US3702053A - Metallic yarn - Google Patents

Metallic yarn Download PDF

Info

Publication number
US3702053A
US3702053A US3702053DA US3702053A US 3702053 A US3702053 A US 3702053A US 3702053D A US3702053D A US 3702053DA US 3702053 A US3702053 A US 3702053A
Authority
US
United States
Prior art keywords
yarn
adhesive
yarns
percent
dyeing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Peter J Schoots
Johannes Thomas Brugmans
Klaas Hoogenhout
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lurex NV
Original Assignee
Lurex NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lurex NV filed Critical Lurex NV
Application granted granted Critical
Publication of US3702053A publication Critical patent/US3702053A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D02YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
    • D02GCRIMPING OR CURLING FIBRES, FILAMENTS, THREADS, OR YARNS; YARNS OR THREADS
    • D02G3/00Yarns or threads, e.g. fancy yarns; Processes or apparatus for the production thereof, not otherwise provided for
    • D02G3/02Yarns or threads characterised by the material or by the materials from which they are made
    • D02G3/12Threads containing metallic filaments or strips
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/02Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins
    • D10B2321/021Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polyolefins polyethylene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S57/00Textiles: spinning, twisting, and twining
    • Y10S57/901Antistatic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2973Particular cross section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal
    • Y10T428/31692Next to addition polymer from unsaturated monomers
    • Y10T428/31696Including polyene monomers [e.g., butadiene, etc.]

