US3697799A - Traveling-wave tube package with integral voltage regulation circuit for remote power supply - Google Patents

Traveling-wave tube package with integral voltage regulation circuit for remote power supply Download PDF

Info

Publication number
US3697799A
US3697799A US2589A US3697799DA US3697799A US 3697799 A US3697799 A US 3697799A US 2589 A US2589 A US 2589A US 3697799D A US3697799D A US 3697799DA US 3697799 A US3697799 A US 3697799A
Authority
US
United States
Prior art keywords
traveling
impedance
power supply
wave tube
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US2589A
Inventor
John W Caldwell
Edward M Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teledyne Inc
Original Assignee
Teledyne Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teledyne Inc filed Critical Teledyne Inc
Application granted granted Critical
Publication of US3697799A publication Critical patent/US3697799A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J23/00Details of transit-time tubes of the types covered by group H01J25/00
    • H01J23/02Electrodes; Magnetic control means; Screens
    • H01J23/11Means for reducing noise
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B5/00Generation of oscillations using amplifier with regenerative feedback from output to input
    • H03B5/18Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance
    • H03B5/1817Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a cavity resonator
    • H03B5/1835Generation of oscillations using amplifier with regenerative feedback from output to input with frequency-determining element comprising distributed inductance and capacitance the frequency-determining element being a cavity resonator the active element in the amplifier being a vacuum tube
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B9/00Generation of oscillations using transit-time effects
    • H03B9/01Generation of oscillations using transit-time effects using discharge tubes
    • H03B9/08Generation of oscillations using transit-time effects using discharge tubes using a travelling-wave tube

