US3702103A - Self-adjusting cut-off knife - Google Patents
Self-adjusting cut-off knife Download PDFInfo
- Publication number
- US3702103A US3702103A US146229A US3702103DA US3702103A US 3702103 A US3702103 A US 3702103A US 146229 A US146229 A US 146229A US 3702103D A US3702103D A US 3702103DA US 3702103 A US3702103 A US 3702103A
- Authority
- US
- United States
- Prior art keywords
- cut
- knives
- stack
- slide
- knife
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 238000000034 method Methods 0.000 claims description 2
- 238000007667 floating Methods 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 3
- 229910000639 Spring steel Inorganic materials 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910001369 Brass Inorganic materials 0.000 description 1
- 244000307700 Fragaria vesca Species 0.000 description 1
- 235000016623 Fragaria vesca Nutrition 0.000 description 1
- 235000011363 Fragaria x ananassa Nutrition 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013536 elastomeric material Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000013023 gasketing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229920001084 poly(chloroprene) Polymers 0.000 description 1
- 239000012858 resilient material Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D43/00—Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
- B21D43/20—Storage arrangements; Piling or unpiling
- B21D43/24—Devices for removing sheets from a stack
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G59/00—De-stacking of articles
- B65G59/10—De-stacking nested articles
- B65G59/105—De-stacking nested articles by means of reciprocating escapement-like mechanisms
Definitions
- closures are vertically stacked in anticipation of being transported individually to a lining station which consists basically of a rotary chuck and a nozzle.
- a fluid gasketing or sealing compound is injected onto the closure as it rotates on thechuck.
- the closure is then transported away from the machine for subsequent operations such as curing of the compound.
- Closures are fed from the vertical stack by sliding the lowermost closure in the stack to the lining station.
- This invention deals with the means by which the lowermost closure is separated from the vertical stack and slid to the lining station.
- the lowermost closure in the vertical stack of closures is stripped or cut off from the stack by cut-off knives, dropped to a slide table, and moved downstream to the rotary chuck.
- the device which performs this function is formed by two reciprocating parallel slides spaced apart a distance somewhat less than the diameter of the closure.
- the cut-off knives are mounted upon and above the slides for a coincident reciprocation.
- a vertical space is left between the slide andthe knife suitable to receive the lower closure after the knives have cut it off from the stack.
- the stack rests on the slides until the knives cut off the lower closure at which time the stack rests on the knives, the lower closure dwelling in the space until it is dropped to the slide table, whereupon it is transferred to a rotary chuck for the lining operation.
- the space between the slide and the knives must be of sufficient height to accept the curl of a can end or the skirt of other closures.
- the edge of the knives which cut off the lower closure must not be so high as to interfere with the curl of the second lowest closure nested in the lowest closure. It would be possible to set the height of the knives just right if the height of the curl of every closure were dependably consistent. However, a variation in closure dimensions must be anticipated due to the realities of their manufacture. Conventionally, the cut-off knives are set by a gauge to 0.002 of an inch over the maximum curl height expected. If a closure exceeds this dimension, a jam may occur. If the knife is set higher, it will not be able to work itself between the closures and will frequently damage the second lowermost closure.
- the out-of-tolerance dimension which causes the greatest trouble is the vertical height of the curl. If that dimension exceeds by more than 0.002 of an inch the tolerance limit, the cut-off knives will smash against the closure and cause a machine jam which necessitates shut-down and clearing the machine. Freeing the jam can be a time-consuming operation. Consequently, any device which successfully passes on closures slightly out of tolerance (provided that tolerance is demanded solely because of the characteristics of the lining machine) is economically advantageous.
- the cut-off knives of a strip feed lining machine are floated in a controlled manner and may have edges which are tapered both longitudinally and transversely in order to permit cut off of the lowermost closure of the stack without jamming.