Definitions

  • ABSTRACT A laminated yarn adapted for tone-on-tone or cross dyeing with dispersed dyestuffs comprising metallized transparent films laminated with an adhesive comprising a copolymer of a major portion of polyethylene and a minor portion of a comonomer.
  • the present invention generally relates to textile materials, particularly to textile yarns which are prepared by laminating materials adapted to give colorful and varying effects.
  • the decorative effects of the subject yarns are achieved through a combination of the characteristics of the component parts and through dyes which are applied thereto.
  • Metallic yarns which have been produced in the past generally utilize transparent films which contain there between a reflective metal and which are adhered by applying an adhesive such as a synthetic or natural resin or a rubber-based adhesive.
  • an adhesive such as a synthetic or natural resin or a rubber-based adhesive.
  • the choice of adhesive as a practical matter is limited by its ability to withstand high temperatures, pressures and chemical attack.
  • Dyes are commonly applied to color the clear polyester ply. Since the dyes are generally applied to the yarns in a carrier which is infused into the yarns under extreme pressure and/or heat to cause infusion, it is essential to have an adhesive which is capable of withstanding such infusion while retaining its adhesive characteristics.
  • the method of applying dyes is particularly important since they are generally applied in solutions which may be heated to high temperatures and they may be applied under conditions of increased pressure. Under conventional dyeing techniques the previously produced metallic laminated yarns are unfavorably affected by the chemicals in the dyeing bath as well as by the high temperatures and pressures necessary to infuse the dye into the transparent films. Typically, the dyed yarns exhibit modified chemical and physical properties including bridging, delamination, and demetallization.
  • laminated metallic yarns must be capable of withstanding the conditions experienced during dyeing and must withstand cleaning solvents, heat and pressure while retaining a decorative effect and integral structure.
  • this invention comprises laminating the metal-coated faces of transparent films by use of an adhesive system comprising a copolymer of a major portion of polyethylene and a minor portion of a modifying comonomer.
  • an adhesive system comprising a copolymer of a major portion of polyethylene and a minor portion of a modifying comonomer.
  • Other aspects of the invention include the application of such adhesives as a dispersion wherein a suitable proportion of stabilizer and modifiers are present or, alternatively, applying a film of the desired polyethylene copolymer. In the latter case, it is frequently necessary to apply after-treatment to the laminated film comprising electron radiation or thermal treatment to improve the integrity of the yarn.
  • FIG. 1 is a schematic drawing illustrating a process of producing the subject yarn
  • FIG. 2 is a longitudinal-sectional view of the yarn produced by the process of FIG. 1 and;
  • FIG. 3 is a cross-sectional view of the yarn of FIG. 2.
  • the process of the present invention is seen to comprise providing a first web 2 of clear plastic having ametallic coating 3 on its lower surface, passing that web through coating rollers 8 such as those used in rotogravure printing, adapted to apply an adhesive dispersion 4 thereto, passing the coated web through a pre-drying oven 12 to evaporate solvent contained in adhesive 4, and then through heated pressure rolls 14 one roll being metal and the other rubber, wherein a second clear plastic layer 2,'with metallic coating 3 on its upper surface, is laminated thereto. The laminate is thereafter slit in a slitting device 18 and wound up on roller 20.
  • coating rollers 8 such as those used in rotogravure printing
  • the yarn is seen to comprise twoouter transparent plastic layers 2 having metallic surface coatings 3 and an inner clear plastic adhesive coating 4.
  • the adhesive 4 may, insome instances, comprise a film.
  • the preferred after-treatment involves electron-irradiation before slitting although thermal techniques before slitting have also been used.
  • the schematic representation shown in FIG. 1 would be modified by elimination of the adhesive tank 7, coating rollers 8 and pre-drying oven 12.'In their place, a roll of adhesive film 4 would be supplied with suitable feed means to supply the adhesive film between the two one side metallized polyester layers 2. Additionally, the schematic would be modified by inserting an after-treating irradiator or ven'15 between laminating roller 14 and slitter l8.
  • the lamination technique involves applying adhesive to the clear plastic layers which have previously been coated by vapor deposition or other conventional techniques with a metal, particularly aluminum, gold or silver.
  • the films may be metallized in a high vacuum metallizer as by the processset out in US. Pat. No. 2,974,055 wherein gold, silver, aluminum, magnesium, titanium, nickel, etc. are applied by vapor deposition in thicknesses under about l/50,000 of an inch.
  • a suitable rate of travel of film during the processing steps shown in FIG. 1 is on the order of 100 to 175 feet pressure which can vary from about 0.1 to 65 pounds.
  • the slitter 18 is provided after the point of lamination and generally comprises a knife which slits the film in desired widths.
  • the laminating rolls can be heated to about 160 C. and the nip pressure will be about 0.1 pound per inch of film width.
  • the laminating techniques would be generally the same with the pressure rolls maintained at l30l C. and at a pressure of 64 pounds-per inch for a process speed of 130 feet per minute.
  • the aftertreater 15 is used instead of pre-heater 12.
  • thermal treatment a heat treatment for 20-120 seconds at 160l80 C. sufiices to obtain a pressure dyeable yarn.
  • electron radiation a level of 2 to 32 mrads. is suitable, with the preferred dose being above 8 mrads. The radiation is achieved with conventional techniques and apparatus.
  • the yarn is receptive to dispersed dyestuffs such as acetate dyes while retaining its resistance to degradation due to such agents as the chemicals, temperatures and pressures, experienced during dyeing.
  • the yarns are dyed with a number of different types of dyes in either the tone-on-tone or cross dyeing techniques by use of high temperature or low temperature processes.
  • Dispersed dyes are particularly adapted for use with this invention and when the yarns of this invention are interwoven with other threads, for example, cotton or rayon, the cross dyeing technique may be utilized. That is, the woven fabric is first dyed with colors which are picked up by the laminated threads and then cleared with a suitable solution such as sodium hydrosulfite followed by application of dyestuffs which are reactive to or attracted to the other threads in the fabric.
  • the methods available can be characterized as low temperature processes and high temperature processes.
  • the laminated yarn is subjected to the potentially detrimental effect of the dye solution. It is found that the adhesive of this invention resists all such processes and is adapted for particular use with the normally troublesome dyeing processes.
  • the temperature at lamination should not exceed 180 C. since at this temperature, the shrinkage characteristics of the polyester film produce undesirable characteristics in the ultimate yam.
  • a dispersion it is necessary to remove the solvent and dispersing medium prior to lamination. This is preferably conducted in an air-type oven (12) wherein hot air (80l20 C is applied to the surface of the coated film. Passage through the air oven is part of a continuous process and in a typical process, the material will reside in the oven for only about 20 seconds. This dwell time will clearly vary with the film speed through the process.
  • hot air 80l20 C
  • the clear plastic films '2 utilized are preferably polyester materials which are clear, that is, transparent or translucent.
  • the use of clear outer layers allows the maximum utilization'of the decorative effects of the metallic coating and any subsequently applied dyestuffs which are present in the clear plastic layers.
  • the combined effect of dyes and metallic coatings give a colorful glittering appearance .to the ultimate yarn and fabric.
  • Suitable plastic films 2 are orientedpolyesters, for example, polyethylene terephthalate or other clear films which may be oriented or unoriented. Particular reference is made to .Terphane produced by La Cellophane and Melinex-S, both of which are commercially available clear polyester films.
  • the essential characteristic of the outer layer films 2 is that they be clear and be adapted to receive a metallic coating 3 and a dyestuff.
  • the films may be any suitable size with the preferred film being 40 inches in width and'approximately 25-100 gauge.
  • the adhesive of this invention is preferably applied as a dispersion in order to reduce the ultimate thickness of the yarn.
