US3700778A - Insecticidal composition containing trifluoromethyl substituted benzanilides and method of using the same - Google Patents

Insecticidal composition containing trifluoromethyl substituted benzanilides and method of using the same Download PDF

Info

Publication number
US3700778A
US3700778A US57790A US3700778DA US3700778A US 3700778 A US3700778 A US 3700778A US 57790 A US57790 A US 57790A US 3700778D A US3700778D A US 3700778DA US 3700778 A US3700778 A US 3700778A
Authority
US
United States
Prior art keywords
trifluoromethyl
compound
accordance
insecticidal composition
compounds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US57790A
Inventor
Harry L Hyndman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Co
Original Assignee
Monsanto Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Co filed Critical Monsanto Co
Application granted granted Critical
Publication of US3700778A publication Critical patent/US3700778A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N37/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
    • A01N37/18Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof
    • A01N37/22Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing the group —CO—N<, e.g. carboxylic acid amides or imides; Thio analogues thereof the nitrogen atom being directly attached to an aromatic ring system, e.g. anilides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C233/00Carboxylic acid amides

Definitions

  • ABSIRACT 58 Field of Search ..424/324 Insectici al compositions and methods utilizing benzanilides having a trifluoromothyl group on either of the benzene rings.
  • This invention relates to insecticidal compositions and methods utilizing a trifluoromethyl substituted benzanilide of the formula wherein m, n, p, and q are integers from to 2, inclusive, with one and only one of m and n being greater than 0, and R and R are halo or nitro.
  • Representative compounds used in accordance with the present invention include:
  • insect is used to refer not only to those small invertebrate animals belonging mostly to the class lnsecta, comprising six-legged, usually winged forms, as beetles, bugs, bees, flies, and so forth, but also to other allied classes of arthropods whose members are wingless and usually have more than six legs, as spiders, mites, ticks, centipedes, and wood lice.
  • 3'-trifluoromethyl-3,4- dichlorobenzanilide has a rat acute oral minimum lethal dose greater than 5,010 mg./kg. of body weight and a rabbit acute dermal minimum lethal dose greater than 631 mg./kg. of body weight.
  • a growth pouch (diSPo Seed-Pak growth pouch, Catalogue No. B1220, of Scientific Products Division of American Hospital Supply Corporation, Evanston, Illinois) in an upright position is added 20 ml. of distilled water. Thereafter is added 0.1 ml. of an acetone solution of known concentration in percent by weight of a compound of this invention (for example an 0.1 ml. of an 0.1 percent by weight acetone solution of the compound provides a concentration of 5.0 ppm. thereof while 0.1 ml. of an 0.02 percent by weight acetone solution of the said compound provides a concentration of 1.0 ppm. thereof).
  • a growth pouch DiSPo Seed-Pak growth pouch, Catalogue No. B1220, of Scientific Products Division of American Hospital Supply Corporation, Evanston, Illinois
  • 0.1 ml. of an acetone solution of known concentration in percent by weight of a compound of this invention for example an 0.1 ml. of an 0.1 percent by weight acetone solution of the compound provides a concentration of 5.0
  • the compounds of this invention are useful per se in controlling a wide variety of insect pests, it is preferable that they be supplied to the pests or to the environment of the pests in a dispersed form in a suitable extending agent.
  • dispersed is used herein in its widest possible sense. When it is said that the compounds of this invention are dispersed, it means that particles ofthe compounds may be molecular in size and held in true solution in a suitable organic solvent. It means further, that the particles may be colloidal in size and distributed throughout a liquid phase in the form of suspensions or emulsions or in the form of particles held in suspension by wetting agents. It also includes particles which are distributed in a semi-solid viscous carrier such as petrolatum or soap or other ointment base in which they may be actually dissolved in the semi-solid or held in suspension in the semi-solid with the aid of suitable wetting or emulsifying agents. The term dispersed also means that the particles may be mixed with and distributed throughout a solid carrier providing a mixture in particulate form, e.g., pellets,
  • dispersed also includes mixtures which are suitable for use as aerosols including solutions, suspensions, or emulsions of the compounds of this invention in a carrier such as dichloro-difluoromethane and the like fluorochloroalkanes which boil below room temperature at atmospheric pressure.
  • a carrier such as dichloro-difluoromethane and the like fluorochloroalkanes which boil below room temperature at atmospheric pressure.
  • the expression extending agent as used herein includes insecticidal adjuvants and any and all of the substances in which the compounds of this invention are dispersed. It includes, therefore, the solvents of a true solution, the liquid phase of suspensions, emulsions or aerosols, the semi-solid carrier of ointments and the solid solids, of particulate solids. e.g., pellets, granules, dusts and powders.
  • concentration of the compounds of this invention employed in combatting or controlling insect pests can vary considerably provided the required dosage (i.e., toxic or lethal amount) thereof is supplied to the pests or to the environment of the pests.
  • the extending agent is a liquid or mixture of liquids (e.g., as in solutions, suspensions, emulsions, or aerosols) the concentration of the active compound employed to supply the desired dosage generally will be in the range of 0.0001 to 95 percent by weight.
  • concentration of the compound employed to supply the desired dosage generally will be in the range of 0.1 to 80 percent by weight.
  • the manufacturer must supply the user with a concentrate in such form that, by merely mixing with water of solid extender (e.g., powdered clay or talc) or other low-cost material available to the user at the point of use, he will have an easily prepared insecticidal spray or particulate solid.
  • solid extender e.g., powdered clay or talc
  • the compound In such a concentrate composition, the compound generally will be present in a concentration of 5 to 95 percent by weight, the residue being any one or more of the well-known insecticidal adjuvants, such as the various surface active agents (e.g., detergents, a soap or other emulsifying or wetting agent), surface-active clays, solvents, diluents, carrier media, adhesives, spreading agents, humectants, and the like.
  • the various surface active agents e.g., detergents, a soap or other emulsifying or wetting agent
  • surface-active clays e.g., solvents, diluents, carrier media, adhesives, spreading agents, humectants, and the like.
  • the compounds of this invention are preferably supplied to the insect pests or to the environment of the insect pests in the form of emulsions or suspensions.