- FIG. 1 is a perspective view of the slide-feed lining machine on which the invention is used;
- FIG. 2 is a plan view of the leftand right-hand cutoff knives
- FIG. 3 is a cross-section on line 3-3 of FIG. 2 of one arm of the feed slide;
- FIG. 4 is a plan view of the cut-off knives
- FIG. 5 is a cross-section on line 5-5 of the cut-off knife of FIG. 4;
- FIG. 6 is a plan view of the self-adjusting spring shim
- FIG. 7 is a side view of the self-adjusting spring shim
- FIG. 8 is a side view of an alternative configuration for floating the knives
- FIG. 9 is a perspective view of another embodiment of the cut-off knives.
- FIG. 1 DESCRIPTION OF THE PREFERRED EMBODIMENT
- FIG. 1 the slide-feed lining device of which the cut-off knives of the present invention are a part. Closures are supplied from a stack 1 to be delivered to a lining station 2 from whence they are subsequently transported to a take-away apparatus shown as a conveyor 3.
- the device is shown with feed bars 4 and 5 at the end of their forward or downstream stroke having delivered an unlined closure 6 to the lining station 2 and at the same time a lined closure 7 to the conveyor, which latter closure had been at the lining station.
- On their return or upstream stroke the feed bars 4 and 5 will separate the lowermost closure from stack 1 and drop it to the slide table 8.
- the closure Upon the forward stroke, the closure will he slid along the slide table 8 to the lining station 2.
- the stack 1 is located by a block assembly 9 fixed by a means not shown, to the slide table 8.
- the right hand feed bar 4 and the lefthand feed bar 5 is thus reciprocally driven in unison, by a means not shown, along the path of closure movement.
- the present invention deals with the means by which the lowermost closure is separated from the stack for subsequent delivery to the lining station, 2, an embodiment comprised of the. right-hand cut-off knife 10 and the left-hand cut-off knife 12 which are attached to the feed bars 4 and 5 respectively.
- the invention also deals with the means by which the .knives l and 12 are mounted.
- the cut-off knives 10 and 12 serve to separate or cut off the lowermost closure from the stack 1 for subsequent delivery to the lining station 2.
- closures shown and described in the following description and No. 2 can ends, and the dimensions indicated are representative particularly of those exiting with No. 2 can ends.
- the feed bars 4 and 5 straddle the can ends of stack 1 and have slide shelves 14 which extend inwardly to present a space somewhat smaller than the diameter of the can ends.
- the slide shelves l4 terminate upstream in an inclined edge 16.
- FIG. 3 taken in cross section along the line 3-3 of FIG. 2 shows the mounting of the cut-off knife 10 above the slide shelf 14.
- the knife 10 is held in position by a NYLOK socket head cap screw 18.
- the knife 10 is not secured against the feed bar 4 but rather is resiliently floated or raised upwardly against the screw head by a spring shim 20.
- a vertical space between the slide shelf 14 and the knife 10 which may be varied by adjusting the screw 18.
- a spring shim which provides this easy vertical adjustment is shown in FIGS. 6 and 7 as a strip of spring steel which may, e.g., be three-eighths of an inch wide and bent as shown with /8 inch offsets, approximately 1% inches from base to base.
- Spring steel 0.020 inch in thickness floats the knives nicely.
- a wide variety of compressible and/or resilient materials may be utilized to float the knives. Additional materials found suitable are laminated brass shim stock one-sixteenth inch thick consisting of 0.002 inchlaminations or an elastomeric material such as neoprene rubber.
- FIGS. 2 and 4 The knives l0 and 12 are shown in greater detail in FIGS. 2 and 4.
- the leading edge 22 of the knives are ground into a particular and peculiar double tapered shape.
- FIG. 4 shows one such shape which works on No. 2 can ends in which the knives 10 and 12 have a radius of 1% inches struck three-eighths of an inch offset from the center line 24 of the two knives when mounted in position.
- the taper is finished in an arcground three-eighths of an inch above the center line and 5 are driven upstream (to the right in FIG. 2) by a means not shown.
- the feed bars 4 and 5 continue to move upstream until the inclined edges 16 of the slide shelves 14 pass beyond the can end 26.
- the can end 26 then drops to the slide table 8.
- thefeed bars 4-and 5 begin the forward of downstream stroke (to the leftin FIG. 2) in which the can end 26 is engaged by the inclined edges 16 and is slid to the lining station 2.
- the lined can end which was at the lining station is then pushed to the conveyor 3.