Definitions

  • ABSTRACT A circuit is provided in a traveling-wave tube package 52 us. Cl. ..31s/3.s, 330/43, 331/82, which eliminates the need of manually setting the 315/393 power supply voltage to match the proper operating 511 im. c1. ..H0lj 25/34 voltage of the
  • the traveling-wave tube [56] References cued package can be connected without adjustment to a UNITED STATES P N power supply and still operates at the desired voltage.
  • the present invention relates in general to electron discharge devices and more particularly to a travelingwave tube including electronic circuitry so that no adjustment is required in the field to provide the voltage necessary for proper operation of the traveling-wave tube.
  • Many complex electronic systems utilize one or more electron discharge devices as traveling-wave tubes and,
  • traveling-wave tubes are field replaceable; Le, a tube is replaced directly in the field whenever it fails to meet specifications.
  • performance of a travelling-wave tube is critically dependent upon the high electrode voltages, typically in the range of thousands of volts, supplied by the systems power supply and because it is not unusual to find the regulation of the system power supply just barely within the regulation limits permitted by the traveling-wave tube specifications, operation of the traveling-wave tube within specified performance can be achieved only if the error in setting electrode voltages is extremely small.
  • a typical cathode helix voltage regulation specification for a low-noise traveling-wave tube with a helix slow-wave structure is at most 10.5 percent.
  • one common method in field adjustment of low-noise traveling-wave tubes is to adjust the cathode-to-helix voltage for optimum small signal gain at the highest operating frequency.
  • This method has the advantage of not requiring an accurate voltmeter since the voltage is not even measured; however, it does require much more skill in setting the voltage.
  • the design of equipment may require certain modifications to permit a small signal gain measurement.
  • Another difficulty is that many low-noise traveling-wave tubes exhibit optimum performance at a voltage different from that producing maximum gain at the highest operating frequency.
  • this procedure does not provide a method for accurately setting the various anode voltages, necessary in low-noise traveling-wave tubes, without use of an accurate voltmeter which has a very high internal impedance.
  • Coupled with the problem of proper setting of the cathode-to-helix voltage in low noise traveling-wave tubes is the setting of various anode voltages for multiple anode electron guns present in all low noise travel ing-wave tubes.
  • the required anode voltages are determined by the particular design of the low noise gun. Because of manufacturing tolerances there is rather a wide variation in anode voltages from tube to tube, but
  • the tolerance within which these voltages must be set in order to achieve the desired noise figure is only about $1.0 percent of the nominal values.
  • a voltage bridge network is connected within the traveling-wave package between the cathode and slow-wave structure of the traveling-wave tube.
  • the bridge network is adjusted by the manufacturer such that a reading can be made in the field across the bridge of the bridge network, and the voltage applied between the electrodes adjusted until a null reading exists in the measuring device. At this point a desired predetermined voltage exists between the electrodes.
  • a typical power supply for a traveling-wave tube includes a reference voltage supply, an input resistance connected between the reference voltage and a high gain amplifier, and a feedback resistor connected between the output and the input of the amplifier. It will be shown subsequently that the output voltage V of the aforedescribed power regulator is substantially a function of three parameters of such a power supply, according to the relationship;
  • V is the output voltage from the amplifier which is applied across the cathode to helix terminals of a traveling-wave tube
  • V is the reference voltage
  • R is the feedback resistance
  • R is the input resistance
  • the output voltage applied to the travelingwave tube will be a predetermined constant and will require no adjustment in the field.
  • Another object of the present invention is to provide a traveling-wave tube which is adjusted for proper operation during manufacturing and does not require further adjustment in the field.
  • Another object of the present invention is to provide a traveling-wave tube tube package with separable power supply and tube but with complete field interchangeability of tube and power supply without adjustment.
  • Still another object of the present invention is to provide electronic circuitry within an electron discharge device such that the device is operable over a range of field applied voltages.
  • FIG. 1 is a schematic diagram of a basic power supply circuit used with traveling-wave tubes.
  • FIG. 2 is a schematic diagram of a traveling-wave tube utilizing aspects of the present invention.
  • FIG. 3 is a schematic diagram similar to that shown in FIG. 2 and showing another embodiment of the present invention.
  • FIGS. 4, 5, 6 and 7 are schematic diagrams illustrating still other embodiments of the present invention.
  • FIG. 1 illustrates a highly stable fixed gain power supply suitable for use with a traveling-wave tube.
  • the power supply includes a high gain amplifier 10.
  • a reference voltage source 12 is provided which is connected to the input of the amplifier through input resistance R,,.
  • a feedback resistance R, is placed across the input and output terminals of the amplifier 10.
  • the power supply output voltage, V is taken from the output of amplifier 10.
  • the output voltage V essentially, is given by:
  • the output voltage is determined substantially by three parameters, i.e., V R5, and R,, and by varying or selecting any one or any combination of these three, the desired output voltage for the traveling-wave tube can be set.
  • all of the three controlling components are provided within the traveling-wave tube package, or at least one of these components is provided in the traveing-wave tube package and those components not included, or their ratio, is precise.