  • Emulsions or suspensions are prepared 'by dispersing the compounds either per se or in the form of an organic solution thereof in water with the aid of a watersoluble surfactant.
  • surfactant as employed herein is used as in volume II of Schwartz, Perry and Berchs Surface Active Agents and Detergents 1958, Interscience Publishers Inc., New York) in place of the expression emulsifying agent to connote generically the various emulsifying agents,
  • dispersing agents wetting agents, and spreading agents that are adapted to be admixed with the active compounds of this invention in order to secure better wetting and spreading of the active ingredients in the water vehicle or carrier in which they are insoluble through lowering the surface tension of the water (see also Frear Chemistry of Insecticides, Fungicides and Herbicides, second edition, page 280).
  • surfactants include the well-known capillary-active substances which may be anionic, cationic, or non-ionic which are described in detail in volumes I and II of Schwartz, Perry and Berchs Surface Active Agents and Detergents (1958, Interscience Publishers, Inc., New.
  • the disclosures of these articles with respect to surfactants are incorporated in this specification by reference in order toavoid unnecessary enlargement of this specification.
  • the preferred surfactants are the water-soluble anionic and non-ionic surface-active agents set forth in U.S. Pat. No. 2,846,398 (issued Aug. 5, 1958). In general, a mixture of water-soluble anionic and water-soluble nonionic surfactants is preferred.
  • the compounds of this invention can be dispersed by suitable methods (e.g.,tumbling or grinding) in solid extending agents either of organic or inorganic nature and supplied to the insect pests environment in particulate form.
  • solid materials include for example, tricalcium phosphate, calcium carbonate, kaolin, bole, kieselguhr, talc, bentonite, fullers earth, pyrophillite, diatomaceous earth, calcined magnesia, volcanic ash, sulfur and the like inorganic solid materials as well as organic materials such as powdered cork, powdered wood, and powdered walnut shells.
  • the preferred solid carriers are the adsorbent clays, e.g., bentonite.
  • the dry particulate solids can be rendered wettable by water so as to obtain stable aqueous dispersions or suspensions suitable for use as sprays.
  • the compounds of this invention can be dispersed in a semi-solid extending agent such as petroleum or soap (e.g., sodium stearate or oleate or palmitate or mixtures thereof) with or without the aid of solubility promoters and/or surfactants or dispersing agents.
  • a semi-solid extending agent such as petroleum or soap (e.g., sodium stearate or oleate or palmitate or mixtures thereof) with or without the aid of solubility promoters and/or surfactants or dispersing agents.
  • the dispersions can be provided ready for use in combatting insect pests or they can be provided in a concentrated form suitable for mixing with or dispersing in other extending agents.
  • a particularly useful concentrate is an intimate mixture of a compound of this invention with a water-soluble surfactant in the weight proportions of 0.1 to 15 parts of surfactant with sufficient insecticide of this invention to make parts by weight.
  • Such a concentrate is particularly adapted to be made into a spray for combatting various forms of insect pests by the addition of water thereto.
  • Another useful concentrate adapted to be made into a spray for combatting a variety of insect pests is a solution (preferably as concentrated as possible) of a compound of this invention in an organic solvent therefor.
  • the said liquid concentrate preferably contains dissolved thereina minor amount (e.g., 0.5 to percent by weight of the weight of the new insecticidal agent) of a water-soluble surfactant (or emulsifying agent).
  • Emulsifiable concentrates of this general type are particularly well adapted for use as sheep and cattle dips in the control of animal parasites.
  • a compound of this invention in preparing such dips, a compound of this invention is dissolved in a water-immiscible solvent system and a sufficient quantity of one or more emulsifying agents is added to insure the formation of a stable aqueous emulsion. Water is then added to the concentrate to form an emulsion containing from about 0.01 percent to about 0.5 percent of the active ingredient.
  • anionic and non-ionic surfactants are preferred.
  • anionic surfactants the particularly preferred are the well known water-soluble alkali metal alkylaryl sulfonates as exemplified by sodium decylbenzene sulfonate and sodium dodecylbenzene sulfonate.
  • non-ionic surfactants the particularly preferred are the water-soluble polyoxyethylene derivatives of alkylphenols (particularly isooctylphenol) and the water-soluble polyoxyethylene derivatives of the mono-higher fatty acid esters of hexitol anhydrides (e.g., sorbitan). These materials in general contain to 30 moles of ethylene oxide per mole of the hexitol anhydride or the alkylphenol.
  • compositions of this invention can also contain other additaments such as fertilizers and pesticides used as, or in combination with, the carrier materials.
  • the compounds of this invention are supplied to the insect pests or to their environment in a lethal or toxic amount.
  • This can be done by dispersing the new insecticidal agent or insecticidal composition comprising same in, on or over an infested environment or in, on or over an environment the insect pests frequent, e.g., agricultural soil or other growth media or other media infested with insect pests or attractable to the pests for habitational or sustenance or propagational purposes, in any conventional fashion which permits contact between the insect pests and the compounds of this invention.
  • Such dispersing can be brought about by applying sprays, dips or particulate solid compositions to a surface infested with the insect pests or attractable to the pests as for example, animals such as sheep and cattle, the surface of an agricultural soil or other media such as the above ground surface of plants by any of the conventional methods, e.g., power dusters, boom and hand sprayers, and spray dusters.
  • Such dispersing can be carried out by simply mixing the new insecticidal agent per se or insecticidal spray or particulate solid compositions comprising same with the infested environment or with the environment the insect pests frequent, or by employing a liquid carrier for the new insecticidal agent to accomplish subsurface penetration and impregnation therein.
  • a method of controlling insects which comprises exposing said insects to an insecticidally effective amount of a compound of the formula .EiQiif wherein m, n, p, and q are integers from 0 to 2, inclusive,.with one and only one of m and n being greater than 0, and R and R are bromo, chloro, iodo, fluoro or nitro.
  • An insecticidal composition comprising an inert,
  • p and q are integers from 0 to 2, inclusive, m is an integer from 1 to 2, inclusive, n is 0 and R and R are bromo, chloro, iodo, fluoro or nitro.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

