindrical waLl of the second subchamber, and the means for opening and closing the air transfer port, the exhaust port and the cavity means comprises the piston means.
9. The engine as defined by claim 8, wherein the exhaust port, the air transfer port and the cavity means are respectively arranged so that the exhaust port is the first to be opened and the last to be closed, and the cavity means is the last to be opened and the first to be closed.
10. The engine as defined by claim 5, wherein the control means comprises: valve means; and valve actuator means responsive to pressure in the first subchamber for positioning the valve means in accordance with the first subchamber pressure.
11. The engine as defined by claim 5, and further comprising throttle means for varying the volume of air entering the air inlet port.
12. The engine as defined by claim 5, and further comprising means disposed in the conduit means for pumping fuel therethrough to the fuel injection cavity means.
13. The engine as defined by claim 12, wherein the pumping means is actuated by pressure in the first subchamber.
14. In a two cycle internal combustion engine operable through combined cycles of intake, compression, combustion and exhaust, the engine including piston means sealably movable against the face of a combustion chamber to vary the volume thereof, and further including means for supplying air to the combustion chamber during the intake cycle and means for exhausting combusted gases from the combustion chamber during the exhaust cycle, the improvement comprising: storage cavity means opening on the face of the combustion chamber for accumulating and storing a quantity of fuel sufficient to produce engine combustion, the cavity means constructed and arranged to be covered and closed to the chamber by the piston means during the compression and combustion cycles and to be uncovered and opened to the chamber by the piston means during the intake cycle; and means for supplying fuel to the cavity means for accumulation therein during the combustion cycle; the cavity means being disposed so that the quantity of fuel accumulated therein can freely and instantaneously enter the combustion chamber when uncovered and opened to the chamber by the piston means; the cavity means and fuel supply means being separate from the air supply means.
US58431A 1970-07-27 1970-07-27 Fuel injection system for two cycle engine Expired - Lifetime US3707143A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US5843170A 1970-07-27 1970-07-27

Publications (1)

Publication Number Publication Date
US3707143A true US3707143A (en) 1972-12-26

Family

ID=22016766

Family Applications (1)

Application Number Title Priority Date Filing Date
US58431A Expired - Lifetime US3707143A (en) 1970-07-27 1970-07-27 Fuel injection system for two cycle engine

Country Status (3)

Country Link
US (1) US3707143A (en)
CA (1) CA945852A (en)
DE (1) DE2110778C3 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4627390A (en) * 1983-07-28 1986-12-09 Antoine Hubert J F Fuel injection device for two-stroke engine
US4696264A (en) * 1985-03-16 1987-09-29 Andreas Stihl Two-stroke engine
US4794901A (en) * 1987-06-16 1989-01-03 Industrial Technology Research Institute Low pressure air assisted fuel injection apparatus for engine
US4930462A (en) * 1988-07-01 1990-06-05 Kioritz Corporation Separated lubrication type two-cycle internal combustion engine system
WO2001094764A1 (en) * 2000-06-07 2001-12-13 Design & Manufacturing Solutions, Inc. Method of fuel injection into piston recess
US20040079304A1 (en) * 2001-02-01 2004-04-29 Notaras John Arthur Internal combustion engine

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US840178A (en) * 1905-05-25 1907-01-01 Daniel M Tuttle Gas-engine.
US1219512A (en) * 1916-03-30 1917-03-20 Carl W Weiss Internal-combustion engine.
US1438887A (en) * 1920-08-27 1922-12-12 Atwood Leonard Internal-combustion engine
US1725418A (en) * 1924-10-15 1929-08-20 Glen A Prindle Four-cycle internal-combustion engine
US2012998A (en) * 1927-11-25 1935-09-03 Junkers Hugo Fuel feed for internal combustion engines
US2876755A (en) * 1954-08-17 1959-03-10 Gold Harold Fuel injection system
US2893712A (en) * 1956-03-16 1959-07-07 Bosch Arma Corp Fuel injection apparatus
US2898901A (en) * 1958-01-13 1959-08-11 Edward R Glenn Fuel injecting apparatus