  • the value or values of the components selected are selected so as to provide the proper output voltage for that particular traveling-wave tube. This simplifies installation of the traveling-wave tube in the field since no adjustment is required during its installation, such adjustment being provided during the manufacturing process.
  • FIG. 2 illustrates the preferred embodiment of the present invention.
  • a traveling-wave tube package 14 of conventional structure which includes an envelope 16 provided with a beam-generat ing assembly 18 including a cathode 20 at one end position of the envelope 16 for generating and projecting a beam of electrons longitudinally of the envelope 16 to a collector assembly 22.
  • a slow-wave structure 24 such as a helix is positioned between the beam generating assembly l8 and the collector assembly 22 for providing wave-beam interaction between a radio frequency electromagnetic wave traveling along the slow-wave structure 24 from an input waveguide 26 to an output waveguide 28. While the present invention is schematically illustrated and will be described for purposes of illustration as applied to a low power traveling-wave tube utilizing a helix slow-wave structure, it will be appreciated that the invention is applicable for use with tubes having other types of slow-wave structures.
  • a multiple anode low noise electron gun is utilized, and the appropriate voltages intermediate the cathode voltage and ground are established on anodes 21 with potentiometers 23 which can be factory adjusted to the desired auxiliary voltage when the proper cathode voltage is applied.
  • this low noise gun will not be illustrated in the other embodiments.
  • the traveling-wave tube is operated with application of a high voltage between the cathode and the slowwave structure.
  • bridge circuit 15 including feedback resistor R, and an input resistor R, which are connectable in the same manner as shown in FIG. 1 with an externally provided amplifier 10, also identical to the one shown in FIG. 1.
  • Zener diode 30 Connected between the input resistor R, and ground is Zener diode 30 having a breakdown voltage equal to the desired reference voltage.
  • a current supply 32 is provided. Both the amplifier 10 and the current supply 32 are physically separate from the traveling-wave tube package 14 in the embodiment shown in FIG. 2.
  • the traveling-wave tube package 14 includes the three determining elements of the power supply, i.e., R;,, R, and Zener 30 which provides the reference voltage, V the voltage supplied to the tube 16 is self-regulating and all that is required when a tube is replaced in the field is that an amplifier and a current source be provided for operation of the tube. No adjustments are required during the installation of the tube. This results in reduced labor cost and also provides a more accurate discharge tube voltage than possible with manual adjustment in the field. All the advantages of an integral amplifier approach (combined power supply and tube) are achieved and at the same time the disadvantages usually associated with a separable amplifier are eliminated.
  • FIG. 3 is similar to FIG. 2 with the exception that an additional variable resistance 34 is provided in bridge 15. Since the output voltage is a function of the ratio of R and R,,, by including the variable resistance 34 it is a simple matter to adjust the ratio of R, to R, while in the factory to provide the proper ratio.
  • FIG. 5 is similar to FIG. 2 except that an additional power stage is provided, including a direct current source or battery 36 and transistor 38. Additionally, amplifier is of the type characterized as a differential amplifier. A resistance R is provided externally of the traveling-wave tube package 14 as a part of the current supply required to maintain Zener diode 30 in the breakdown condition.
  • FIG. 6 is identical with that in FIG. 5 with the exception that resistor R is also included within the traveling-wave tube package 14.
  • FIG. 7 is identical with FIG. 5 except that Zener diode 30 is included with the externally provided portion of the power supply rather than within the traveling-wave tube package. This arrangement requires a precise value for the Zener diode for complete interchangeability.
  • a traveling-wave tube assembly having voltage control for use with an associated remote power supply having a high gain amplifier providing sufficient voltages for the electrodes of the traveling-wave tube comprising:
  • a beam generating assembly for generating and projecting a beam of electrons from one position within said envelope to another position therein and including a cathode;
  • a collector assembly located at said other position for collecting said beam of electrons
  • circuit means connected to said tube package housing and remote from the power supply including at least part of a voltage regulation circuit comprising electronic components for operatively cooperating with the high gain amplifier for automatically establishing a predetermined voltage across said cathode and said collector assembly.
  • An electron discharge device having voltage control comprising:
  • a beam generating assembly for generating and projecting a beam of electrons from one position within said envelope to another position therein and including a cathode;
  • a collector assembly located at said other position for collecting said beam of electrons
  • circuitmeans connected to said tube package housing and remote from said power supply and including at least part of a voltage regulation circuit comprising electronic component means for operatively cooperating with said high gain amplifier for automatically establishing a predetermined voltage across said cathode and said collector assembly.
  • said voltage regulation circuit regulates said high gain amplifier and comprises an input impedance, a reference voltage source coupled to the input of said amplifier and a feedback impedance connected between the input and output of said amplifier.
  • V is the voltage of said reference voltage source
  • R is the impedance of said feedback impedance
  • R is the impedance of said input impedance