Insecticidal compositions and methods utilizing benzanilides having a trifluoromethyl group on either of the benzene rings.

Description

United States Patent Hyndman Oct. 24,1972
[541 INSECTICIDAL COMPOSITION [56] References Cited CONTAINING TRIFLUOROMETHYL SUBSTITUTED BENZANILIDES AND UNHED STATES, PATENTS METHOD OF IN THE SAME 3,331,874 7/1967 Stecker ..'.424/324 x 3,407,056 10 1968 s n artz ..424 324x [721 Invent 3,459,534 8/1969 Diar f man et a1 ..424/324 x [73] Assignee: Monsanto Company, St. Louis, Mo.
[21] Appl. No.: 57,790 Attorney-Neal E. Willis, Paul C. Krizov and John J.
. Henschke, Jr.
[52] us. (:1. ..424/324 424/46, 424/357 51 Int. Cl. ..AOln 9/20 [57'] ABSIRACT 58] Field of Search ..424/324 Insectici al compositions and methods utilizing benzanilides having a trifluoromothyl group on either of the benzene rings.
16 Claims, No Drawings This invention relates to insecticidal compositions and methods utilizing a trifluoromethyl substituted benzanilide of the formula wherein m, n, p, and q are integers from to 2, inclusive, with one and only one of m and n being greater than 0, and R and R are halo or nitro.
These compounds are readily prepared in the conventional manner by the reaction of an appropriately substituted aniline with benzoic acid having appropriate substituents.
Representative compounds used in accordance with the present invention include:
3 -trifluoromethyl-3 ,4-dichlorobenzanilide 3-trifluoromethyl-4-chlorobenzanilide 3-trifluoromethyl-4'-fluorobenzanilide 2-trifluoromethyl-4-iodobenzanilide 4-trifluoromethyl-3 ,4 -dibromobenzanilide 3 ,5 -di-trifluoromethylbenzanilide 2-trifluoromethylbenzanilide 3-trifluorornethyl-4-nitrobenzanilide 3-trifluoromethyl-4-chloro-4'-fluorobenzanilide 3-trifluoromethyl-4-nitro-4'-nitrobenzanilide 3-trifluoromethyl-4-nitrobenzanilide 3 -trifluorom ethyl-3 ,4-dichlorobenzanilide 3 ,5 -di-trifluoromethyl-4 '-nitrobenzanilide 3 '-trifluoromethyl-3 ,4-dichlorobenzanilide 3 -trifluoromethyl-4 '-chlorobenzanilide 3 '-trifluoromethyl-4-iodobenzanilide 3 ,5 -di-trifluoromethylb enzanilide 3'-trifluoromethyl-4-nitrobenzanilide 3',5'-di-trifluoromethyl-4-nitrobenzanilide 3 '-trifluoromethyl-4-nitrobenzanilide The terms insect and insecticide are used herein in their broad common usage to include spiders, mites, ticks, and like pests which are not in the strict biological sense classed as insects. Thus, the term insect is used to refer not only to those small invertebrate animals belonging mostly to the class lnsecta, comprising six-legged, usually winged forms, as beetles, bugs, bees, flies, and so forth, but also to other allied classes of arthropods whose members are wingless and usually have more than six legs, as spiders, mites, ticks, centipedes, and wood lice.
The efficacy of the compounds of the present invention is definitely enhanced by their low mammalian toxicity. For example, 3'-trifluoromethyl-3,4- dichlorobenzanilide has a rat acute oral minimum lethal dose greater than 5,010 mg./kg. of body weight and a rabbit acute dermal minimum lethal dose greater than 631 mg./kg. of body weight.
In order to demonstrate the activity of the compounds of this invention against the yellow fever mosquito (Aedes egypti) early fourth instar mosquitoes were placed in diluent aqueous acetone solutions of the insecticide and maintained at about 80F for 24 hours. At a concentration of only 2 parts per million a 90 percent kill was obtained with 3-trifluoromethyl-3',4'- dichlorobenzanilide and at the same concentration, a 100 percent mortality rate was obtained with 3'- trifluoromethyl-3,4-dichlorobenzanilide.
The effectiveness of the compounds against the yellow fever mosquito is also illustrated by a standard life cycle test utilizing aqueous acetone solutions of the insecticides. At concentrations of 2 ppm., 100 percent mortality rates were observed with the following compounds of this invention:
3-trifluoromethyl-3',4-dichlorobenzanilide,
3,5-di-trifluoromethylbenzanilide,
3 '-trifluoromethyl-3 ,4-dichlorobenzanilide .and
3-trifluoromethyl-4-chloro-4-fluorobenzanilide In, addition, when using 3-trifluoromethyl-3,4-
dichlorobenzanilide, no pupation was observed at 0.2'
ppm. and no oviposition was observed at a concentration of 0.02 ppm.
The activity of these compounds against the corn rootworm is illustrated by the following:
