US3698639A - Oil burner system with motor driven pump controlling by-pass valve - Google Patents

Oil burner system with motor driven pump controlling by-pass valve Download PDF

Info

Publication number
US3698639A
US3698639A US50875A US3698639DA US3698639A US 3698639 A US3698639 A US 3698639A US 50875 A US50875 A US 50875A US 3698639D A US3698639D A US 3698639DA US 3698639 A US3698639 A US 3698639A
Authority
US
United States
Prior art keywords
pump
motor
oil
valve
rotor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US50875A
Inventor
Kyrre Guttorm Sjotun
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3698639A publication Critical patent/US3698639A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus
    • F23K5/02Liquid fuel
    • F23K5/14Details thereof
    • F23K5/142Fuel pumps
    • F23K5/145Fuel pumps combined with fans

Definitions

  • This invention relates generally to oil burners and more particularly to an oil burner system comprising a motor driven pump which controls a burner nozzle bypass valve.
  • the usual oil burner system has a motor which drives both the fuel oil pump and the air-supply source, for example a blower.
  • the motor When the motor is turned off it continues to rotate due to the inertia of the assembly connected thereto.
  • fuel oil continues to be fed by the fuel oil pump at a diminishing pressure for a relatively long period of time.
  • This oil tends to drip from the nozzle as the pressure is reduced and the nozzle and areas on which the oil impinges become coked.
  • the cut-off valves responded to the oil pressure, for example, and effect closure rapidly as soon as theoil pressure drops below a predetermined level.
  • Another object of the present invention is to provide an oil burner system in which the avoidance of dripping oil once the pump is turned off is effected by simple means including an improved by-pass valve and dispenseswith the additional circuitry generally required for activating the valve electromagnetically in conjunction with the pump motor circuit.
  • an oil burner is supplied fuel oil by a fuel oil pump and a blower provides air for combustion of the oil.
  • a single, common motor drives the oil pump and the air blower independently of each other.
  • the motor comprises a single stator and has a rotor which is divided into two coaxial parts one of which drives the pump and the other the blower independently of each other.
  • the oil pump motor shaft actuates a valve element opening and closinga by-pass'valve, in a by-pass line, allowing oil to pass from the discharge or pressure side of the pump to the suction side-when the pump motor is deenergized and closing the valve when energized.
  • Oil delivered by the pump after the pump motor is switched off flows directly through the by-pas's line to the suction side of the pump immediately after the switching off takes place so that oil does not reach the burner nozzle. If the by-pass does not accept all the oil from the pump the pressure in the pressure line between the pump and burner nozzle drops rapidly and it is possible to control complete cut-off of delivery to the nozzle with a cut-off valve of simple design.
  • blower can be constructed to have higher speed than known constructions even if coupled to the motor in the conventional way rather than being de-coupled therefrom as in the embodiment of the invention herein described. Furthermore, in contrast to.
  • the arrangement according to the invention is independent of the size of the nozzle.
  • the oil-filled compartment in the motor is delivered from the pressure side of the pump through a pressure-regulating valve and/or cut-off valve.
  • a pressure-regulating valve and/or cut-off valve employed in conjunction with the invention comprises a spring-loaded pressure regulator valve of known type having an extension which directly closes the nozzle or burner supply line.
  • Other known pressure-regulating valves can perform the cut-off function.
  • the by-pass valve of the invention allows oil to circulate to the oil-filled compartment of the motor rotor each time the motor is switched off since the by-pass line, in which the by-pass valve is disposed, connects the pressure side of the pump to the suction side thereof through the motor oilfilled compartment.
  • the motor and pump construction is such that the motor shaft connected toone of the rotors constitutes the pump shaft.
  • the pump shaft actuates the valve element of the by-pass valve of the system according to the invention.
  • the invention takes advantage of the normaltendency ,of a rotor to move axially of the stator when a motor is deenergized.
  • the pump shaft is positively biased or mechanically forced in an axial direction for rapidly opening the by-pass valve.
  • the pump shaft defines the by-pass valve element which opens the valve by being moved axially positively by a spring and is attracted electromagnetically in an opposite axial direction closing the valve when the pump motor is energized.
  • the shaft 6 is mounted coaxial with a bearing bushing 11 and extends through an end wall of the half-shell 3 of the housing.
  • the shaft 6 is secured against axial displacement by means of a locking device 12.
  • the pump shaft 9 is mounted in two bearing bushings 13, 14 coaxially disposed in a pump housing 15 which is secured in a central opening in the housing half-shell 4 by a ring 16 and circumferentially disposed screws 17.
  • the two rotor parts 5, 8 are separated from each other by a fluid-tight partition 18.