Landscapes

  • Amplifiers (AREA)

Abstract

A circuit is provided in a traveling-wave tube package which eliminates the need of manually setting the power supply voltage to match the proper operating voltage of the tube. The circuit utilized within the traveling-wave tube package forms a part of the power supply, the remainder of which is provided externally of the traveling-wave tube package. By selecting the proper circuit components, the traveling-wave tube package can be connected without adjustment to a power supply and still operates at the desired voltage.

Description

United States Patent Caldwell et al. 51 Oct. 10, 1972 [54] TRAVELING-WAVE TUBE PACKAGE 3,165,696 1/1965 Poole ..330/43 X WITH INTEGRAL VOLTAGE 3,293,479 12/1966 Chalk ..330/43 X REGULATION CIRCUIT FQR REMOTE 3,249,889 5/1966 Brocato ..331/82 POWER SUPPLY FOREIGN PATENTS OR APPLICATIONS [72] Inventors: John W. Caldwell, Palo Alto; Ed-
ward M smith, San Jose, both of 74,801 1/1956 France ..330/43 Cahf' Primary Examinerl-lerman Karl Saalbach [73] Assignee: Teledyne, Inc., Los Angeles, Calif. Assistant ExaminersaXfield Chalmon,
Attorney-Limbach, Limbach & Sutton [22] Filed: Jan. 13, 1970 [21] Appl. No.: 2,589 [57] ABSTRACT A circuit is provided in a traveling-wave tube package 52 us. Cl. ..31s/3.s, 330/43, 331/82, which eliminates the need of manually setting the 315/393 power supply voltage to match the proper operating 511 im. c1. ..H0lj 25/34 voltage of the The circuit utilized within the I 58] Field of Search 331/82. 315/35 X, traveling-wave tube package forms a part of the power 315739 3 X 3 6 supply, the remainder of which is provided externally of the traveling-wave tube package. By selecting the proper circuit components, the traveling-wave tube [56] References cued package can be connected without adjustment to a UNITED STATES P N power supply and still operates at the desired voltage.
3,1 14,886 12/1963 DeSantis et a1. ..330/43 X 10 Claims, 7 Drawing Figures PATENTEDBBI 10 m2 SHEET 1 [IF 2 PATENTEDUBI 10 I972 SHET 2 BF 2 FIE-4.
TRAVELING-WAVE TUBE PACKAGE WITH INTEGRAL VOLTAGE REGULATION CIRCUIT FOR REMOTE POWER SUPPLY BACKGROUND OF THE INVENTION The present invention relates in general to electron discharge devices and more particularly to a travelingwave tube including electronic circuitry so that no adjustment is required in the field to provide the voltage necessary for proper operation of the traveling-wave tube.
Many complex electronic systems utilize one or more electron discharge devices as traveling-wave tubes and,
in general, these traveling-wave tubes are field replaceable; Le, a tube is replaced directly in the field whenever it fails to meet specifications. However, because the performance of a travelling-wave tube, particularly a low noise traveling-wave tube, is critically dependent upon the high electrode voltages, typically in the range of thousands of volts, supplied by the systems power supply and because it is not unusual to find the regulation of the system power supply just barely within the regulation limits permitted by the traveling-wave tube specifications, operation of the traveling-wave tube within specified performance can be achieved only if the error in setting electrode voltages is extremely small. A typical cathode helix voltage regulation specification for a low-noise traveling-wave tube with a helix slow-wave structure is at most 10.5 percent.
Presently, one common method in field adjustment of low-noise traveling-wave tubes is to adjust the cathode-to-helix voltage for optimum small signal gain at the highest operating frequency. This method has the advantage of not requiring an accurate voltmeter since the voltage is not even measured; however, it does require much more skill in setting the voltage. Furthermore, the design of equipment may require certain modifications to permit a small signal gain measurement. Another difficulty is that many low-noise traveling-wave tubes exhibit optimum performance at a voltage different from that producing maximum gain at the highest operating frequency. Finally, this procedure does not provide a method for accurately setting the various anode voltages, necessary in low-noise traveling-wave tubes, without use of an accurate voltmeter which has a very high internal impedance.
As a general rule voltmeters with the required accuracy for setting the electrode voltage are not available in the field. Therefore, optimum performance is seldom achieved in replacement traveling-wave tubes. Even when accurate voltmeters are available in the field, they require frequent calibration checks which are often logistically impossible. Additionally, required accuracy is difficult to achieve even if the particular meter setting happens to be a full scale reading, and danger to the operator exists in setting up such a meter to read a high voltage.
Coupled with the problem of proper setting of the cathode-to-helix voltage in low noise traveling-wave tubes is the setting of various anode voltages for multiple anode electron guns present in all low noise travel ing-wave tubes. The required anode voltages are determined by the particular design of the low noise gun. Because of manufacturing tolerances there is rather a wide variation in anode voltages from tube to tube, but
the tolerance within which these voltages must be set in order to achieve the desired noise figure is only about $1.0 percent of the nominal values. Thus, the problems encountered in setting the anode voltages are similar to, and as difficult as, those encountered in setting the cathode-to-helix voltage.
In another prior art system a voltage bridge network is connected within the traveling-wave package between the cathode and slow-wave structure of the traveling-wave tube. The bridge network is adjusted by the manufacturer such that a reading can be made in the field across the bridge of the bridge network, and the voltage applied between the electrodes adjusted until a null reading exists in the measuring device. At this point a desired predetermined voltage exists between the electrodes. Such a system is more fully described in a pending patent application entitled Electron Discharge Device with Integral Voltage Bridge and Method of Setting Same, filed Feb. 3, 1969, Ser. No. 796,133, by James L. Palmer and G. E. Tallmadge, and assigned to the assignee of the present invention. Such a system, while an improvement over the previously described prior art system, still has the significant disadvantage that a null reading must be taken to provide the proper voltage setting and complete interchangeability of tubes and supplies without adjustment is not possible.
SUMMARY OF THE INVENTION These and other difficulties of the prior art systems are eliminated in accordance with one aspect of the present invention by providing within the travelingwave tube package electronic circuitry for automatically regulating the voltage across the traveling-wave tube regardless of the power supply provided. This is accomplished by including within the traveling-wave tube package those elements normally associated with the power supply which are effective in determining the output parameters of the power supply.