To a growth pouch (diSPo Seed-Pak growth pouch, Catalogue No. B1220, of Scientific Products Division of American Hospital Supply Corporation, Evanston, Illinois) in an upright position is added 20 ml. of distilled water. Thereafter is added 0.1 ml. of an acetone solution of known concentration in percent by weight of a compound of this invention (for example an 0.1 ml. of an 0.1 percent by weight acetone solution of the compound provides a concentration of 5.0 ppm. thereof while 0.1 ml. of an 0.02 percent by weight acetone solution of the said compound provides a concentration of 1.0 ppm. thereof). In the trough of the pouch formed by the paper wick thereof are placed two corn seeds (Zea mays, Hybrid U.S. 13) about 1 inch apart. Thereupon to the trough and between the seeds are added eight to 12 ready-to-hatch eggs of the southern corn rootworm (Diabrotica undecimpunctata howardi), which eggs were washed (with distilled water) free of the soil in which they are incubated at room temperature for 3 days immediately prior to their placement in the trough. The so-charged growth pouch is then placed in an upright position in an incubator maintained at F and 70 percent relative humidity for 14 days. Immediately thereafter the growth pouches are removed and the extent of kill in percent of the particular species of corn rootworm larvae observed. At a concentration of 5 ppm. a percent kill was'obtained with 3'-trifluoromethyl-3,4-dichlorobenzanilide and a 30 percent kill with 3-trifluoromethyl-4- nitrobenzanilide at the same concentration. Also at concentrations of 5 ppm, a 100 percent kill was observed with 3-trifluoromethyl-4-chlorobenzanilide and a 20 percent mortality rate with 3'-trifluoromethyl-4- nitrobenzanilide.
Although the compounds of this invention are useful per se in controlling a wide variety of insect pests, it is preferable that they be supplied to the pests or to the environment of the pests in a dispersed form in a suitable extending agent.
The term dispersed is used herein in its widest possible sense. When it is said that the compounds of this invention are dispersed, it means that particles ofthe compounds may be molecular in size and held in true solution in a suitable organic solvent. It means further, that the particles may be colloidal in size and distributed throughout a liquid phase in the form of suspensions or emulsions or in the form of particles held in suspension by wetting agents. It also includes particles which are distributed in a semi-solid viscous carrier such as petrolatum or soap or other ointment base in which they may be actually dissolved in the semi-solid or held in suspension in the semi-solid with the aid of suitable wetting or emulsifying agents. The term dispersed also means that the particles may be mixed with and distributed throughout a solid carrier providing a mixture in particulate form, e.g., pellets,
.granules, powders, or dusts. The term dispersed also includes mixtures which are suitable for use as aerosols including solutions, suspensions, or emulsions of the compounds of this invention in a carrier such as dichloro-difluoromethane and the like fluorochloroalkanes which boil below room temperature at atmospheric pressure.
The expression extending agent as used herein includes insecticidal adjuvants and any and all of the substances in which the compounds of this invention are dispersed. It includes, therefore, the solvents of a true solution, the liquid phase of suspensions, emulsions or aerosols, the semi-solid carrier of ointments and the solid solids, of particulate solids. e.g., pellets, granules, dusts and powders.
The exact concentration of the compounds of this invention employed in combatting or controlling insect pests can vary considerably provided the required dosage (i.e., toxic or lethal amount) thereof is supplied to the pests or to the environment of the pests. When the extending agent is a liquid or mixture of liquids (e.g., as in solutions, suspensions, emulsions, or aerosols) the concentration of the active compound employed to supply the desired dosage generally will be in the range of 0.0001 to 95 percent by weight. When the extending agent is a semi-solid or solid, the concentration of the compound employed to supply the desired dosage generally will be in the range of 0.1 to 80 percent by weight. From a practical point of view, the manufacturer must supply the user with a concentrate in such form that, by merely mixing with water of solid extender (e.g., powdered clay or talc) or other low-cost material available to the user at the point of use, he will have an easily prepared insecticidal spray or particulate solid. In such a concentrate composition, the compound generally will be present in a concentration of 5 to 95 percent by weight, the residue being any one or more of the well-known insecticidal adjuvants, such as the various surface active agents (e.g., detergents, a soap or other emulsifying or wetting agent), surface-active clays, solvents, diluents, carrier media, adhesives, spreading agents, humectants, and the like.