  • the partition is part of a cup-shaped member 19 having the walls of the cup part of the member bear against the stator l and the inner surfaces about the mouth of the cupshaped member bear against the circumference of an annular part 21 of the housing.
  • This housing part has an annular recess in which is disposed a seal ring 20 effecting a seal between the inner surfaces of the mouth of the cupshaped member and the protion 21 of the housing.
  • an oil chamber or compartment 22 is defined by the parts 3, 4, 15, 16 and 19.
  • This compartment or chamber is part of an oil circulation path and is oil-filled during operation as illustrated in FIG. 2 and hereinafter explained.
  • the overall burner nozzle system is illustrated diagrammatically in FIG. 2.
  • the pump 10 is connected to a suction line 23 which takes a suction from an oil sump 24 and delivers it to a pressure discharge line or passage 25 to a valve arrangement 26 which comprises a pressure-regulating valve and a cut-off valve hereinafter described.
  • a valve arrangement 26 which comprises a pressure-regulating valve and a cut-off valve hereinafter described.
  • the excess oil which is not required flows through a return passage 28 in communication with the chamber 22 and back through an outlet to the sump 24 or to the suction side of the pump as illustrated.
  • the pump housing 15 can, for example, house the valve system 26 and the passages, for example the passages 25 and 28.
  • a by-pass line 29 having a by-pass valve 50 connected therein connects the pressure or discharge line 25 with the oil-filled compartment or chamber 22 and therefore with the suction side of the pump as illustrated in FIG. 2.
  • the shaft 9 of the motor can move axially outwardly as indicated by the arrow designated P.
  • the valve 50 is actuated by the shaft 9 through a mechanical connection therewith, for example a rod, illustrated diagrammatically by a broken line so that pump shaft controls opening and closing of the valve as later described.
  • the pump 10, cut-off valve 26, the by-pass valve 50 and the associated oil lines can be constructed as a structural unit.
  • the pump housing 15, for example, can contain the valve arrangement 26, 50 and the lines 25, 28, 29 may be made as passages in the housing.
  • the pump shaft and housing define the valve without need of connection thereto.
  • an enlarged cylindrical portion 31 of the shaft 9 defines a valve element and closes a passage 32 leading from the pressure side 33 of the oil pump to a connecting passageway 34 communicating with the chamber or compartment 22.
  • the shaft is assumed to be in its attracted position closing the by-pass valve. Displacement of the shaft 9 is, of course, relative to the inner gear wheel of the gear pump 10. As soon as the motor is switched off the spring 30 displaces the shaft toward the right toward the pump in the axial space provided for axial movement and the passageway 32 is thus opened. Oil under pressure will then flow directly through the passageways 32, 34 and the oil chamber 22 to the suction side of the pump.
  • a pressure-regulating and cut-off valve 36 may be mounted in the pump housing 15 for carrying out pressure regulating and cut-off of fuel oil supply to the nozzle 27 when the fuel oil pump is stopped.
  • This valve carries out the functions of the valve 26 shown in FIG. 2.
  • a bore 37 is provided in the housing 15 and has at one end thereof a threaded plug 38 which comprises a nozzle supply outlet 39 and a valve seat 40 for the cut-off valve.
  • a threaded bushing hollow cap 41 At the other end of the valve bore is provided a threaded bushing hollow cap 41 having a closed end and movable axially to adjust a spring 42 housed internally thereof.
  • the spring biases valve element 43 of a pressure-regulating valve, which is axially guided in a bushing 44 acting in the manner of a guide slide, toward a seated position.
  • the valve element 43 has an axial extension 45 which forms the cut-off valve.
  • a passageway 46 is in communication with the pressure line or passage 25 and another passage 47 corresponds to the return line or passage 28.
  • the principles of the invention are equally applicable to constructions in which the motor only drives the pump and to constructions in which the blower and the pump are mounted on a common shaft.
  • the construction illustrated wherein the pump and blower are separated and driven by a single motor provides a single, inexpensive construction and the separation of the blower from the pump reduces inertia so the pump will stop more quickly when the motor is turned off.
  • the pump motor may have a vertically disposed shaft in which case gravity can be taken advantage of actuating the shaft axially for controlling a by-pass valve.
  • a spring acting in conjunction with a spring can rapidly open a by-pass valve and the axial attraction of the rotor can close such a by-pass valve. This can be accomplished, for example, by using a known motor with a tapered air gap.
  • a fuel oil supply pump assembly comprising a pump having a rotor, a fuel oil cooled electric motor having a winding electrically energized in operation,
  • said electric motor having a rotor and a cooling chamber in whichsaid rotor is disposed through which cooling-oil is routed, rotationally and axially movable shaft means between said pump rotor and said electric motor rotor, by-pass means connected to said chamber and defining a by-pass flow path for by passing fuel oil from the discharge side of said pump to the suction side thereof for cooling said motor, said by-pass means inenergized.