More particularly, a typical power supply for a traveling-wave tube includes a reference voltage supply, an input resistance connected between the reference voltage and a high gain amplifier, and a feedback resistor connected between the output and the input of the amplifier. It will be shown subsequently that the output voltage V of the aforedescribed power regulator is substantially a function of three parameters of such a power supply, according to the relationship;
Er ref RB where V is the output voltage from the amplifier which is applied across the cathode to helix terminals of a traveling-wave tube, V is the reference voltage, R is the feedback resistance and R, is the input resistance.
Accordingly, by including the circuit elements determinative of the V within the traveling-wave tube package, the output voltage applied to the travelingwave tube will be a predetermined constant and will require no adjustment in the field.
According to another aspect of the present invention, only certain rather than all of the aforesaid circuit elements determinative of V are included within the traveling-wave tube and those not included are precise. Therefore, the desired V will be obtained.
It is therefore an object of the present invention to provide an improved traveling-wave tube which has improved operating characteristics due to more accurately provided operating voltages.
Another object of the present invention is to provide a traveling-wave tube which is adjusted for proper operation during manufacturing and does not require further adjustment in the field.
Another object of the present invention is to provide a traveling-wave tube tube package with separable power supply and tube but with complete field interchangeability of tube and power supply without adjustment.
Still another object of the present invention is to provide electronic circuitry within an electron discharge device such that the device is operable over a range of field applied voltages.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic diagram of a basic power supply circuit used with traveling-wave tubes.
FIG. 2 is a schematic diagram of a traveling-wave tube utilizing aspects of the present invention.
FIG. 3 is a schematic diagram similar to that shown in FIG. 2 and showing another embodiment of the present invention.
FIGS. 4, 5, 6 and 7 are schematic diagrams illustrating still other embodiments of the present invention.
DETAILED DESCRIPTION OF THE DRAWINGS FIG. 1 illustrates a highly stable fixed gain power supply suitable for use with a traveling-wave tube. The power supply includes a high gain amplifier 10. A reference voltage source 12 is provided which is connected to the input of the amplifier through input resistance R,,. A feedback resistance R,, is placed across the input and output terminals of the amplifier 10. The power supply output voltage, V is taken from the output of amplifier 10. As previously stated, the output voltage V essentially, is given by:
This may be derived as follows. If one assumes that an amplifier is an ideal amplifier, with an infinite input impedance, then the input voltage to the amplifier will be equal to ground voltage. While no amplifier can be made which is ideal, commercially availableamplifiers have such high input impedance that they may be considered as having the properties of an ideal amplifier for many purposes. Since the input voltage to amplifier 10 is substantially equal to ground potential, the input current to amplifier 10 is zero and hence all the current, I flowing through R flows through R,,, i.e.,
I =I and since I Z ref then with V =ground voltage,
ref F;
Thus the output voltage is determined substantially by three parameters, i.e., V R5, and R,,, and by varying or selecting any one or any combination of these three, the desired output voltage for the traveling-wave tube can be set.
According to the present invention, all of the three controlling components are provided within the traveling-wave tube package, or at least one of these components is provided in the traveing-wave tube package and those components not included, or their ratio, is precise. The value or values of the components selected are selected so as to provide the proper output voltage for that particular traveling-wave tube. This simplifies installation of the traveling-wave tube in the field since no adjustment is required during its installation, such adjustment being provided during the manufacturing process.
FIG. 2 illustrates the preferred embodiment of the present invention. Shown therein is a traveling-wave tube package 14 of conventional structure which includes an envelope 16 provided with a beam-generat ing assembly 18 including a cathode 20 at one end position of the envelope 16 for generating and projecting a beam of electrons longitudinally of the envelope 16 to a collector assembly 22. A slow-wave structure 24 such as a helix is positioned between the beam generating assembly l8 and the collector assembly 22 for providing wave-beam interaction between a radio frequency electromagnetic wave traveling along the slow-wave structure 24 from an input waveguide 26 to an output waveguide 28. While the present invention is schematically illustrated and will be described for purposes of illustration as applied to a low power traveling-wave tube utilizing a helix slow-wave structure, it will be appreciated that the invention is applicable for use with tubes having other types of slow-wave structures.
In the case of low noise traveling-wave tubes, a multiple anode low noise electron gun is utilized, and the appropriate voltages intermediate the cathode voltage and ground are established on anodes 21 with potentiometers 23 which can be factory adjusted to the desired auxiliary voltage when the proper cathode voltage is applied. For simplicity this low noise gun will not be illustrated in the other embodiments.
The traveling-wave tube is operated with application of a high voltage between the cathode and the slowwave structure. Provided within the traveling-wave tube package 14 is bridge circuit 15 including feedback resistor R, and an input resistor R, which are connectable in the same manner as shown in FIG. 1 with an externally provided amplifier 10, also identical to the one shown in FIG. 1. Connected between the input resistor R,, and ground is Zener diode 30 having a breakdown voltage equal to the desired reference voltage. To maintain the Zener diode at its breakdown potential, a current supply 32 is provided. Both the amplifier 10 and the current supply 32 are physically separate from the traveling-wave tube package 14 in the embodiment shown in FIG. 2. Since the traveling-wave tube package 14 includes the three determining elements of the power supply, i.e., R;,, R, and Zener 30 which provides the reference voltage, V the voltage supplied to the tube 16 is self-regulating and all that is required when a tube is replaced in the field is that an amplifier and a current source be provided for operation of the tube. No adjustments are required during the installation of the tube. This results in reduced labor cost and also provides a more accurate discharge tube voltage than possible with manual adjustment in the field. All the advantages of an integral amplifier approach (combined power supply and tube) are achieved and at the same time the disadvantages usually associated with a separable amplifier are eliminated.