The compounds of this invention are preferably supplied to the insect pests or to the environment of the insect pests in the form of emulsions or suspensions. Emulsions or suspensions are prepared 'by dispersing the compounds either per se or in the form of an organic solution thereof in water with the aid of a watersoluble surfactant. The term surfactant as employed herein is used as in volume II of Schwartz, Perry and Berchs Surface Active Agents and Detergents 1958, Interscience Publishers Inc., New York) in place of the expression emulsifying agent to connote generically the various emulsifying agents,
dispersing agents," wetting agents, and spreading agents" that are adapted to be admixed with the active compounds of this invention in order to secure better wetting and spreading of the active ingredients in the water vehicle or carrier in which they are insoluble through lowering the surface tension of the water (see also Frear Chemistry of Insecticides, Fungicides and Herbicides, second edition, page 280). These surfactants include the well-known capillary-active substances which may be anionic, cationic, or non-ionic which are described in detail in volumes I and II of Schwartz, Perry and Berchs Surface Active Agents and Detergents (1958, Interscience Publishers, Inc., New. York) and also'in the November 1947 issue of Chemical Industries (pages 811-824) in an article titled Synthetic Detergents by John W. McCutcheon and alsoin the July, August, September, and October 1952 issues of Soap and Sanitary Chemicals under the title Synthetic Detergents. The disclosures of these articles with respect to surfactants are incorporated in this specification by reference in order toavoid unnecessary enlargement of this specification. The preferred surfactants are the water-soluble anionic and non-ionic surface-active agents set forth in U.S. Pat. No. 2,846,398 (issued Aug. 5, 1958). In general, a mixture of water-soluble anionic and water-soluble nonionic surfactants is preferred.
The compounds of this invention can be dispersed by suitable methods (e.g.,tumbling or grinding) in solid extending agents either of organic or inorganic nature and supplied to the insect pests environment in particulate form. Such solid materials include for example, tricalcium phosphate, calcium carbonate, kaolin, bole, kieselguhr, talc, bentonite, fullers earth, pyrophillite, diatomaceous earth, calcined magnesia, volcanic ash, sulfur and the like inorganic solid materials as well as organic materials such as powdered cork, powdered wood, and powdered walnut shells. The preferred solid carriers are the adsorbent clays, e.g., bentonite. These mixtures can be used for insecticidal purposes in the dry form, or by addition of water-soluble surfactantsor wetting agents, the dry particulate solids can be rendered wettable by water so as to obtain stable aqueous dispersions or suspensions suitable for use as sprays.
For special purposes the compounds of this invention can be dispersed in a semi-solid extending agent such as petroleum or soap (e.g., sodium stearate or oleate or palmitate or mixtures thereof) with or without the aid of solubility promoters and/or surfactants or dispersing agents.
In all of the forms described above the dispersions can be provided ready for use in combatting insect pests or they can be provided in a concentrated form suitable for mixing with or dispersing in other extending agents. As illustrative of a particularly useful concentrate is an intimate mixture of a compound of this invention with a water-soluble surfactant in the weight proportions of 0.1 to 15 parts of surfactant with sufficient insecticide of this invention to make parts by weight. Such a concentrate is particularly adapted to be made into a spray for combatting various forms of insect pests by the addition of water thereto.
Another useful concentrate adapted to be made into a spray for combatting a variety of insect pests is a solution (preferably as concentrated as possible) of a compound of this invention in an organic solvent therefor. The said liquid concentrate preferably contains dissolved thereina minor amount (e.g., 0.5 to percent by weight of the weight of the new insecticidal agent) of a water-soluble surfactant (or emulsifying agent).
Emulsifiable concentrates of this general type are particularly well adapted for use as sheep and cattle dips in the control of animal parasites. in preparing such dips, a compound of this invention is dissolved in a water-immiscible solvent system and a sufficient quantity of one or more emulsifying agents is added to insure the formation of a stable aqueous emulsion. Water is then added to the concentrate to form an emulsion containing from about 0.01 percent to about 0.5 percent of the active ingredient.