Abstract

An oil burner system in which a fuel oil pump and the air blower are independently driven by a common motor having a single stator and two independently driven rotors. One rotor is connected to the pump and the other to the air blower so that the inertia of the pump drive is reduced and it comes to a stop quicker. The rotor for driving the pump is disposed in an oil-filled compartment so that it is damped. The system is provided with a by-pass valve connecting the discharge side of the pump with its suction controlled by the motor shaft which is biased to open the by-pass valve when the motor is in a deenergized condition. When the motor is energized the shaft is attracted axially electromagnetically and it closes the by-pass valve. When the motor is deenergized it opens the by-pass valve, the pump stops relatively quickly and the blower continues to blow air to ensure burning of all oil supplied from the burner and avoid cooking on the burner and elsewhere.

Description

United States Patent I Sjotun [151 3,698,639 [451 Oct. 17, 1972 1 OIL BURNER SYSTEM WITH MOTOR DRIVEN PUMP CONTROLLING BY- PASS VALVE [72] lnventor: Kyrre Guttorm Sjotun, Rypevej 62,
s21 U.s.c|. ..239/124, 239/128. 51 int. Cl. ..B05b 9/00 58 Field of Search ..239/124,127,12s
[5 6] References Cited UNITED STATES PATENTS 2,256,080 9/1941 Eweryd et al ..239/l24 X 3,358,928 12/1967 Melendy ..239/126 X 2,471,025 5/1949 Danielsson et al ..239/124 2,626,655 l/l953 Trautman et al. ..239/l-27 2,912,696 11/1959 Roudanez ..-.....239/124 X Primary Examiner-Lloyd L. King AttorneyWaync B. Easton [57] ABSTRACT An oil burner system in which a fuel oil pump and the air blower are independently driven by a common motor having a single stator and two independently driven rotors. One rotor is connected to the pump and the other to the air blower so that the inertia of the pump drive is reduced and it comes to a stop quicker. The rotor for driving the pump is disposed in an oilfilled compartment so that it is damped. The system is provided with a by-pass valve connecting the discharge side of the pump with its suction controlled by the motor shaft which is biased to open the by-pass valve when the motor is in a deenergized condition. When the motor is energized the shaft is attracted axially' electromagnetically and it closes the by-pass valve. When the motor is deenergized it opens the bypass valve, the pump stops relatively quickly and the blower continues to blow air to ensure burning of all oil supplied from the burner and avoid cooking on the burner and elsewhere.
1 Claim, 3 Drawing Figures PATENTEDncI-W m2 3,698,639
OIL BURNER SYSTEM WITH MOTORDRIVEN PUMP CONTROLLING BY-PASS VALVE This is a division of application Ser. No. 727,836, filed May 9,1968.
This invention relates generally to oil burners and more particularly to an oil burner system comprising a motor driven pump which controls a burner nozzle bypass valve.
The usual oil burner system has a motor which drives both the fuel oil pump and the air-supply source, for example a blower. When the motor is turned off it continues to rotate due to the inertia of the assembly connected thereto. Thus fuel oil continues to be fed by the fuel oil pump at a diminishing pressure for a relatively long period of time. This oil tends to drip from the nozzle as the pressure is reduced and the nozzle and areas on which the oil impinges become coked. It has been the common practice to insert complicated cut-off valves between the pump and the nozzle for precluding this kind of drippage. The cut-off valves responded to the oil pressure, for example, and effect closure rapidly as soon as theoil pressure drops below a predetermined level.
It is also known to by-pass the burner nozzle by means of a by-pass valve which is electromagnetically controlled to open when the pump is switched off and its driving motor is deenergized. In thatkind of system the by-pass valve may be in an open condition when the pump is started and begins to take a suction. Such elec' tromagnetically actuated by-pass valves are electrically connected to the pump motor circuit.
It is a principal object of the present invention to provide an oil burner system in which the problem of dripping oil, when the oil pump motor is turned off, is eliminated.
Another object of the present invention is to provide an oil burner system in which the avoidance of dripping oil once the pump is turned off is effected by simple means including an improved by-pass valve and dispenseswith the additional circuitry generally required for activating the valve electromagnetically in conjunction with the pump motor circuit.