  • the quantity of the adhesive applied is on the order of 0.15 to 1.2 g/m preferably 0.3 glm
  • the adhesive material is a copolymer. containing at least about 75 percent and preferably about 92 percent polyethylene which contains as comonomer a material selected from the group consisting of acrylic acid, methacrylic acid and the acrylate monomers, particularly, ethyl acrylate and isobutyl acrylate; copolymers includes terpolymers of these materials. These copolymers are prepared by conventional techniques which are clearly available to those skilled in the art.
  • the preferred range of comonomer is from 4 to 12 percent especially 8 percent of the total and the preferred comonomer is acrylic acid.
  • a stabilizer such as a detergent, a nitrile rubber, a vinyl monomer or a modified vinyl monomer containing carboxy or hydroxy groups.
  • the polyethylene conolymer is dissolved in a chlorinated hydrocarbon solvent and is then dispersed in a solution of the stabilizer in, for example, methyl ethyl ketone and this combination is utilized as the adhesive dispersion 4.
  • the stabilizer works as a dispersing agent for the polyethylene copolymer and has a beneficial influence on the chemical resistance of the yarns.
  • Preferred stabilizers for the polyethylene copolymer are the polyvinyl chloride-polyvinyl acetate copolymers modified with hydroxyl groups and commercially known as VAGI-I produced by Union Carbide.
  • An alternative is a polyvinyl chloride-polyvinyl acetate copolymer known as VYHH also produced by Union Carbide.
  • VYHH polyvinyl chloride-polyvinyl acetate copolymer
  • VMCH another polyvinyl chloride-polyvinyl acetate copolymer produced by Union Carbide can be used. It can generally be said that any vinyl resin and/or detergent can be used as the stabilizer of this invention.
  • Epoxy and isocyanate resins and silicone compounds are also effective. These components are present in about 0.05 to 1.5 percent weight.
  • the resin and stabilizer dispersion may be added conventional modifiers and additives to effect the characteristics of the adhesive.
  • the dispersion is applied in a thin layer since thin coatings improve the resistance to deterioration in the yarn.
  • the dispersion of polyethylene copolymer it is possible, although not preferred, to use films of the polyethylene copolymer. These are commercially produced by conventional extrusion techniques or by blow molding from the reaction product of the polyethylene and comonomer. In this case, there is no necessity to add a stabilizer or modifi-
  • the yarns produced by the slitter are from about l/l00 inch to one-fourth inch in width.
  • the exposed parts of adhesive and metal seen in FIG. 3 are on the -0 undamaged returnable cardboard tubes or cones which contain about 7 ounces, 200 grams, of yarn or they may be packaged on a plastic non-returnable spool containing about 5.5 ounces (150 grams) of yarn.
  • the yarns may be supported (combined with nylon monofilaments) or unsupported and can be wound as single strands or as tow.
  • the yarns produced show very good properties having typically a strength of -100 gm, an extensability of and a yield force of 50 gm. In addition, they are soft and have good handle making them easy to wind and to use in mechanical knitting 0 weaving machine's without physical breaking or cracking.
  • the high temperature dyeing test involves use of temperatures of about 125 C., or when high pressure is applied a temperature of about C. can be used.
  • a dye in quantities of about 5-10 percent and a liquor ratio 1:200 containing minor portions (less than 0.05 g/l) of a conventional carrier such as a diphenyl emulsion is used and adjusted to a pH of 57 with 30 percent acetic acid.
  • Dye and liquor ratio are known textile terms. Percent relates to dye/fabric ratio and liquor ratio to fabric/liquor ratio. Commercial processes use normally between 0.1-5 percent dye and liquor ratio of approximately 1:40. The yarn is boiled at indicated temperature for 1-2hours.
  • the low temperature dyeing test involves similar conditions with a temperature of 100 C. with about 10 percent dye and liquor ratio 1:500 containing about 3-4- g/l carrier and having apl-l of 6-6.5. The yarn is boiled for about 1 hour.
  • the standard soap boil test involves immersion of a yarn in aqueous solutions containing about 5 grams soap (LUX) per liter (pH about 9) at 100 C.for 2 hours. This test gives an indication of the alkali resistance of the yarn.
  • EXAMPLE 1 Ethylene, acrylic acid and a solvent were fed continuously at rates respectively of 10.01, 0.01 and 2.70 pounds per hour into and through a two liter stirred autoclave maintained at a temperature of 140-150 C. and a pressure of 1,450 atmospheres. Azo-bis-isobutyronitrile initiator was also fed continuously at a rate equivalent to about 0.8 pounds per 1,000 pounds of polymer product. The residence time in the autoclave was about minutes. The reaction mixture continuously removed from the autoclave was stripped of unpolymerized monomers and solvents under reduced pressure at elevated temperature.
  • melt index is determined by ASTM testmethod D 1238-52T (ASTM Standards, 1955, Part 6, pages 292 to 295) and melt index is a well recognized determination of molecular weight.
  • EXAMPLE 2 Fifteen Parts copolymer of Example 1 is dissolved in 300 parts perchlorethylene (temperature 100-120 C.) with stirring. Initially the polymer floats on the perchlorethylene and forms a thick gelly. This has to be broken up with continuous stirring until the copolymer is dissolved.
  • Hycar 1022 15 percent solution in toluene are dissolved in ZOO-parts methyl ethyl ketone.
  • the hot perchlorethylene containing dissolved copolymer is poured into the diluted Hycar solution in methyl ethyl ketone at room temperature.
  • High speed stirring is utili'zeduntil a good dispersion results.
  • the dispersion is cooled to room temperature and placed in a fountain of a rotogravure printing press.
  • EXAMPLE 3 Metallic yarns were produced by coating a 25 gauge, 40 inch width clear polyethylene terephthalate film containing a vapor deposit of aluminum on one side with a solution prepared according to Example 2. The composition was applied to the metallized side of one film by rotogravure printing in a thickness of about 1.0 glm The coated film was passed at an approximate speed of 125 feet per minutethrough an air oven containing heated air at approximately 8090 C. The film was then passed through rollers maintained at 170 C. and a second like film of polyethylene terephthalate was brought into contact with the coated surface of the initial film. After passing through the laminating rollers maintained at a nip pressure of about 0.1 pounds per inch film width, the films were passed into contact with a rotating cutter having a series of knives adapted to produce filaments from 0.07 to 0.25' inches in width.
  • EXAMPLE 4 instead'of the dispersion used in Example 2 and 3, the copolymer of Example 1 was formed by blow-molding into a film approximately 0.40 inches wide and 25 gauge. This adhesive film was run between the metallized surfaces of two aluminum coated polyethylene terephthalate films and the composite was passed through laminating rollers maintained at C. with a pressure of 0.1 pounds per inch at about 130 feet per minute. The resulting laminate was divided into a series of portions treated as follows:
  • a first portion was slit without irradiation.
  • a fourth portion was irradiated at 32 mrads, prior to slitting.
  • a fifth portion was heat-treated in an oven for 27 seconds at 180 C. prior to slitting.
  • a sixth portion was heat-treated in a oven for l l 1 seconds at 180 C.
  • a seventh portion was heat-treated in an oven for 27 seconds at ,1 60 C.
  • the carrier used is a chlorinated aromatic com suddenly available from BASF and CIBA.
  • Examples SA-D produced acceptable dyed yarns whereas Examples 5E and SF produced unacceptable yarns.
  • the results are tabulated below using the testing scale described above:
  • a high temperature-high pressure dye test was conducted wherein the yarns as produced above of Examples 4A-D and 3E-G were subject to a liquor containing dispersed dyestuffs in quantities of 5-10 percent in a l-200 ratio with 0.025 grams per liter, carrier (Tumasol D produced by ICI) at a pH of 5-5.5 for 2 hours at 120-l25 C. in a pressure cooker.
  • the resulting dyed yarns were then subjected for a half hour to the action of a boiling medium (100 C.) containing 5 grams of Lux soap per liter.
  • the results are as follows:
  • a laminated yarn consisting essentially of two webs of transparent thermoplastic material each having an internal side coated with a metal deposit and said webs having sandwiched therebetween a polyethylene copolymer adhesive, particularly adapted to resist corrosion which would result in delamination in the presence of chemical baths, said polyethylene copolymer comprising at least about ethylene and not more than 15 percent of at least one member selected from the class consisting of acrylic acid, methacrylic acid, isobutyl acrylate and ethyl acrylate, wherein said polyethylene copolymer is dispersion coated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