Of the surfactants aforementioned in preparing the various emulsifiable, wettable or dispersible compositions or concentrates of this invention, the anionic and non-ionic surfactants are preferred. Of the anionic surfactants, the particularly preferred are the well known water-soluble alkali metal alkylaryl sulfonates as exemplified by sodium decylbenzene sulfonate and sodium dodecylbenzene sulfonate. Of the non-ionic surfactants, the particularly preferred are the water-soluble polyoxyethylene derivatives of alkylphenols (particularly isooctylphenol) and the water-soluble polyoxyethylene derivatives of the mono-higher fatty acid esters of hexitol anhydrides (e.g., sorbitan). These materials in general contain to 30 moles of ethylene oxide per mole of the hexitol anhydride or the alkylphenol.
The compositions of this invention can also contain other additaments such as fertilizers and pesticides used as, or in combination with, the carrier materials.
For example, the pesticides listed in U.S. Pat. No. 3,393,990 starting-at line 68, column 7 and extending through line 71 of column 8, can be used in combination with the above-described compounds.
In controlling or combatting insect pests the compounds of this invention either per se or compositions containing them are supplied to the insect pests or to their environment in a lethal or toxic amount. This can be done by dispersing the new insecticidal agent or insecticidal composition comprising same in, on or over an infested environment or in, on or over an environment the insect pests frequent, e.g., agricultural soil or other growth media or other media infested with insect pests or attractable to the pests for habitational or sustenance or propagational purposes, in any conventional fashion which permits contact between the insect pests and the compounds of this invention. Such dispersing can be brought about by applying sprays, dips or particulate solid compositions to a surface infested with the insect pests or attractable to the pests as for example, animals such as sheep and cattle, the surface of an agricultural soil or other media such as the above ground surface of plants by any of the conventional methods, e.g., power dusters, boom and hand sprayers, and spray dusters. Also for sub-surface application such dispersing can be carried out by simply mixing the new insecticidal agent per se or insecticidal spray or particulate solid compositions comprising same with the infested environment or with the environment the insect pests frequent, or by employing a liquid carrier for the new insecticidal agent to accomplish subsurface penetration and impregnation therein.
While this invention has been described with respect to certain embodiments, it is to be understood that it is not so limited and that variations and modifications thereof obvious to those skilled in the art can be made without departing from the spirit and scope thereof.
What is claimed is:
1. A method of controlling insects which comprises exposing said insects to an insecticidally effective amount of a compound of the formula .EiQiif wherein m, n, p, and q are integers from 0 to 2, inclusive,.with one and only one of m and n being greater than 0, and R and R are bromo, chloro, iodo, fluoro or nitro.
2. A method in accordance with claim 1 in which m is 0 and n is an integer from 1 to 2 inclusive.
3. A method in accordance with claim 1 in which m is an integer from 1 to 2, inclusive, and n is 0.
4. A method in accordance with claim I in which the compound is 3-trifluoromethyl-3,4'-dichlorobenzanilide.
5. A method in accordance with claim 1 in which the compound is 3,5-di-trifluoromethylbenzanilide.
6. A method in accordance with claim 1 in which the compound is 3-trifluoromethyl-4-nitrobenzanilide.
7. A method in accordance with claim 1 in which the compound is 3'-trifluoromethyl-4-nitrobenzanilide.
8. A method in accordance with claim 1 in which the compound is 3'-trifluoromethyl-3-nitrobenzanilide;
9. A method in accordance with claim 1 in which the compound is 3-trifluoromethyl-4'-fluorobenzanilide.
10. A method in accordance with claim 1 in which the compound is 3-trifluoromethyl-4-chloro-4- fluorobenzanilide.
11. A method in accordance with claim 1 in which the compound is 3 '-trifiuoromethyl-3 ,4- dichlorobenzanilide.
12. An insecticidal composition comprising an inert,
carrier and an insecticidally effective amount of a compound of the formula wherein p and q are integers from 0 to 2, inclusive, m is an integer from 1 to 2, inclusive, n is 0 and R and R are bromo, chloro, iodo, fluoro or nitro.
13. An insecticidal composition in accordance with claim 12 in which the compound is 3-trifluoromethyl- 3,4'-dichlorobenzanilide.
14. An insecticidal composition in accordance with