FIG. 3 is similar to FIG. 2 with the exception that an additional variable resistance 34 is provided in bridge 15. Since the output voltage is a function of the ratio of R and R,,, by including the variable resistance 34 it is a simple matter to adjust the ratio of R, to R, while in the factory to provide the proper ratio.
In some situations it is less desirable to provide all of the three controlable elements of the power supply within the discharge tube package, as, for example, when a less expensive or a less bulky traveling-wave tube package is required. Referring to FIG. 4, only the feedback resistance R,, is provided within the travelingwave tube package 14. The input resistance R, and the reference voltage source 12 are external to the traveling-wave tube package 14. However, as long as the critical element or elements which are in the power supply are precisely the same value or precisely the same ratio of values, the critical element or elements in the tube package can be adjusted to match the tube to all power supplies.
FIG. 5 is similar to FIG. 2 except that an additional power stage is provided, including a direct current source or battery 36 and transistor 38. Additionally, amplifier is of the type characterized as a differential amplifier. A resistance R is provided externally of the traveling-wave tube package 14 as a part of the current supply required to maintain Zener diode 30 in the breakdown condition.
The embodiment shown in FIG. 6 is identical with that in FIG. 5 with the exception that resistor R is also included within the traveling-wave tube package 14.
FIG. 7 is identical with FIG. 5 except that Zener diode 30 is included with the externally provided portion of the power supply rather than within the traveling-wave tube package. This arrangement requires a precise value for the Zener diode for complete interchangeability.
While the present invention has been described above in sufficient detail to enable a person skilled in the art to practice the invention, by way of further illustration the component values used for a typical circuit additional amplification stages to handle high voltage output.
Although the foregoing invention has been described in some detail by way of illustration and example for purposes of clarity of understanding, it is understood that certain changes and modifications may be practiced within the spirit of the invention as limited only by the scope of the appended claims.
What is claimed is:
l. A traveling-wave tube assembly having voltage control for use with an associated remote power supply having a high gain amplifier providing sufficient voltages for the electrodes of the traveling-wave tube comprising:
a tube package housing;
a vacuum envelope located within said housing;
a beam generating assembly for generating and projecting a beam of electrons from one position within said envelope to another position therein and including a cathode;
a collector assembly located at said other position for collecting said beam of electrons,
a slow-wave structure located between said positions for providing interaction between said beam and a radio frequency wave propagating along said slowwave structure; and
circuit means connected to said tube package housing and remote from the power supply including at least part of a voltage regulation circuit comprising electronic components for operatively cooperating with the high gain amplifier for automatically establishing a predetermined voltage across said cathode and said collector assembly.
2. A traveling-wave tube assembly as in claim 1 wherein said voltage regulation circuit regulates external high gain amplifier and comprises an input impedance, a reference voltage source for coupling to the input of said amplifier through said input impedance, and a feedback impedance for connection between the input and output of said amplifier.
3. A traveling-wave tube assembly as in claim 2 wherein said input'impedance, said reference voltage source and said feedback impedance are all connected to said tube package housing and remote from the power supply.
4. A traveling-wave tube assembly of claim 3 wherein said predetermined voltage, V is determined by the equation:
out ref R a and wherein V,,,, is the voltage of said reference voltage source, R is the impedance of said feedback impedance and R, is the impedance of said input impedance.
5. A traveling-wave tube assembly as in claim 2 wherein at least one of said components consisting of said input impedance, said reference voltage source and said feedback impedance is included in said housing connected circuit means and the other of said components have precise values.
6. An electron discharge device having voltage control comprising:
an electron discharge tube package housing;
a vacuum envelope located within said housing;
a beam generating assembly for generating and projecting a beam of electrons from one position within said envelope to another position therein and including a cathode;
a collector assembly located at said other position for collecting said beam of electrons;
at power supply remote from said housing and including a high gain amplifier; and,
circuitmeans connected to said tube package housing and remote from said power supply and including at least part of a voltage regulation circuit comprising electronic component means for operatively cooperating with said high gain amplifier for automatically establishing a predetermined voltage across said cathode and said collector assembly.
7. The electron discharge device of claim 6 wherein said voltage regulation circuit regulates said high gain amplifier and comprises an input impedance, a reference voltage source coupled to the input of said amplifier and a feedback impedance connected between the input and output of said amplifier.
8. The electron discharge device of claim 7, wherein said input impedance, said reference voltage source and said feedback impedance are all included in said housing connected circuit means.
9. The electron discharge device of claim 8, wherein said predetermined voltage, v,..., is detennined by the equation:
out ruf F a and wherein V is the voltage of said reference voltage source, R is the impedance of said feedback impedance and R, is the impedance of said input impedance.
10. The electron discharge device of claim 7,
wherein at least one of said components consisting of