A laminated yarn adapted for tone-on-tone or cross dyeing with dispersed dyestuffs comprising metallized transparent films laminated with an adhesive comprising a copolymer of a major portion of polyethylene and a minor portion of a comonomer.

Description

United States Patent Sch00ts et al.
1451 Nov. 7, 1972 541 METALLIC YARN [72] Inventors: Peter J. Schoots, Nieuwendam;
Johannes Thomas Brugmans, Wormerveer; Klaas Hoogenhout, Brock in Waterland, all of Netherlands Assignee:
lands Filed: Dec. 18, 1969 Appl. No.: 886,247
US. Cl. ..57/154, 161/170, 161/175, 161/177, 161/218, 57/155, 57/140 BY Int. Cl. ..D02g 3/36, D02g 3/40, D02g 3/12 Field of Search ..156/270, 271, 251, 252, 253, 156/150, 151, 272; 57/153, 154, 155, 140
References Cited UNITED STATES PATENTS 7/1967 Denenberg ..156/271 X Lurex, N.V., Amsterdam, Nether Primary Examiner-Carl D. Quarforth Assistant Examiner-Roger S. Gaither Attorney-Plumley & Tyner [57] ABSTRACT A laminated yarn adapted for tone-on-tone or cross dyeing with dispersed dyestuffs comprising metallized transparent films laminated with an adhesive comprising a copolymer of a major portion of polyethylene and a minor portion of a comonomer.
5 Claims, 3 Drawing Figures I METALLIC YARN The present invention generally relates to textile materials, particularly to textile yarns which are prepared by laminating materials adapted to give colorful and varying effects. The decorative effects of the subject yarns are achieved through a combination of the characteristics of the component parts and through dyes which are applied thereto.
In view of the increased use of the metallic yarns in fabrics, it is desirable to provide such yarns which may be dyed to produce colorful efiects without detrimentally modifying the characteristics of the metallic yarn substrate. Although metallic yarns have been produced by a number of processes, this invention is directed to those yarns produced by laminating previously metallized transparent films.
In preparing laminated metallic yarns by the subject process, it is conventional to utilize transparent or translucent plastic sheets, for example, polyethylene terephthalate or other polyesters which are coated on one side with a reflective metal such as aluminum. The aluminum coated sides are adhered by means of a suitable adhesive to provide a laminated web which may be slit to produce yarns of the required size. In applying the metallic coating and the adhesive material, it has been proposed to use metal foils and plastic films respectively, however, this generally results in yarns which are relatively thick and which are subject to delamination due to the infusion of solvents, oxidants, and other materials which contact the finished yarn. Likewise, vapor deposition and solution coatings have been used.
Metallic yarns which have been produced in the past generally utilize transparent films which contain there between a reflective metal and which are adhered by applying an adhesive such as a synthetic or natural resin or a rubber-based adhesive. However, the choice of adhesive as a practical matter is limited by its ability to withstand high temperatures, pressures and chemical attack.
Among the defects apparent in currently produced metallic yarns, the above-mentioned tendency to delaminate due to the thickness of the yarn has been in part solved by using solution coating techniques rather than laminating techniques in applying the metal and the adhesive. However, this does not entirely eliminate the susceptibility of the yarn to degradation when cleaning solvents are applied to theyarn or when boiling water and high temperature or high pressure conditions are experienced. Under these situations there is a tendency for the solvent to impregnate the yarn. Impregnation results in degradation of the adhesive, the coloring materials, and also the metal. This not only ultimately destroys the yarn but in the interim, it considerably reduces the decorative effect by causing bridging in the yarn, separation of the metal from the plastics and alteration of any dyestuff molecules which may have been applied.
The above-noted defects are particularly experienced when the metallic yarns are dyed. Dyes are commonly applied to color the clear polyester ply. Since the dyes are generally applied to the yarns in a carrier which is infused into the yarns under extreme pressure and/or heat to cause infusion, it is essential to have an adhesive which is capable of withstanding such infusion while retaining its adhesive characteristics.
The method of applying dyes is particularly important since they are generally applied in solutions which may be heated to high temperatures and they may be applied under conditions of increased pressure. Under conventional dyeing techniques the previously produced metallic laminated yarns are unfavorably affected by the chemicals in the dyeing bath as well as by the high temperatures and pressures necessary to infuse the dye into the transparent films. Typically, the dyed yarns exhibit modified chemical and physical properties including bridging, delamination, and demetallization.
From the above-discussion, it is apparent that laminated metallic yarns must be capable of withstanding the conditions experienced during dyeing and must withstand cleaning solvents, heat and pressure while retaining a decorative effect and integral structure.
In view of the above-noted requirements and the deficiencies in presently existing laminated metallic yarns, it is a primary object of this invention to provide a laminated metallic yarn capable of withstanding degradation during dyeing and during use.
It is a more specific object of this invention to provide metallic yarns capable of withstanding the infusion of dyestuffs during pressure dyeing, high temperature dyeing or low temperature dyeing with carriers.
It is a further object of this invention to provide a process of producing the subject yarn.
Briefly described, this invention comprises laminating the metal-coated faces of transparent films by use of an adhesive system comprising a copolymer of a major portion of polyethylene and a minor portion of a modifying comonomer. Other aspects of the invention include the application of such adhesives as a dispersion wherein a suitable proportion of stabilizer and modifiers are present or, alternatively, applying a film of the desired polyethylene copolymer. In the latter case, it is frequently necessary to apply after-treatment to the laminated film comprising electron radiation or thermal treatment to improve the integrity of the yarn.
These and other objects and advantages of the invention will be better understood from reference to the following detailed description and the accompanying drawings wherein:
FIG. 1 is a schematic drawing illustrating a process of producing the subject yarn;
FIG. 2 is a longitudinal-sectional view of the yarn produced by the process of FIG. 1 and;
FIG. 3 is a cross-sectional view of the yarn of FIG. 2.