Claims (15)

  1. 2. A method in accordance with claim 1 in which m is 0 and n is an integer from 1 to 2 inclusive.
  2. 3. A method in accordance with claim 1 in which m is an integer from 1 to 2, inclusive, and n is 0.
  3. 4. A method in accordance with claim 1 in which the compound is 3-trifluoromethyl-3'',4''-dichlorobenzanilide.
  4. 5. A method in accordance with claim 1 in which the compound is 3,5-di-trifluoromethylbenzanilide.
  5. 6. A method in accordance with claim 1 in which the compound is 3-trifluoromethyl-4-nitrobenzanilide.
  6. 7. A method in accordance with claim 1 in which the compound is 3''-trifluoromethyl-4-nitrobenzanilide.
  7. 8. A method in accordance with claim 1 in which the compound is 3''-trifluoromethyl-3-nitrobenzanilide.
  8. 9. A method in accordance with claim 1 in which the compound is 3-trifluoromethyl-4''-fluorobenzanilide.
  9. 10. A method in accordance with claim 1 in which the compound is 3-trifluoromeThyl-4-chloro-4''-fluorobenzanilide.
  10. 11. A method in accordance with claim 1 in which the compound is 3''-trifluoromethyl-3,4-dichlorobenzanilide.
  11. 12. An insecticidal composition comprising an inert carrier and an insecticidally effective amount of a compound of the formula wherein p and q are integers from 0 to 2, inclusive, m is an integer from 1 to 2, inclusive, n is 0 and R and R'' are bromo, chloro, iodo, fluoro or nitro.
  12. 13. An insecticidal composition in accordance with claim 12 in which the compound is 3-trifluoromethyl-3'',4''-dichlorobenzanilide.
  13. 14. An insecticidal composition in accordance with claim 12 in which the compound is 3,5-di-trifluoromethylbenzanilide.
  14. 15. An insecticidal composition in accordance with claim 12 in which the compound is 3-trifluoromethyl-4-nitrobenzanilide.
  15. 16. An insecticidal composition in accordance with claim 12 in which the compound is 3-trifluoromethyl-4-chloro-4''-fluorobenzanilide.
US57790A 1970-07-23 1970-07-23 Insecticidal composition containing trifluoromethyl substituted benzanilides and method of using the same Expired - Lifetime US3700778A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US5779070A 1970-07-23 1970-07-23