In the oil burner system according to the invention an oil burner is supplied fuel oil by a fuel oil pump and a blower provides air for combustion of the oil. A single, common motor drives the oil pump and the air blower independently of each other. The motor comprises a single stator and has a rotor which is divided into two coaxial parts one of which drives the pump and the other the blower independently of each other.
The oil pump motor shaft actuates a valve element opening and closinga by-pass'valve, in a by-pass line, allowing oil to pass from the discharge or pressure side of the pump to the suction side-when the pump motor is deenergized and closing the valve when energized. Oil delivered by the pump after the pump motor is switched off flows directly through the by-pas's line to the suction side of the pump immediately after the switching off takes place so that oil does not reach the burner nozzle. If the by-pass does not accept all the oil from the pump the pressure in the pressure line between the pump and burner nozzle drops rapidly and it is possible to control complete cut-off of delivery to the nozzle with a cut-off valve of simple design. In any case because of the rapid cutting-off of supply of oil to the nozzle the blower can be constructed to have higher speed than known constructions even if coupled to the motor in the conventional way rather than being de-coupled therefrom as in the embodiment of the invention herein described. Furthermore, in contrast to.
the known cut-off valves the arrangement according to the invention is independent of the size of the nozzle.
A feature of the construction is that the inertia of the rotating parts associated with the pump is considerably reduced. Thus when the motor is turned off it comes to a stop more rapidly than heretofore in motors in which the pump and air supply source are mounted to be jointly driven from a common rotor. Thus when the motor is turned off less fuel oil is supplied and this avoids the dripping of oil that takes place if the pump does not stop rapidly. Moreover, the air blower is not braked or. damped by the pump so that it runs freely for a considerably longer time and therefore provides continuously a flow of air so that oil that would tend to drip is consumed and blown away from the nozzle so that coking is not possible. The use of independent drive for the oil pump and blower and the by-pass valve of the invention means that upon switching off the apparatus the oil burner system need not have a cut-off valve or if it is desired to use one it can be of a simple design.
A fluid-tight partition is disposed between the two rotors within the stator and motor housing and defines a compartment in which the rotor driving the pump is disposed. Oil from the pump is delivered into this compartment during operation so that the rotor driving the pump is damped or braked so that the pump comes to a stop relatively quickly after the .motor has been switched off. This type of construction avoids the need of a stuffing box between the pump and the oil-filled compartment of the motor so that the pump shaft rotates with considerably less friction. The reduced friction increases performance characteristics which readily make up for the losses caused by the damping oil in the oil-filled compartment. Moreover, the oil in this compartment effects cooling of thestator and the rotor within the compartment and is effective in reducing noise during operation.
In order to particularly maintain the motor cooled in extensive operation the oil-filled compartment in the motor is delivered from the pressure side of the pump through a pressure-regulating valve and/or cut-off valve. As soon as the motor has been turned on and reaches speed the oil under pressure is circulated through the oil-filled compartment so that a good cooling effect is achieved during operation.- The cut-off valve employed in conjunction with the invention comprises a spring-loaded pressure regulator valve of known type having an extension which directly closes the nozzle or burner supply line. Other known pressure-regulating valves can perform the cut-off function. In any event even if the arrangement is such that oil is not circulated during operation the by-pass valve of the invention allows oil to circulate to the oil-filled compartment of the motor rotor each time the motor is switched off since the by-pass line, in which the by-pass valve is disposed, connects the pressure side of the pump to the suction side thereof through the motor oilfilled compartment.