Referring to FIG. 1, the process of the present invention is seen to comprise providing a first web 2 of clear plastic having ametallic coating 3 on its lower surface, passing that web through coating rollers 8 such as those used in rotogravure printing, adapted to apply an adhesive dispersion 4 thereto, passing the coated web through a pre-drying oven 12 to evaporate solvent contained in adhesive 4, and then through heated pressure rolls 14 one roll being metal and the other rubber, wherein a second clear plastic layer 2,'with metallic coating 3 on its upper surface, is laminated thereto. The laminate is thereafter slit in a slitting device 18 and wound up on roller 20.
Referring to FIGS. 2 and 3, the yarn is seen to comprise twoouter transparent plastic layers 2 having metallic surface coatings 3 and an inner clear plastic adhesive coating 4. As was previously mentioned, the adhesive 4 may, insome instances, comprise a film. In such cases it is sometimes necessary to after-treat the laminated yarn in order to ensure and improve the adhesion of the yarn. The preferred after-treatment involves electron-irradiation before slitting although thermal techniques before slitting have also been used. In such a process the schematic representation shown in FIG. 1 would be modified by elimination of the adhesive tank 7, coating rollers 8 and pre-drying oven 12.'In their place, a roll of adhesive film 4 would be supplied with suitable feed means to supply the adhesive film between the two one side metallized polyester layers 2. Additionally, the schematic would be modified by inserting an after-treating irradiator or ven'15 between laminating roller 14 and slitter l8. v
The lamination technique involves applying adhesive to the clear plastic layers which have previously been coated by vapor deposition or other conventional techniques with a metal, particularly aluminum, gold or silver. The films may be metallized in a high vacuum metallizer as by the processset out in US. Pat. No. 2,974,055 wherein gold, silver, aluminum, magnesium, titanium, nickel, etc. are applied by vapor deposition in thicknesses under about l/50,000 of an inch.
The exact processing technique will be varied somewhat depending upon the form of the adhesive which is used,that is, whethera film or dispersion is utilized.
A suitable rate of travel of film during the processing steps shown in FIG. 1 is on the order of 100 to 175 feet pressure which can vary from about 0.1 to 65 pounds.
per inch of film width depending on the type of adhesive used. The slitter 18 is provided after the point of lamination and generally comprises a knife which slits the film in desired widths.
One problem in the processing of the laminated yarns is to maintain proper tension at the point of lamination in order to avoid bridging in the fibers. Equal tension in bothwebs is required to avoid such conditions. Bridging relates to the joining of the two materials which may occur when improper tension is provided or when one layer contracts more than the other, causing the first layer to buckle and bridge.
When using an adhesive dispersion the laminating rolls can be heated to about 160 C. and the nip pressure will be about 0.1 pound per inch of film width.
In the case of the alternate use of a polyethylene film, the laminating techniques would be generally the same with the pressure rolls maintained at l30l C. and at a pressure of 64 pounds-per inch for a process speed of 130 feet per minute. In this embodiment the aftertreater 15 is used instead of pre-heater 12. In the case of thermal treatment, a heat treatment for 20-120 seconds at 160l80 C. sufiices to obtain a pressure dyeable yarn. In the case of electron radiation, a level of 2 to 32 mrads. is suitable, with the preferred dose being above 8 mrads. The radiation is achieved with conventional techniques and apparatus.
As noted above, the yarn, according to this invention, is receptive to dispersed dyestuffs such as acetate dyes while retaining its resistance to degradation due to such agents as the chemicals, temperatures and pressures, experienced during dyeing.
The yarns, are dyed with a number of different types of dyes in either the tone-on-tone or cross dyeing techniques by use of high temperature or low temperature processes. Dispersed dyes are particularly adapted for use with this invention and when the yarns of this invention are interwoven with other threads, for example, cotton or rayon, the cross dyeing technique may be utilized. That is, the woven fabric is first dyed with colors which are picked up by the laminated threads and then cleared with a suitable solution such as sodium hydrosulfite followed by application of dyestuffs which are reactive to or attracted to the other threads in the fabric. These techniques and processes of dyeing and the particular dyestuffs will vary with the intended use and characteristics of the ultimate fabric but the yarns of this invention are adapted for use in all such processes. I
In applying the dyes, generally, the methods available can be characterized as low temperature processes and high temperature processes. In each of these processes, the laminated yarn is subjected to the potentially detrimental effect of the dye solution. It is found that the adhesive of this invention resists all such processes and is adapted for particular use with the normally troublesome dyeing processes.
When using certain polyesters, for example, Melinex'S,
which is a commercially available clear polyester material, the temperature at lamination should not exceed 180 C. since at this temperature, the shrinkage characteristics of the polyester film produce undesirable characteristics in the ultimate yam.
If a dispersion is used it is necessary to remove the solvent and dispersing medium prior to lamination. This is preferably conducted in an air-type oven (12) wherein hot air (80l20 C is applied to the surface of the coated film. Passage through the air oven is part of a continuous process and in a typical process, the material will reside in the oven for only about 20 seconds. This dwell time will clearly vary with the film speed through the process.
A considerable range of shades can be. achieved dyes applied in the presence of substantial quantities of carriers (low temperature dyeings), the carriers must swell the polyester and not substantially affect the adhesive.
The clear plastic films '2 utilized are preferably polyester materials which are clear, that is, transparent or translucent. The use of clear outer layers allows the maximum utilization'of the decorative effects of the metallic coating and any subsequently applied dyestuffs which are present in the clear plastic layers. The combined effect of dyes and metallic coatings give a colorful glittering appearance .to the ultimate yarn and fabric. Suitable plastic films 2 are orientedpolyesters, for example, polyethylene terephthalate or other clear films which may be oriented or unoriented. Particular reference is made to .Terphane produced by La Cellophane and Melinex-S, both of which are commercially available clear polyester films. The essential characteristic of the outer layer films 2 is that they be clear and be adapted to receive a metallic coating 3 and a dyestuff. The films may be any suitable size with the preferred film being 40 inches in width and'approximately 25-100 gauge.