Publications (1)

Publication Number Publication Date
US3700778A true US3700778A (en) 1972-10-24

Family

ID=22012783

Family Applications (1)

Application Number Title Priority Date Filing Date
US57790A Expired - Lifetime US3700778A (en) 1970-07-23 1970-07-23 Insecticidal composition containing trifluoromethyl substituted benzanilides and method of using the same

Country Status (1)

Country Link
US (1) US3700778A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981814A (en) * 1973-09-18 1976-09-21 Givaudan Corporation Bacteriostatic substituted benzanilide compositions and methods for their use
US4390549A (en) * 1981-06-25 1983-06-28 Stauffer Chemical Company N-Tetrachloroethylthio benzoyl anilides useful as acaricides and to control mosquitoes

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3981814A (en) * 1973-09-18 1976-09-21 Givaudan Corporation Bacteriostatic substituted benzanilide compositions and methods for their use
US4390549A (en) * 1981-06-25 1983-06-28 Stauffer Chemical Company N-Tetrachloroethylthio benzoyl anilides useful as acaricides and to control mosquitoes

Similar Documents

Publication Publication Date Title
US3388163A (en) Substituted 2&#39;-chloro-4&#39;-nitrosalicylanilides
US3818102A (en) Insecticidal sulfonates
US3700778A (en) Insecticidal composition containing trifluoromethyl substituted benzanilides and method of using the same
US3249637A (en) 3-(4-halophenyl) salicylanilides
US3888903A (en) Phenyl-n-(1-alkenyl)-n-methylcarbamates
US3106565A (en) Organophosphorus esters
US3764695A (en) Insecticidal compounds and methods of combatting insects using phenyl-n-(1-alkenyl)-methylcarbamates
US3642910A (en) 1 1-di(p-substituted phenyl)-2 2-dichlorocyclopropanes
US3632758A (en) Insecticidal oximes
US3746762A (en) Trifluoromethyl substituted benzanilides
US3077431A (en) Phosphinothioates
US3793451A (en) Insecticidal pyridylaminidinoureas
US3216896A (en) Insecticidal 3-(4-halophenyl)-salicylanilides
US3814806A (en) Insecticidal compositions and methods employing trifluoromethyl substituted benzanilides
US3721737A (en) 2&#39;,5&#39;-dihalo-3-tert.alkyl-5-nitrosalicylanilides for combatting lepidoptera chewing larvae
US3723534A (en) Aryl methyl phenacyl sulfonium tetrafluoroborates
US3755580A (en) Insecticidal triazine derivatives
US3165441A (en) Methylphosphonothioate insecticide
US3764698A (en) Insecticides compositions and methods employing 3,4, substituted phenylmethylsulfinates
US3906104A (en) Insecticidal sulfonates
US3699110A (en) Certain 1-aryl or aralkyl-3-(pyridyl) formimidoyl-ureas or thioureas
US3714299A (en) Phosphorylated anilides
US3591684A (en) Controlling southern armyworm with 3-iodo-3&#39;,4&#39;,5-trichlorosalicylanilide
US3231465A (en) Insecticidal 5-halo-3-phenyl-salicylanilides
US3962356A (en) Substituted cyclopropanes