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US840178A (en) * 1905-05-25 1907-01-01 Daniel M Tuttle Gas-engine.
US1219512A (en) * 1916-03-30 1917-03-20 Carl W Weiss Internal-combustion engine.
US1438887A (en) * 1920-08-27 1922-12-12 Atwood Leonard Internal-combustion engine
US1725418A (en) * 1924-10-15 1929-08-20 Glen A Prindle Four-cycle internal-combustion engine
US2012998A (en) * 1927-11-25 1935-09-03 Junkers Hugo Fuel feed for internal combustion engines
US2876755A (en) * 1954-08-17 1959-03-10 Gold Harold Fuel injection system
US2893712A (en) * 1956-03-16 1959-07-07 Bosch Arma Corp Fuel injection apparatus
US2898901A (en) * 1958-01-13 1959-08-11 Edward R Glenn Fuel injecting apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4627390A (en) * 1983-07-28 1986-12-09 Antoine Hubert J F Fuel injection device for two-stroke engine
US4696264A (en) * 1985-03-16 1987-09-29 Andreas Stihl Two-stroke engine
US4794901A (en) * 1987-06-16 1989-01-03 Industrial Technology Research Institute Low pressure air assisted fuel injection apparatus for engine
US4930462A (en) * 1988-07-01 1990-06-05 Kioritz Corporation Separated lubrication type two-cycle internal combustion engine system
WO2001094764A1 (en) * 2000-06-07 2001-12-13 Design & Manufacturing Solutions, Inc. Method of fuel injection into piston recess
US6382176B1 (en) * 2000-06-07 2002-05-07 Design & Manufacturing Solutions, Inc. Method for injecting and combusting fuel with a piston head having a top surface recess
US20040079304A1 (en) * 2001-02-01 2004-04-29 Notaras John Arthur Internal combustion engine
US6817323B2 (en) * 2001-02-01 2004-11-16 John Arthur Notaras Internal combustion engine

Also Published As

Publication number Publication date
DE2110778B2 (en) 1977-09-15
DE2110778A1 (en) 1972-02-03
DE2110778C3 (en) 1978-06-08
CA945852A (en) 1974-04-23

Similar Documents

Publication Publication Date Title
US4228772A (en) Low throttled volume engine
US3934562A (en) Two-cycle engine
US4069794A (en) Positive power control internal combustion engine
US4590897A (en) Idle fuel residual storage system
US4945869A (en) Two cycle crankcase variable inlet timing
US3650261A (en) Diesel engine
US3734072A (en) Fuel control means for a model engine
US3707143A (en) Fuel injection system for two cycle engine
US4254745A (en) Two-stroke cycle gasoline engine
US5007384A (en) L-head two stroke engines
US6851402B2 (en) Two-stroke engine and method for operating the same
US3167059A (en) Auxiliary valves for internal combustion engines
US4383503A (en) Combustion chamber scavenging system
US5090363A (en) Two-cycle engine with pneumatic fuel injection and flow restriction in at least one transfer passageway
US2818931A (en) Internal combustion engine
US4204489A (en) 2-Cycle engine of an active thermoatmosphere combustion type
US3888214A (en) Fuel injection system for two cycle engine
US2394904A (en) Unitary engine compressor
US4344405A (en) Internal combustion engine
US2891524A (en) Two-stroke cycle internal combustion engine with scavenging air blower
US1983351A (en) Internal-combustion engine
US2304407A (en) Internal combustion engine
JPH0270917A (en) Two cycle engine
US5975034A (en) Free piston internal combustion engine and starting methods
US3361120A (en) Carburetor idling system

Legal Events

Date Code Title Description
AS Assignment

Owner name: POLARIS INDUSTRIES, INC., 1225 NORTH COUNTY ROAD 1

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST. EFFECTIVE JULY 20, 1981;ASSIGNOR:TEXTRON INC., A DE CORP;REEL/FRAME:004343/0410

Effective date: 19840806

AS Assignment

Owner name: FIRST NATIONAL BANK OF MINNEAPOLIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:POLARIS INDUSTRIES L.P., BY: POLARIS INDUSTRIES ASSOCIATES, GENERAL PARTNER;REEL/FRAME:004811/0696

Effective date: 19870909

AS Assignment

Owner name: POLARIS INDUSTRIES L.P., A DE. LIMITED PARTNERSHIP

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:POLARIS INDUSTRIES, INC., A CORP. OF MN.;REEL/FRAME:004810/0623

Effective date: 19870909

AS Assignment

Owner name: POLARIS INDUSTRIES L.P.

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:FIRST BANK NATONAL ASSOCIATION;REEL/FRAME:005424/0606

Effective date: 19900725