Generally, no adhesive primer is required on the metallized film, however, if desired, conventional primers for the subject adhesives can be applied.
The adhesive of this invention is preferably applied as a dispersion in order to reduce the ultimate thickness of the yarn. The quantity of the adhesive applied is on the order of 0.15 to 1.2 g/m preferably 0.3 glm The adhesive material is a copolymer. containing at least about 75 percent and preferably about 92 percent polyethylene which contains as comonomer a material selected from the group consisting of acrylic acid, methacrylic acid and the acrylate monomers, particularly, ethyl acrylate and isobutyl acrylate; copolymers includes terpolymers of these materials. These copolymers are prepared by conventional techniques which are clearly available to those skilled in the art. The preferred range of comonomer is from 4 to 12 percent especially 8 percent of the total and the preferred comonomer is acrylic acid. When such adhesive is applied from a dispersion, it is generally necessary to add a stabilizer such as a detergent, a nitrile rubber, a vinyl monomer or a modified vinyl monomer containing carboxy or hydroxy groups. The polyethylene conolymer is dissolved in a chlorinated hydrocarbon solvent and is then dispersed in a solution of the stabilizer in, for example, methyl ethyl ketone and this combination is utilized as the adhesive dispersion 4. The stabilizer works as a dispersing agent for the polyethylene copolymer and has a beneficial influence on the chemical resistance of the yarns.
Preferred stabilizers for the polyethylene copolymer are the polyvinyl chloride-polyvinyl acetate copolymers modified with hydroxyl groups and commercially known as VAGI-I produced by Union Carbide. An alternative is a polyvinyl chloride-polyvinyl acetate copolymer known as VYHH also produced by Union Carbide. Additionally, VMCH another polyvinyl chloride-polyvinyl acetate copolymer produced by Union Carbide can be used. It can generally be said that any vinyl resin and/or detergent can be used as the stabilizer of this invention. Epoxy and isocyanate resins and silicone compounds are also effective. These components are present in about 0.05 to 1.5 percent weight.
To the resin and stabilizer dispersion may be added conventional modifiers and additives to effect the characteristics of the adhesive. The dispersion is applied in a thin layer since thin coatings improve the resistance to deterioration in the yarn.
Instead of using the dispersion of polyethylene copolymer it is possible, although not preferred, to use films of the polyethylene copolymer. These are commercially produced by conventional extrusion techniques or by blow molding from the reaction product of the polyethylene and comonomer. In this case, there is no necessity to add a stabilizer or modifi- The yarns produced by the slitter are from about l/l00 inch to one-fourth inch in width. The exposed parts of adhesive and metal seen in FIG. 3 are on the -0 undamaged returnable cardboard tubes or cones which contain about 7 ounces, 200 grams, of yarn or they may be packaged on a plastic non-returnable spool containing about 5.5 ounces (150 grams) of yarn. The yarns may be supported (combined with nylon monofilaments) or unsupported and can be wound as single strands or as tow.
The yarns produced show very good properties having typically a strength of -100 gm, an extensability of and a yield force of 50 gm. In addition, they are soft and have good handle making them easy to wind and to use in mechanical knitting 0 weaving machine's without physical breaking or cracking.
The processes of dyeing described above serve as tests for the effectiveness of the inventive yarns, since most laminated metallic yarns will not withstand the dyeing processes. The subject yarns can also be tested by the standard boil test. These tests are used in the examples and may briefly be described as follows.
The high temperature dyeing test involves use of temperatures of about 125 C., or when high pressure is applied a temperature of about C. can be used. A dye in quantities of about 5-10 percent and a liquor ratio 1:200 containing minor portions (less than 0.05 g/l) of a conventional carrier such as a diphenyl emulsion is used and adjusted to a pH of 57 with 30 percent acetic acid. Dye and liquor ratio are known textile terms. Percent relates to dye/fabric ratio and liquor ratio to fabric/liquor ratio. Commercial processes use normally between 0.1-5 percent dye and liquor ratio of approximately 1:40. The yarn is boiled at indicated temperature for 1-2hours.
The low temperature dyeing test involves similar conditions with a temperature of 100 C. with about 10 percent dye and liquor ratio 1:500 containing about 3-4- g/l carrier and having apl-l of 6-6.5. The yarn is boiled for about 1 hour.
The standard soap boil test involves immersion of a yarn in aqueous solutions containing about 5 grams soap (LUX) per liter (pH about 9) at 100 C.for 2 hours. This test gives an indication of the alkali resistance of the yarn.
To indicate the effectiveness of a given yarn in surviving the above tests observations of the chemical deterioration, bridging, delamination, and demetallizing are made and .reported in the examples according to the following scale.
Bridging & Delamination Chemical Attack Demetallizing 0 undamaged .1 very slight 1 slight briding damage 2 moderate bridging metallized 2 slight damage or very slight 2 3-10% 3 moderate delamination 3 l0-30% damage 3 slight delamination 4 30 60% 4 severe damage 4 severe bridging or 5 60% 5 extreme moderate delaminadamage tion 5 severe bridging &
delamination EXAMPLE 1 Ethylene, acrylic acid and a solvent were fed continuously at rates respectively of 10.01, 0.01 and 2.70 pounds per hour into and through a two liter stirred autoclave maintained at a temperature of 140-150 C. and a pressure of 1,450 atmospheres. Azo-bis-isobutyronitrile initiator was also fed continuously at a rate equivalent to about 0.8 pounds per 1,000 pounds of polymer product. The residence time in the autoclave was about minutes. The reaction mixture continuously removed from the autoclave was stripped of unpolymerized monomers and solvents under reduced pressure at elevated temperature. After operations had reached a steady state the conversion of monomers to copolymer was 12.4 percent, thecopolymer had a melt index of 40 and contained about 92 percent ethylene and 8 percent acrylic acid. Melt index is determined by ASTM testmethod D 1238-52T (ASTM Standards, 1955, Part 6, pages 292 to 295) and melt index is a well recognized determination of molecular weight.
EXAMPLE 2 Fifteen Parts copolymer of Example 1 is dissolved in 300 parts perchlorethylene (temperature 100-120 C.) with stirring. Initially the polymer floats on the perchlorethylene and forms a thick gelly. This has to be broken up with continuous stirring until the copolymer is dissolved.
Five Parts Hycar 1022 15 percent solution in toluene are dissolved in ZOO-parts methyl ethyl ketone.
The hot perchlorethylene containing dissolved copolymeris poured into the diluted Hycar solution in methyl ethyl ketone at room temperature. High speed stirring is utili'zeduntil a good dispersion results. The dispersion is cooled to room temperature and placed in a fountain of a rotogravure printing press.