- the can end 28 and the stack 1 above it drop to the slide shelf 14 as the knives l0 and 12 are withdrawn.
- FIG. 8 is shown a further development of the concept in which a knife 10 is spaced above a shim 34 which may comprise any of the materials or shapes mentioned but which is cut back behind the tapered portion 36 of the knife 10 so that the resilience of the knife 10 itself may in whole or in part provide the desired floating effect.
- a shim 34 which may comprise any of the materials or shapes mentioned but which is cut back behind the tapered portion 36 of the knife 10 so that the resilience of the knife 10 itself may in whole or in part provide the desired floating effect.
- FIG. 9 shows a further embodiment in the double tapered knife edge having the advantage of lower cost and superior performance.
- the embodiment of FIG. 9 is especially characterized by having no compound surfaces, a smaller angle of entry between the closures, and entry at a point of greater closure strength.
- the knife 38 shown has a longitudinal ramp 40 which is at an angle to the upper surface 42 of about l5, about 212 being preferred. It also has a transverse camming surface 44 which is struck downward from line 46 at an angle of about 20 25 degrees. Finally, the leading edge 48 extends rearward at an angle of from about l0-20 to the longitudinal axis of the knife 38 having a preferred angle of about 12. By this configuration the leading edges 48 enter between the can ends 26 and 28 at points more nearly diametrically opposed and upon a line more nearly tangent to the periphery of the ends at the point of entry.
- the method of cutting off and feeding can ends of a given nominal curl height in a can end lining machine comprising; stacking the can ends in a vertical stack; supporting the stack on slide shelves of spaced apart reciprocating feed bars where the slide shelves terminate at a point where they will pass beyond the stack upon the upstream stroke of their reciprocation; mounting and resiliently biasing upward upon the feed bars, cut-off knives, where the upward biasing is limited to a point above the slide shelf up to about 0.007 inch above the maximum curl height of the can end; moving the feed bars inan upstream direction and the cut-off knives carried thereon to cut off the lowermost can end by the cut-off knife contacting the second lowermost can end and biasing downward to enter between the said two can ends; supporting the stack on-the cut-off knives and the cut-off can end on the slide shelf until the termination of the shelf permits the can end to drop off it; moving the feed bars in the downstream direction until the cut-off knives'pass out from under the stack
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Making Paper Articles (AREA)
- Sheets, Magazines, And Separation Thereof (AREA)
Abstract
A pair of cut-off knives for stripping the lower closure of a vertical stack of closures is floated on a spring shim to be able to ride between the curl portions of closures one of whose curl is so oversized as to otherwise cause the knives to interfere with the curl portion.
Description
I United States Patent 51 3,702,103
Price et al. [4 1 Nov. 7, 1972 [54] SELF-ADJUSTING CUT-OFF KNIFE [72] Inventors: Raymond E. Price, 64 Hoitt Road, [56] References cued Belmont Mass. 02178 Clifford F.
NIT D Tirrell, 2 MacDougall CL, South U E STATES PATENTS W y th, M 02190; ki h d 3,289,861 12/1966 Carle et a]. ..22l/268X C, Adams, 36 w d h t r Ci l 1,058,372 4/1913 Kruse ..113/114 BE Waltham, Mass, 02154; Robert W, 1,013,344 H1912 Wegner et a1 ..113/114 BE George, Strawberry Lane, Belle Mead, NJ. 08502 Primary Examiner-Richard J. Herbst Attorney-C. F. Parker, William L Baker and [22] Filed: May 24, 1971 Lawrence Cohen [21] Appl. No.: 146,229
[57] ABSTRACT Related US. Application Data A pair of cut-off knives for stripping the lower closure [62] Dmslon of Apr11 1969 of a vertical stack of closures is floated on a spring 3,606,850- shim to be able to ride between the curl portions of closures one of whose curl is so oversized as to other- [52] US. Cl. ..113/114 BE wise cause the knives to interfere with the curl pop [51] lm. Cl. ..B21d 43/16 [58] Field of Search.....l 13/1 14 R, 114 BE; 221/268,
1 Claim, 9 Drawing Figures PATENTED 7 I97? 3. 702. 103
sum 1 3 FIG. 3
INVENTORS RAYMOND E. PRICE CLIFFORD F. TIRRELL RICHARD C. ADAMS ROBERT W. GEORGE PATENIED nnv 1 I972 SHEET 2 [If 3 N QI INVENTORS RAYMOND E PRICE CLIFFORD F. TIRRELL RICHARD C. ADAMS W. GEORGE ROBERT BACKGROUND OF THE INVENTION This invention relates to container closure lining machinery,'and particularly to an improvement in the device which picks the unlined closures from a vertical supply stack and advances them to a rotary chuck where the lining operation is performed.