Claims (10)

1. A traveling-wave tube assembly having voltage control for use with an associated remote power supply having a high gain amplifier providing sufficient voltages for the electrodes of the traveling-wave tube comprising: a tube package housing; a vacuum envelope located within said housing; a beam generating assembly for generating and projecting a beam of electrons from one position within said envelope to another position therein and including a cathode; a collector assembly located at said other position for collecting said beam of electrons, a slow-wave structure located between said positions for providing interaction between said beam and a radio frequency wave propagating along said slow-wave structure; and circuit means connected to said tube package housing and remote from the power supply including at least part of a voltage regulation circuit comprising electronic components for operatively cooperating with the high gain amplifier for automatically establishing a predetermined voltage across said cathode and said collector assembly.
2. A traveling-wave tube assembly as in claim 1 wherein said voltage regulation circuit regulates external high gain amplifier and comprises an input impedance, a reference voltage source for coupling to the input of said amplifier through said input impedance, and a feedback impedance for connection between the input and output of said amplifier.
3. A traveling-wave tube assembly as in claim 2 wherein said input impedance, said reference voltage source and said feedback impedance are all connected to said tube package housing and remote from the power supply.
4. A traveling-wave tube assembly of claim 3 wherein said predetermined voltage, Vout, is determined by the equation: and wherein Vref is the voltage of said reference voltage source, Rb is the impedance of said feedback impedance and Ra is the impedance of said input impedance.
5. A traveling-wave tube assembly as in claim 2 wherein at least one of said components consisting of said input impedance, said reference voltage source and said feedback impedance is included in said housing connected circuit means and the other of said components have precise values.
6. An electron discharge device having voltage control comprising: an electron discharge tube package housing; a vacuum envelope located within said housing; a beam generating assembly for generating and projecting a beam of electrons from one position within said envelope to another position therein and including a cathode; a collector assembly located at said other position for collecting said beam of electrons; a power supply remote from said housing and including a high gain amplifier; and, circuit means connected to said tube package housIng and remote from said power supply and including at least part of a voltage regulation circuit comprising electronic component means for operatively cooperating with said high gain amplifier for automatically establishing a predetermined voltage across said cathode and said collector assembly.
7. The electron discharge device of claim 6 wherein said voltage regulation circuit regulates said high gain amplifier and comprises an input impedance, a reference voltage source coupled to the input of said amplifier and a feedback impedance connected between the input and output of said amplifier.
8. The electron discharge device of claim 7, wherein said input impedance, said reference voltage source and said feedback impedance are all included in said housing connected circuit means.
9. The electron discharge device of claim 8, wherein said predetermined voltage, Vout, is determined by the equation: and wherein Vref is the voltage of said reference voltage source, Rb is the impedance of said feedback impedance and Ra is the impedance of said input impedance.
10. The electron discharge device of claim 7, wherein at least one of said components consisting of said input impedance, said reference voltage source and said feedback impedance is included in said housing connected circuit means and the other of said components have precise values.
US2589A 1970-01-13 1970-01-13 Traveling-wave tube package with integral voltage regulation circuit for remote power supply Expired - Lifetime US3697799A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US258970A 1970-01-13 1970-01-13

Publications (1)

Publication Number Publication Date
US3697799A true US3697799A (en) 1972-10-10

Family

ID=21701501

Family Applications (1)

Application Number Title Priority Date Filing Date
US2589A Expired - Lifetime US3697799A (en) 1970-01-13 1970-01-13 Traveling-wave tube package with integral voltage regulation circuit for remote power supply

Country Status (4)

Country Link
US (1) US3697799A (en)
FR (1) FR2075526A5 (en)
GB (1) GB1343128A (en)
IL (1) IL35968A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723798A (en) * 1972-05-01 1973-03-27 Hughes Aircraft Co Traveling wave tube power supply
US3849701A (en) * 1973-05-16 1974-11-19 Westinghouse Electric Corp Integrated dual voltage power supply
US4827267A (en) * 1987-11-19 1989-05-02 Itt Gilfillan High availability solid state modulator for microwave cross-field amplifiers
US4899113A (en) * 1987-06-29 1990-02-06 Hollandse Signaalapparaten B.V. Switching helix power supply for a TWT
US5079484A (en) * 1988-11-30 1992-01-07 Thomson-Csf Voltage-regulated supply, notably for microwave tubes
US20060186817A1 (en) * 2005-02-18 2006-08-24 Communications and Power Industries, Inc., Satcom Division Dynamic depressed collector
EP1517352A3 (en) * 2003-09-17 2011-05-04 NETCOMSEC Co., Ltd Power supply circuit for traveling-wave tube which eliminates large relay and relay driving power supply