EXAMPLE 3 (A) Metallic yarns were produced by coating a 25 gauge, 40 inch width clear polyethylene terephthalate film containing a vapor deposit of aluminum on one side with a solution prepared according to Example 2. The composition was applied to the metallized side of one film by rotogravure printing in a thickness of about 1.0 glm The coated film was passed at an approximate speed of 125 feet per minutethrough an air oven containing heated air at approximately 8090 C. The film was then passed through rollers maintained at 170 C. and a second like film of polyethylene terephthalate was brought into contact with the coated surface of the initial film. After passing through the laminating rollers maintained at a nip pressure of about 0.1 pounds per inch film width, the films were passed into contact with a rotating cutter having a series of knives adapted to produce filaments from 0.07 to 0.25' inches in width.
The process of Example 3(A) was repeated with the following modifications:
B. repeated using VMCH instead of Hycar 1022;
C. repeated using VAGH instead of Hycar 1022;
D. repeated using VYHH instead of Hycar 1022;
E. repeated using 0 percent stabilizer;
F. repeated using 0.08 percent Hycar 1022 and coating to a thickness of 0.3 g/m;
G. repeated using 1.5 percent Hycar 1022 and coating to a thickness of 1.2 g/m;
H,. repeated using 4 9% percent acrylic acid as comonomer;
. 1. repeated using 26.8 percent acrylic acid as comonomer;
.l. repeated using 11.8 percent methacrylic acid as comonomer;
K. repeated using 9 V1 percent acrylic acid and 19.2 percent isobutyl acrylate as comonomers; and
L. repeated using 9.8 percent acrylic acid and 9.0 percent ethyl acrylate as comonomers.
EXAMPLE 4 Instead'of the dispersion used in Example 2 and 3, the copolymer of Example 1 was formed by blow-molding into a film approximately 0.40 inches wide and 25 gauge. This adhesive film was run between the metallized surfaces of two aluminum coated polyethylene terephthalate films and the composite was passed through laminating rollers maintained at C. with a pressure of 0.1 pounds per inch at about 130 feet per minute. The resulting laminate was divided into a series of portions treated as follows:
A. A first portion was slit without irradiation.
B. A second portion was irradiated at 4 mrads prior to slitting.
C. A third portion was irradiated at 8 mrads, prior to slitting.
D. A fourth portion was irradiated at 32 mrads, prior to slitting.
E. A fifth portion was heat-treated in an oven for 27 seconds at 180 C. prior to slitting.
F. A sixth portion was heat-treated in a oven for l l 1 seconds at 180 C.
G. A seventh portion was heat-treated in an oven for 27 seconds at ,1 60 C.
H. An eighth portion was heat-treated in an oven for 68 seconds at C.
EXAMPLE 5 Samples of the yarns produced above in 3 (A)-(D) were dyed by the low temperature technique described above by immersing them in a carrier solution of a dyestuff at 98 to 100 C. for 1 hour, after dyeing the yarns are boiled for one-half hour in an alkaline solution at 100 C. (5 gm Lux per liter).
The results of the dyeing are as follows:
3 (A) 2/1/1 (B) 2/1/1 (C) 2/1ll (D) 2/l/l The function of the carrier is to accelerate difusion of the dye in the polyester. However, the carrier not only swells the polyester but alsodifujses into the adhesive and, therefore, low temperature dyeing is more critical than high temperature dyeing. Suitable dispersed dyes are those .producedcommercially by Geigy Laboratories under the names Setacyl and Gycoluce. In the following examples the only modification of the basic low temperature dyeing 'hrocess is in the use of a particular carrier.
E. As a carrier diphenyl emulsions are utilized which are commercially available from [C1, Tanatex, and Hoechst.
F. The carrier used is a chlorinated aromatic com mercially available from BASF and CIBA. In the above examples, Examples SA-D produced acceptable dyed yarns whereas Examples 5E and SF produced unacceptable yarns. The results are tabulated below using the testing scale described above:
5A 2/1/1 5B 0/ l /2 5E Complete Delamination 5F Complete Delamination.
EXAMPLE 6 High temperature dyeing with dispersed dyestuff at l20l25 C. as described above were also conducted on the above-produced yarns 4A-H, 3A-D and 3H-L with dyed products being produced as follows:
A high temperature-high pressure dye test was conducted wherein the yarns as produced above of Examples 4A-D and 3E-G were subject to a liquor containing dispersed dyestuffs in quantities of 5-10 percent in a l-200 ratio with 0.025 grams per liter, carrier (Tumasol D produced by ICI) at a pH of 5-5.5 for 2 hours at 120-l25 C. in a pressure cooker. The resulting dyed yarns were then subjected for a half hour to the action of a boiling medium (100 C.) containing 5 grams of Lux soap per liter. The results are as follows:
4A Unsatisfactory 4B Unsatisfactory 4C Good 1 4D Good 3 Unsatisfactory EXAMPLE 8 The standard boil test was conducted on the yarns of Examples 4A-H and 3AL, the following results were achieved:
4B Unsatisfactory 4C Unsatisfactory 4D Unsatisfactory 4E 0/2/0 3G Unsatisfactory 3H 1 l /2 3K Unsatisfactory 3L 2/2/1 From the above examples it is clear that the yarns produced with the novel adhesive 'of this invention exhibit the ability to withstand dyeing under low temperature, or hightemperature techniques and additionally, the dyed yarns resist the action of solvents, soaps and boiling mediums generally. No delamination,'demetallization or susceptability to chemical attack is appreciable when using the preferred embodiments of the invention except in the case of low temperature dyeings with some carriers. The materials can be hand and machine washed without detrimental effect and ironed or subjected to dry cleaning techniques without detrimentally affecting the properties.
While the above description is given for the purpose of illustrating the invention, what is intended to be protected is defined in the following claims.
What is claimed is: a
l. A laminated yarn consisting essentially of two webs of transparent thermoplastic material each having an internal side coated with a metal deposit and said webs having sandwiched therebetween a polyethylene copolymer adhesive, particularly adapted to resist corrosion which would result in delamination in the presence of chemical baths, said polyethylene copolymer comprising at least about ethylene and not more than 15 percent of at least one member selected from the class consisting of acrylic acid, methacrylic acid, isobutyl acrylate and ethyl acrylate, wherein said polyethylene copolymer is dispersion coated.
2. The yarn of claim 1 wherein said transparent thermoplastic material has been dyed.
3. The yarn of claim 1 wherein said member is present in an amount of about 8 percent.
4. The yarn of claim 1 wherein said adhesive is present in a quantity of approximately 0.3 grams per square meter.
5. The yarn of claim 1 wherein said polyethylene copolymer comprises about 92 percent ethylene and about 8 percent acrylic acid as comonomer.