The motor and pump construction is such that the motor shaft connected toone of the rotors constitutes the pump shaft. The pump shaft actuates the valve element of the by-pass valve of the system according to the invention. The invention takes advantage of the normaltendency ,of a rotor to move axially of the stator when a motor is deenergized. The pump shaft is positively biased or mechanically forced in an axial direction for rapidly opening the by-pass valve. In the particular embodiment described the pump shaft defines the by-pass valve element which opens the valve by being moved axially positively by a spring and is attracted electromagnetically in an opposite axial direction closing the valve when the pump motor is energized.
Other features and advantages of the oil burner system in accordance with the present invention will be better understood as described in the following specification and appended claims, in conjunction with the following drawings in which:
FIG. 1, is an elevation sectional view of a motor drive and oil pump for the oil burner system in accordance with the invention;
FIG. 2, is a diagram of an oil burner system according to the invention; and
FIG. 3, is a fragmentary section view of a pressureregulating and cut-off valve used in an oil burner system in accordance with the invention. 7
As illustrated in the drawing a motor drive for an oil burner system ashereinafter constructed is shown in FIG.'1 and comprises a stator 1 with a winding 2 held in two half- shells 3, 4 of a motor housing. Within the stator is'mounted for rotation a first rotor or rotor part 5 driving a shaft 6 which rotationally drives an air blower 7. A second rotor or rotor part 8 independent of the other rotor is mounted coaxially with the other rotor and rotatably drives a shaft 9 connected to a pump 10.
The shaft 6 is mounted coaxial with a bearing bushing 11 and extends through an end wall of the half-shell 3 of the housing. The shaft 6 is secured against axial displacement by means of a locking device 12. The pump shaft 9 is mounted in two bearing bushings 13, 14 coaxially disposed in a pump housing 15 which is secured in a central opening in the housing half-shell 4 by a ring 16 and circumferentially disposed screws 17.
The two rotor parts 5, 8 are separated from each other by a fluid-tight partition 18. The partition is part of a cup-shaped member 19 having the walls of the cup part of the member bear against the stator l and the inner surfaces about the mouth of the cupshaped member bear against the circumference of an annular part 21 of the housing. This housing part has an annular recess in which is disposed a seal ring 20 effecting a seal between the inner surfaces of the mouth of the cupshaped member and the protion 21 of the housing. In this manner an oil chamber or compartment 22 is defined by the parts 3, 4, 15, 16 and 19. This compartment or chamber is part of an oil circulation path and is oil-filled during operation as illustrated in FIG. 2 and hereinafter explained.
The overall burner nozzle system is illustrated diagrammatically in FIG. 2. The pump 10 is connected to a suction line 23 which takes a suction from an oil sump 24 and delivers it to a pressure discharge line or passage 25 to a valve arrangement 26 which comprises a pressure-regulating valve and a cut-off valve hereinafter described. When the cut-off valve is open oil under pressure flows to a nozzle 27 which delivers oil to be burned into a combustion chamber of the burner, not shown. The excess oil which is not required flows through a return passage 28 in communication with the chamber 22 and back through an outlet to the sump 24 or to the suction side of the pump as illustrated. Those skilled in the art will understand that the pump 10, the valve unit 26 and the associated lines or passages may be constructed as one unit. The pump housing 15 can, for example, house the valve system 26 and the passages, for example the passages 25 and 28.
A by-pass line 29 having a by-pass valve 50 connected therein connects the pressure or discharge line 25 with the oil-filled compartment or chamber 22 and therefore with the suction side of the pump as illustrated in FIG. 2. The shaft 9 of the motor can move axially outwardly as indicated by the arrow designated P. The valve 50 is actuated by the shaft 9 through a mechanical connection therewith, for example a rod, illustrated diagrammatically by a broken line so that pump shaft controls opening and closing of the valve as later described. In an embodiment of the invention the pump 10, cut-off valve 26, the by-pass valve 50 and the associated oil lines can be constructed as a structural unit. The pump housing 15, for example, can contain the valve arrangement 26, 50 and the lines 25, 28, 29 may be made as passages in the housing.