In a'slide feed lining machine closures are vertically stacked in anticipation of being transported individually to a lining station which consists basically of a rotary chuck and a nozzle. At the lining station a fluid gasketing or sealing compound is injected onto the closure as it rotates on thechuck. The closure is then transported away from the machine for subsequent operations such as curing of the compound. Closures are fed from the vertical stack by sliding the lowermost closure in the stack to the lining station.
' This invention deals with the means by which the lowermost closure is separated from the vertical stack and slid to the lining station. The lowermost closure in the vertical stack of closures is stripped or cut off from the stack by cut-off knives, dropped to a slide table, and moved downstream to the rotary chuck. The device which performs this function is formed by two reciprocating parallel slides spaced apart a distance somewhat less than the diameter of the closure. The cut-off knives are mounted upon and above the slides for a coincident reciprocation. A vertical space is left between the slide andthe knife suitable to receive the lower closure after the knives have cut it off from the stack. The stack rests on the slides until the knives cut off the lower closure at which time the stack rests on the knives, the lower closure dwelling in the space until it is dropped to the slide table, whereupon it is transferred to a rotary chuck for the lining operation.
' The space between the slide and the knives must be of sufficient height to accept the curl of a can end or the skirt of other closures. In addition, the edge of the knives which cut off the lower closure must not be so high as to interfere with the curl of the second lowest closure nested in the lowest closure. It would be possible to set the height of the knives just right if the height of the curl of every closure were dependably consistent. However, a variation in closure dimensions must be anticipated due to the realities of their manufacture. Conventionally, the cut-off knives are set by a gauge to 0.002 of an inch over the maximum curl height expected. If a closure exceeds this dimension, a jam may occur. If the knife is set higher, it will not be able to work itself between the closures and will frequently damage the second lowermost closure.
The tolerances which are maintained by the closure industry are remarkably close. Some closure manufactures produce shells with a 0.002 inch tolerance, others however, keep only a 0.005 inch tolerance. Some closures have dimensions outside the specified tolerances. Therefore, among the billions of container closures which are made, some appear which cause difficulties in the feed mechanism and lead to jams.
The out-of-tolerance dimension which causes the greatest trouble is the vertical height of the curl. If that dimension exceeds by more than 0.002 of an inch the tolerance limit, the cut-off knives will smash against the closure and cause a machine jam which necessitates shut-down and clearing the machine. Freeing the jam can be a time-consuming operation. Consequently, any device which successfully passes on closures slightly out of tolerance (provided that tolerance is demanded solely because of the characteristics of the lining machine) is economically advantageous.
We have discovered that by mounting the cut-off knives on the slide so that they are free to float vertically through a small distance, and shaping the end of the knife so that it is tapered both longitudinally and transversely, the knife can be set as much as 0.007 inch above the curl height tolerance limit and still work its way between closure and closure, cause the supply stack to ride on the knife, and push the just-fed closure ahead towards the chuck. Closures which areas much as 0.005 of an inch over or below the present-day tolerance limits can now be successfully fed.
SUMMARY OF THE INVENTION The cut-off knives of a strip feed lining machine are floated in a controlled manner and may have edges which are tapered both longitudinally and transversely in order to permit cut off of the lowermost closure of the stack without jamming.