Claims (4)

  1. 2. The yarn of claim 1 wherein said transparent thermoplastic material has been dyed.
  2. 3. The yarn of claim 1 wherein said member is present in an amount of about 8 percent.
  3. 4. The yarn of claim 1 wherein said adhesive is present in a quantity of approximately 0.3 grams per square meter.
  4. 5. The yarn of claim 1 wherein said polyethylene copolymer comprises about 92 percent ethylene and about 8 percent acrylic acid as comonomer.
US3702053D 1969-12-18 1969-12-18 Metallic yarn Expired - Lifetime US3702053A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88624769A 1969-12-18 1969-12-18

Publications (1)

Publication Number Publication Date
US3702053A true US3702053A (en) 1972-11-07

Family

ID=25388697

Family Applications (1)

Application Number Title Priority Date Filing Date
US3702053D Expired - Lifetime US3702053A (en) 1969-12-18 1969-12-18 Metallic yarn

Country Status (1)

Country Link
US (1) US3702053A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010751A (en) * 1995-03-20 2000-01-04 Delta V Technologies, Inc. Method for forming a multicolor interference coating
EP1312705A1 (en) * 2000-06-19 2003-05-21 Tri-Thechs Inc. Yarn having laminated structure
US20040224586A1 (en) * 2000-05-02 2004-11-11 Michiko Omori Glitters and cloth
US6925965B1 (en) * 2004-07-28 2005-08-09 Nite Glow Industries, Inc. Omnidirectional reflective pet leash
US20050183251A1 (en) * 2004-02-17 2005-08-25 Jian-Min Lin Textile with transparent light structure and heat-insulating construction and method of manufacturing the same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2974055A (en) * 1956-06-18 1961-03-07 Metal Film Company Inc Lustrous fabrics and methods of producing same
US3147582A (en) * 1963-01-22 1964-09-08 Walter G Scharf Method of producing multi-colored flat yarns
US3170833A (en) * 1961-03-02 1965-02-23 Du Pont Adhesive compositions and laminates prepared therefrom
US3329547A (en) * 1963-04-15 1967-07-04 Denenberg Maurice Method and apparatus for making a laminate with unbonded edge
US3411419A (en) * 1966-02-16 1968-11-19 Reynolds Metals Co Method of making a container having multilayer wall means
US3424638A (en) * 1964-11-02 1969-01-28 Grace W R & Co Chemical process
US3471357A (en) * 1960-07-28 1969-10-07 Minnesota Mining & Mfg Protective film,method of adhesively securing it to a paper base and resulting laminate
US3480506A (en) * 1964-08-20 1969-11-25 Dow Chemical Co Wood laminated with a modified ethylene polymer and a polyalkylene imine
US3515615A (en) * 1964-09-05 1970-06-02 Sumitomo Bakelite Co Method for bonding synthetic resin sheets and metal sheets
US3528877A (en) * 1967-06-22 1970-09-15 Walter G Scharf Laminated plastic metallized yarn and method for forming and dyeing the same

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2974055A (en) * 1956-06-18 1961-03-07 Metal Film Company Inc Lustrous fabrics and methods of producing same
US3471357A (en) * 1960-07-28 1969-10-07 Minnesota Mining & Mfg Protective film,method of adhesively securing it to a paper base and resulting laminate
US3170833A (en) * 1961-03-02 1965-02-23 Du Pont Adhesive compositions and laminates prepared therefrom
US3147582A (en) * 1963-01-22 1964-09-08 Walter G Scharf Method of producing multi-colored flat yarns
US3329547A (en) * 1963-04-15 1967-07-04 Denenberg Maurice Method and apparatus for making a laminate with unbonded edge
US3480506A (en) * 1964-08-20 1969-11-25 Dow Chemical Co Wood laminated with a modified ethylene polymer and a polyalkylene imine
US3515615A (en) * 1964-09-05 1970-06-02 Sumitomo Bakelite Co Method for bonding synthetic resin sheets and metal sheets
US3424638A (en) * 1964-11-02 1969-01-28 Grace W R & Co Chemical process
US3411419A (en) * 1966-02-16 1968-11-19 Reynolds Metals Co Method of making a container having multilayer wall means
US3528877A (en) * 1967-06-22 1970-09-15 Walter G Scharf Laminated plastic metallized yarn and method for forming and dyeing the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010751A (en) * 1995-03-20 2000-01-04 Delta V Technologies, Inc. Method for forming a multicolor interference coating
US6264747B1 (en) * 1995-03-20 2001-07-24 3M Innovative Properties Company Apparatus for forming multicolor interference coating
US20040224586A1 (en) * 2000-05-02 2004-11-11 Michiko Omori Glitters and cloth
EP1312705A1 (en) * 2000-06-19 2003-05-21 Tri-Thechs Inc. Yarn having laminated structure
US20030148118A1 (en) * 2000-06-19 2003-08-07 Michiko Omori Yarn having laminated structure
EP1312705A4 (en) * 2000-06-19 2005-06-22 Tri Thechs Inc Yarn having laminated structure
US20050183251A1 (en) * 2004-02-17 2005-08-25 Jian-Min Lin Textile with transparent light structure and heat-insulating construction and method of manufacturing the same
US7481251B2 (en) * 2004-02-17 2009-01-27 China Textile Institute Textile with transparent light structure and heat-insulating construction and method of manufacturing the same
US6925965B1 (en) * 2004-07-28 2005-08-09 Nite Glow Industries, Inc. Omnidirectional reflective pet leash

Similar Documents

Publication Publication Date Title
US3233019A (en) Process of multiple neck drawing while simultaneously infusing modifying agent
US3775150A (en) Method of coating polyester filaments and resultant product
US2955958A (en) Process of treating woven textile fabric with a vinyl chloride polymer
US3102323A (en) Textile
US3049443A (en) Process of dyeing synthetic fibers with o-hydroxybenzophenones
US2974055A (en) Lustrous fabrics and methods of producing same
US3702053A (en) Metallic yarn
US3044891A (en) Textile sheet material and process for producing same
US3793425A (en) Coating process for polyester substrates
US3512913A (en) Dyeing polyethylene terephthalate film
EP0281066B1 (en) Resin treatment of deep-coloured fibres
US3528877A (en) Laminated plastic metallized yarn and method for forming and dyeing the same
US4044189A (en) Surface treated polyester substrates
US3885015A (en) Method of processing a heat-shrinkable sheet-like material
US6500776B2 (en) Blanket substrate and blanket
US7399509B2 (en) Thin polyethylene pressure sensitive labels
DE60036686T2 (en) Laminated base film for a thermal transfer recording medium
CA1327727C (en) Mesh fabric useful for a printing screen
US3311486A (en) Multi-colored metallized threads
US2577846A (en) Process for dyeing vinyl resin textile articles
US3000775A (en) Sheathed polyester laminates
El‐Halwagy et al. Sublimation transfer printing of cotton and wool fabrics
JP3229656B2 (en) Metallic slit yarn for post-dyeing, twisted yarn or spun yarn using the same, and fiber product using the same
US2313726A (en) Dye-resistant coating composition
US4247658A (en) Surface treated polyester substrates