In the construction illustrated in FIG. 1 the shaft 9 is axially displaceable in the bushing bearing 13, 14. It is biased to the right, in the direction of the arrow P, by means of a spring 30 applying force axially of the shaft.
When the motor is deenergized thespring moves the shaft 9 outwardly opening the by-pass valve. When the motor is energized the shaft 9 is drawn toward the opposite direction, toward the left in the drawing, by the magnetic forces developed by the motor.
In one embodiment of the present invention the pump shaft and housing define the valve without need of connection thereto. In such an embodiment of the by-pass valve illustrated in FIG. 1 an enlarged cylindrical portion 31 of the shaft 9 defines a valve element and closes a passage 32 leading from the pressure side 33 of the oil pump to a connecting passageway 34 communicating with the chamber or compartment 22. The shaft is assumed to be in its attracted position closing the by-pass valve. Displacement of the shaft 9 is, of course, relative to the inner gear wheel of the gear pump 10. As soon as the motor is switched off the spring 30 displaces the shaft toward the right toward the pump in the axial space provided for axial movement and the passageway 32 is thus opened. Oil under pressure will then flow directly through the passageways 32, 34 and the oil chamber 22 to the suction side of the pump.
A pressure-regulating and cut-off valve 36, FIG. 3, may be mounted in the pump housing 15 for carrying out pressure regulating and cut-off of fuel oil supply to the nozzle 27 when the fuel oil pump is stopped. This valve carries out the functions of the valve 26 shown in FIG. 2. A bore 37 is provided in the housing 15 and has at one end thereof a threaded plug 38 which comprises a nozzle supply outlet 39 and a valve seat 40 for the cut-off valve. At the other end of the valve bore is provided a threaded bushing hollow cap 41 having a closed end and movable axially to adjust a spring 42 housed internally thereof. The spring biases valve element 43 of a pressure-regulating valve, which is axially guided in a bushing 44 acting in the manner of a guide slide, toward a seated position. The valve element 43 has an axial extension 45 which forms the cut-off valve.
A passageway 46 is in communication with the pressure line or passage 25 and another passage 47 corresponds to the return line or passage 28. Thus when a certain pressure is applied through the inlet passage 46 the valve unseats against the action of the spring 42 and at a reduced pressure, after the pump is switched off, the cut-off valve extension 45 will seat on the valve seat 40 cutting off supply of fuel oil to the nozzle. During the time that the valve, however, is seated cooling oil flow is permitted through the compartment 22'through' passageway 47 as heretofore described.
Those skilled in the art will understand that the principles of the invention are equally applicable to constructions in which the motor only drives the pump and to constructions in which the blower and the pump are mounted on a common shaft. The construction illustrated wherein the pump and blower are separated and driven by a single motor provides a single, inexpensive construction and the separation of the blower from the pump reduces inertia so the pump will stop more quickly when the motor is turned off. Moreover, the pump motor may have a vertically disposed shaft in which case gravity can be taken advantage of actuating the shaft axially for controlling a by-pass valve. A spring acting in conjunction with a spring can rapidly open a by-pass valve and the axial attraction of the rotor can close such a by-pass valve. This can be accomplished, for example, by using a known motor with a tapered air gap.
While preferred embodiments of the invention have been shown and described it will be understood that many modifications and changes can be made within the true spirit and scope of the invention.
What I claim and desire to be secured by letters patent is:
1. A fuel oil supply pump assembly comprising a pump having a rotor, a fuel oil cooled electric motor having a winding electrically energized in operation,
said electric motor having a rotor and a cooling chamber in whichsaid rotor is disposed through which cooling-oil is routed, rotationally and axially movable shaft means between said pump rotor and said electric motor rotor, by-pass means connected to said chamber and defining a by-pass flow path for by passing fuel oil from the discharge side of said pump to the suction side thereof for cooling said motor, said by-pass means inenergized.