BRIEF DESCRIPTION OF THE DRAWINGS The invention may be better understood from the specification and from the drawing in which:
FIG. 1 is a perspective view of the slide-feed lining machine on which the invention is used;
FIG. 2 is a plan view of the leftand right-hand cutoff knives;
FIG. 3 is a cross-section on line 3-3 of FIG. 2 of one arm of the feed slide;
FIG. 4 is a plan view of the cut-off knives;
FIG. 5 is a cross-section on line 5-5 of the cut-off knife of FIG. 4;
FIG. 6 is a plan view of the self-adjusting spring shim;
FIG. 7 is a side view of the self-adjusting spring shim;
FIG. 8 is a side view of an alternative configuration for floating the knives;
FIG. 9 is a perspective view of another embodiment of the cut-off knives.
DESCRIPTION OF THE PREFERRED EMBODIMENT In FIG. 1 is shown the slide-feed lining device of which the cut-off knives of the present invention are a part. Closures are supplied from a stack 1 to be delivered to a lining station 2 from whence they are subsequently transported to a take-away apparatus shown as a conveyor 3. The device is shown with feed bars 4 and 5 at the end of their forward or downstream stroke having delivered an unlined closure 6 to the lining station 2 and at the same time a lined closure 7 to the conveyor, which latter closure had been at the lining station. On their return or upstream stroke the feed bars 4 and 5 will separate the lowermost closure from stack 1 and drop it to the slide table 8. Upon the forward stroke, the closure will he slid along the slide table 8 to the lining station 2. The stack 1 is located by a block assembly 9 fixed by a means not shown, to the slide table 8. The right hand feed bar 4 and the lefthand feed bar 5 is thus reciprocally driven in unison, by a means not shown, along the path of closure movement.
The present invention deals with the means by which the lowermost closure is separated from the stack for subsequent delivery to the lining station, 2, an embodiment comprised of the. right-hand cut-off knife 10 and the left-hand cut-off knife 12 which are attached to the feed bars 4 and 5 respectively. The invention also deals with the means by which the .knives l and 12 are mounted. The cut-off knives 10 and 12 serve to separate or cut off the lowermost closure from the stack 1 for subsequent delivery to the lining station 2.
The closures shown and described in the following description and No. 2 can ends, and the dimensions indicated are representative particularly of those exiting with No. 2 can ends.
Referring to FIG. 2, the feed bars 4 and 5 straddle the can ends of stack 1 and have slide shelves 14 which extend inwardly to present a space somewhat smaller than the diameter of the can ends. The slide shelves l4 terminate upstream in an inclined edge 16. When the feed bars 4 and 5 are at the downstream extreme of their stroke as shown in FIG. 2, the stack 1 rests upon the slide shelves 14. The cut-off knives and 12 are mounted on the feed bars 4 and 5 and spaced above the slide shelves 14.
FIG. 3 taken in cross section along the line 3-3 of FIG. 2 shows the mounting of the cut-off knife 10 above the slide shelf 14. By way of example, the knife 10 is held in position by a NYLOK socket head cap screw 18. The knife 10 is not secured against the feed bar 4 but rather is resiliently floated or raised upwardly against the screw head by a spring shim 20. Thus there is a vertical space between the slide shelf 14 and the knife 10 which may be varied by adjusting the screw 18.
A spring shim which provides this easy vertical adjustment is shown in FIGS. 6 and 7 as a strip of spring steel which may, e.g., be three-eighths of an inch wide and bent as shown with /8 inch offsets, approximately 1% inches from base to base. Spring steel 0.020 inch in thickness floats the knives nicely. A wide variety of compressible and/or resilient materials may be utilized to float the knives. Additional materials found suitable are laminated brass shim stock one-sixteenth inch thick consisting of 0.002 inchlaminations or an elastomeric material such as neoprene rubber.
The knives l0 and 12 are shown in greater detail in FIGS. 2 and 4. The leading edge 22 of the knives are ground into a particular and peculiar double tapered shape. FIG. 4 shows one such shape which works on No. 2 can ends in which the knives 10 and 12 have a radius of 1% inches struck three-eighths of an inch offset from the center line 24 of the two knives when mounted in position. The taper is finished in an arcground three-eighths of an inch above the center line and 5 are driven upstream (to the right in FIG. 2) by a means not shown.
As the feed bars 4 and 5 move upstream, the slide shelves l4 slide beneath the stack 1 which is held steady by the block 9. Leading edges 22 of the cut-off knives l0 and 12 workthemselves between a lowermost can end 26 and a second lowermost can end 28 as shown in FIG. 3. The can end 28 with the stack 1 above it is thus lifted slightly to ride on the upper face 30 of the cut-off knife 10. The can end 26 remains on the slide shelf 14.
The feed bars 4 and 5 continue to move upstream until the inclined edges 16 of the slide shelves 14 pass beyond the can end 26. The can end 26 then drops to the slide table 8. At this point thefeed bars 4-and 5 begin the forward of downstream stroke (to the leftin FIG. 2) in which the can end 26 is engaged by the inclined edges 16 and is slid to the lining station 2. The lined can end which was at the lining station is then pushed to the conveyor 3. During the downstream stroke the can end 28 and the stack 1 above it drop to the slide shelf 14 as the knives l0 and 12 are withdrawn.
With reference to FIG. 3, in, the past the distance between the knife 10 and the slide shelf 14 was fixed at the most 0.002 inch over the maximum tolerance of the height of the curl 32. The knives could not be set any higher because they could then crush the can end 28. Jams therefore occurred if the curl portion 32 of the can end 26 was higher than the space between the knife 10 and the slide shelf 14. By floating the knives in the manner shown, it is possible to handle can ends where the curl height varies as much as 0.005 inch over the tolerance limit. In this case the knives 10 and 12 are set as much as 0.007 inch above the expected maximum curl height. As the leading edges 22 of the knives hit the can end 28, they are pushed downward against the force of the spring shim 20 to enter between the can ends 26 and 28. The resistance of the spring shim 20 may be chosen and adjusted by a skilled mechanic sufficiently to keep the knives floated upward, but still allow them to move downward upon contacting the can end 28.
In FIG. 8 is shown a further development of the concept in which a knife 10 is spaced above a shim 34 which may comprise any of the materials or shapes mentioned but which is cut back behind the tapered portion 36 of the knife 10 so that the resilience of the knife 10 itself may in whole or in part provide the desired floating effect.
Floating the cut-off knives in the manner described has made a remarkable improvement in reducing jams. Only very rarely will a can end come through with dimensions outside the operating limits of this springfloated cut-off knife, providing much more constant operation of machines so equipped.
FIG. 9 shows a further embodiment in the double tapered knife edge having the advantage of lower cost and superior performance. The embodiment of FIG. 9 is especially characterized by having no compound surfaces, a smaller angle of entry between the closures, and entry at a point of greater closure strength.
Thus the knife 38 shown has a longitudinal ramp 40 which is at an angle to the upper surface 42 of about l5, about 212 being preferred. It also has a transverse camming surface 44 which is struck downward from line 46 at an angle of about 20 25 degrees. Finally, the leading edge 48 extends rearward at an angle of from about l0-20 to the longitudinal axis of the knife 38 having a preferred angle of about 12. By this configuration the leading edges 48 enter between the can ends 26 and 28 at points more nearly diametrically opposed and upon a line more nearly tangent to the periphery of the ends at the point of entry.
What we claim is:
1. The method of cutting off and feeding can ends of a given nominal curl height in a can end lining machine comprising; stacking the can ends in a vertical stack; supporting the stack on slide shelves of spaced apart reciprocating feed bars where the slide shelves terminate at a point where they will pass beyond the stack upon the upstream stroke of their reciprocation; mounting and resiliently biasing upward upon the feed bars, cut-off knives, where the upward biasing is limited to a point above the slide shelf up to about 0.007 inch above the maximum curl height of the can end; moving the feed bars inan upstream direction and the cut-off knives carried thereon to cut off the lowermost can end by the cut-off knife contacting the second lowermost can end and biasing downward to enter between the said two can ends; supporting the stack on-the cut-off knives and the cut-off can end on the slide shelf until the termination of the shelf permits the can end to drop off it; moving the feed bars in the downstream direction until the cut-off knives'pass out from under the stack
Claims (1)
1. The method of cutting off and feeding can ends of a given nominal curl height in a can end lining machine comprising; stacking the can ends in a vertical stack; supporting the stack on slide shelves of spaced apart reciprocating feed bars where the slide shelves terminate at a point where they will pass beyond the stack upon the upstream stroke of their reciprocation; mounting and resiliently biasing upward upon the feed bars, cutoff knives, where the upward biasing is limited to a point above the slide shelf up to about 0.007 inch above the maximum curl height of the can end; moving the feed bars in an upstream direction and the cut-off knives carried thereon to cut off the lowermost can end by the cut-off knife contacting the second lowermost can end and biasing downward to enter between the said two can ends; supporting the stack on the cut-off knives and the cut-off can end on the slide shelf until the termination of the shelf permits the can end to drop off it; moving the feed bars in the downstream direction until the cut-off knives pass out from under the stack which then drops onto the slide shelf.