Claims (1)

1. A fuel oil supply pump assembly comprising a pump having a rotor, a fuel oil cooled electric motor having a winding electrically energized in operation, said electric motor having a rotor and a cooling chamber in which said rotor is disposed through which cooling oil is routed, rotationally and axially movable shaft means between said pump rotor and said electric motor rotor, by-pass means connected to said chamber and defining a by-pass flow path for by-passing fuel oil from the discharge side of said pump to the suction side thereof for cooling said motor, said by-pass means including a by-pass valve attached to said shaft, said shaft and valve being movable axially to an open position to open said by-pass when said motor winding is deenergized and to a closed position to close said by-pass when said motor is energized, a pressure regulating and cut-off valve connected to the discharge side of said pump, an oil burner nozzle connected to said pressure regulating and cut-off valve, said pressure regulating and cut-off valve having a by-pass connected to said motor cooling chamber to provide cooling for said motor during operation thereof when said motor is energized.
US50875A 1970-06-29 1970-06-29 Oil burner system with motor driven pump controlling by-pass valve Expired - Lifetime US3698639A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US5087570A 1970-06-29 1970-06-29

Publications (1)

Publication Number Publication Date
US3698639A true US3698639A (en) 1972-10-17

Family

ID=21968028

Family Applications (1)

Application Number Title Priority Date Filing Date
US50875A Expired - Lifetime US3698639A (en) 1970-06-29 1970-06-29 Oil burner system with motor driven pump controlling by-pass valve

Country Status (1)

Country Link
US (1) US3698639A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463996A (en) * 1994-07-29 1995-11-07 Caterpillar Inc. Hydraulically-actuated fluid injector having pre-injection pressurizable fluid storage chamber and direct-operated check
US20180128208A1 (en) * 2011-08-18 2018-05-10 Patrick Bahn Rocket Engines Systems

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5463996A (en) * 1994-07-29 1995-11-07 Caterpillar Inc. Hydraulically-actuated fluid injector having pre-injection pressurizable fluid storage chamber and direct-operated check
US20180128208A1 (en) * 2011-08-18 2018-05-10 Patrick Bahn Rocket Engines Systems
US10738739B2 (en) * 2011-08-18 2020-08-11 Tgv Rockets, Inc. Rocket engines systems

Similar Documents

Publication Publication Date Title
US6032775A (en) Fluid friction clutch
US6732845B2 (en) Fluid friction clutch
US5156531A (en) Radial piston pump
EP3359836B1 (en) Morning sickness valve system for viscous clutch
US2230717A (en) Pumping means
US2397987A (en) Liquid fuel burner system
US2397986A (en) Liquid fuel burner system
US2752858A (en) Air turbine driven pump
US3698639A (en) Oil burner system with motor driven pump controlling by-pass valve
US3617154A (en) Oil burner system with motor-driven pump controlling bypass valve
KR100373806B1 (en) Fuel injection pump
US2145404A (en) Fuel supply unit for oil burners
JP3220117B2 (en) Viscus coupling with volume flow regulator
US3514241A (en) Motor,pump,and blower system for oil burner
US2413035A (en) Fluid supply apparatus for burners
US2207002A (en) Fuel oil pump
JPS5932657B2 (en) internal combustion engine fuel injection pump
US3665807A (en) Control valve arrangement for a hydraulic apparatus
US2671317A (en) Electrohydraulic operator
US3692038A (en) Device for venting oil pumps
US2159414A (en) Oil burner
US2878827A (en) Air control valve
US2379304A (en) Governor
US3560120A (en) Rotary compressor
US2244929A (en) Variable speed hydraulic clutch