Applications Claiming Priority (1)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US14622971A | 1971-05-24 | 1971-05-24 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| US3702103A true US3702103A (en) | 1972-11-07 |
Family
ID=22516399
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| US146229A Expired - Lifetime US3702103A (en) | 1971-05-24 | 1971-05-24 | Self-adjusting cut-off knife |
Country Status (1)
| Country | Link |
|---|---|
| US (1) | US3702103A (en) |
Cited By (13)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4019452A (en) * | 1976-05-06 | 1977-04-26 | American Can Company | Can end feed mechanism |
| US4166424A (en) * | 1977-01-31 | 1979-09-04 | American Can Company | Press apparatus and method utilizing same |
| US4834264A (en) * | 1985-06-03 | 1989-05-30 | Siegel Family Revocable Trust | Dedicated multi-cavity dispenser for solids |
| US5131562A (en) * | 1991-01-28 | 1992-07-21 | Brown Anthony P | Dispenser for soft drink lids and the like |
| US5450710A (en) * | 1993-10-13 | 1995-09-19 | Jensen; Richard B. | Pill or capsule card filling apparatus and method |
| US5765342A (en) * | 1993-10-13 | 1998-06-16 | Jensen; Richard B. | Pill or capsule card filling apparatus and method |
| US5997111A (en) * | 1997-11-10 | 1999-12-07 | Jensen; Richard B. | Dispensing container for use with one or more strip packages of medication |
| US20060249527A1 (en) * | 2005-05-04 | 2006-11-09 | Walsh Kenneth T | Beverage lid dispenser |
| US20070151982A1 (en) * | 2005-05-04 | 2007-07-05 | Walsh Nicholas R | Beverage lid dispenser |
| US7673773B1 (en) | 2005-05-04 | 2010-03-09 | Kennik Innovations, Llc | Beverage lid dispenser including easy loading lid packaging |
| US9251640B2 (en) | 2012-11-20 | 2016-02-02 | Bruegmann USA, Inc. | Horizontal lid dispenser |
| US10654666B2 (en) * | 2015-05-13 | 2020-05-19 | Bd Kiestra B. V. | System with improved plate destacking |
| CN113523095A (en) * | 2021-07-28 | 2021-10-22 | 姚福连 | Be used for full rubber barbell piece punching equipment |
Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1013344A (en) * | 1910-05-24 | 1912-01-02 | Sanitary Can Company | Automatic feed device for can-heads or other articles. |
| US1058372A (en) * | 1912-02-23 | 1913-04-08 | Bliss E W Co | Automatic mechanism for feeding can-heads. |
| US3289861A (en) * | 1964-10-12 | 1966-12-06 | Phillips Petroleum Co | Apparatus and process for handling stacked and nested members |
-
1971
- 1971-05-24 US US146229A patent/US3702103A/en not_active Expired - Lifetime
Patent Citations (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US1013344A (en) * | 1910-05-24 | 1912-01-02 | Sanitary Can Company | Automatic feed device for can-heads or other articles. |
| US1058372A (en) * | 1912-02-23 | 1913-04-08 | Bliss E W Co | Automatic mechanism for feeding can-heads. |
| US3289861A (en) * | 1964-10-12 | 1966-12-06 | Phillips Petroleum Co | Apparatus and process for handling stacked and nested members |
Cited By (18)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4019452A (en) * | 1976-05-06 | 1977-04-26 | American Can Company | Can end feed mechanism |
| JPS52149854U (en) * | 1976-05-06 | 1977-11-14 | ||
| US4166424A (en) * | 1977-01-31 | 1979-09-04 | American Can Company | Press apparatus and method utilizing same |
| US4834264A (en) * | 1985-06-03 | 1989-05-30 | Siegel Family Revocable Trust | Dedicated multi-cavity dispenser for solids |
| US5131562A (en) * | 1991-01-28 | 1992-07-21 | Brown Anthony P | Dispenser for soft drink lids and the like |
| US5450710A (en) * | 1993-10-13 | 1995-09-19 | Jensen; Richard B. | Pill or capsule card filling apparatus and method |
| US5765342A (en) * | 1993-10-13 | 1998-06-16 | Jensen; Richard B. | Pill or capsule card filling apparatus and method |
| US5997111A (en) * | 1997-11-10 | 1999-12-07 | Jensen; Richard B. | Dispensing container for use with one or more strip packages of medication |
| US20060249527A1 (en) * | 2005-05-04 | 2006-11-09 | Walsh Kenneth T | Beverage lid dispenser |
| US20060249526A1 (en) * | 2005-05-04 | 2006-11-09 | Walsh Kenneth T | Beverage lid dispenser |
| US20070151982A1 (en) * | 2005-05-04 | 2007-07-05 | Walsh Nicholas R | Beverage lid dispenser |
| US7337919B2 (en) * | 2005-05-04 | 2008-03-04 | Walsh Kenneth T | Beverage lid dispenser |
| US20090134182A1 (en) * | 2005-05-04 | 2009-05-28 | Kennik Innovations, Llc | Beverage lid dispenser |
| US7673773B1 (en) | 2005-05-04 | 2010-03-09 | Kennik Innovations, Llc | Beverage lid dispenser including easy loading lid packaging |
| US8016158B2 (en) | 2005-05-04 | 2011-09-13 | Kennik Innovatons, LLC | Beverage lid dispenser |
| US9251640B2 (en) | 2012-11-20 | 2016-02-02 | Bruegmann USA, Inc. | Horizontal lid dispenser |
| US10654666B2 (en) * | 2015-05-13 | 2020-05-19 | Bd Kiestra B. V. | System with improved plate destacking |
| CN113523095A (en) * | 2021-07-28 | 2021-10-22 | 姚福连 | Be used for full rubber barbell piece punching equipment |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US3702103A (en) | Self-adjusting cut-off knife | |
| US3830121A (en) | Installation for cutting rolled sheets | |
| JPH04173625A (en) | Constant quantity takeoff device of piston ring | |
| US4368882A (en) | Device for separating an end blank from a stack of blanks | |
| US2540058A (en) | Shank slotter | |
| US3446499A (en) | Sheet material handling apparatus | |
| US3606850A (en) | Self-adjusting cutoff knife | |
| US4224850A (en) | Apparatus for cutting a blank sheet into strips and for stacking the strips in adjoining compartments separated by partitions | |
| US2332445A (en) | Machine for cutting and placing sheet material | |
| US3232449A (en) | Bar separator and feeder | |
| US2009751A (en) | Screw machine supplying mechanism | |
| EP1841602B1 (en) | Pressing system | |
| US2156822A (en) | Sorting machine | |
| US2667797A (en) | Ring setting machine | |
| US3411389A (en) | Shearing apparatus and method | |
| US4365445A (en) | Automated fastener machining system | |
| CA1279668C (en) | Magazine for stacking sheet-metal members, for example for the production of cans | |
| CN108817528A (en) | A kind of shear conveying device suitable for inclined plate shearing | |
| US3469432A (en) | Pneumatic feeding device | |
| US3329053A (en) | Machine for splitting apart two-on siamese twin books | |
| US3034783A (en) | Press feeding method and apparatus | |
| US2170759A (en) | Paper box construction | |
| US1104091A (en) | Thread-rolling machine. | |
| US1852221A (en) | Feed mechanism for blanks | |
| US3236375A (en) | Mechanical apparatus and method |