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR74801E (en) * 1954-08-05 1961-03-03 Int Standard Electric Corp Traveling wave electronic devices
US3114886A (en) * 1960-11-01 1963-12-17 Sperry Rand Corp Pulse regulating system
US3165696A (en) * 1961-03-17 1965-01-12 Bell Telephone Labor Inc Collector voltage control circuit for traveling wave tube employed in a radio repeater
US3249889A (en) * 1964-02-04 1966-05-03 Louis J Brocato Adjustable frequency sweep circuit for backward wave oscillator
US3293479A (en) * 1963-09-11 1966-12-20 Ultra low noise travelling wave tube having a grid voltage

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR74801E (en) * 1954-08-05 1961-03-03 Int Standard Electric Corp Traveling wave electronic devices
US3114886A (en) * 1960-11-01 1963-12-17 Sperry Rand Corp Pulse regulating system
US3165696A (en) * 1961-03-17 1965-01-12 Bell Telephone Labor Inc Collector voltage control circuit for traveling wave tube employed in a radio repeater
US3293479A (en) * 1963-09-11 1966-12-20 Ultra low noise travelling wave tube having a grid voltage
US3249889A (en) * 1964-02-04 1966-05-03 Louis J Brocato Adjustable frequency sweep circuit for backward wave oscillator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3723798A (en) * 1972-05-01 1973-03-27 Hughes Aircraft Co Traveling wave tube power supply
US3849701A (en) * 1973-05-16 1974-11-19 Westinghouse Electric Corp Integrated dual voltage power supply
US4899113A (en) * 1987-06-29 1990-02-06 Hollandse Signaalapparaten B.V. Switching helix power supply for a TWT
US4827267A (en) * 1987-11-19 1989-05-02 Itt Gilfillan High availability solid state modulator for microwave cross-field amplifiers
US5079484A (en) * 1988-11-30 1992-01-07 Thomson-Csf Voltage-regulated supply, notably for microwave tubes
EP1517352A3 (en) * 2003-09-17 2011-05-04 NETCOMSEC Co., Ltd Power supply circuit for traveling-wave tube which eliminates large relay and relay driving power supply
US20060186817A1 (en) * 2005-02-18 2006-08-24 Communications and Power Industries, Inc., Satcom Division Dynamic depressed collector
US7368874B2 (en) * 2005-02-18 2008-05-06 Communications and Power Industries, Inc., Satcom Division Dynamic depressed collector
US20080164816A1 (en) * 2005-02-18 2008-07-10 Communications And Power Industries, Inc. Dynamic depressed collector
US7888873B2 (en) 2005-02-18 2011-02-15 Communications And Power Industries, Inc. Dynamic depressed collector

Also Published As

Publication number Publication date
FR2075526A5 (en) 1971-10-08
GB1343128A (en) 1974-01-10
IL35968A (en) 1973-04-30
IL35968A0 (en) 1971-03-24

Similar Documents

Publication Publication Date Title
US4277679A (en) Apparatus and method for contact-free potential measurements of an electronic composition
US3704219A (en) Impedance matching network for use with sputtering apparatus
EP0151532B1 (en) Voltage controlled diode attenuator
US3697799A (en) Traveling-wave tube package with integral voltage regulation circuit for remote power supply
US2753512A (en) Voltage regulator
USRE28782E (en) Traveling-wave tube package with integral voltage regulation circuit for remote power supply
US3573536A (en) Electron discharge device with integral voltage bridge and method of setting same
US2624796A (en) Signal transducer with distortion compensating amplifier
EP1774634A2 (en) Self tuning high voltage power supply
US2547107A (en) Stabilized amplifier
US4156210A (en) Resonant transformer push-pull transistor oscillator
US2167842A (en) Electron ray voltage indicator
US2281205A (en) Voltage variation compensator
US4044249A (en) Voltage supply including bilateral attenuator
US2879445A (en) Cathode ray tube energizing circuit
US2775656A (en) Electron discharge tube amplifiers
US3211981A (en) Motor control system with direct current braking
US2881349A (en) Control device
Saito New method of measuring the noise parameters of an electron beam
US2569945A (en) Device containing electron tubes for automatically stabilizing high-voltage sources with symmetrical potential distribution
USRE26384E (en) Ultra low noise travelling wave tube having a grid voltage arrangement that includes a pre-set potentiometer
US2767327A (en) Control circuit for x-ray tubes
JPS5843697B2 (en) oscilloscope
US11728154B2 (en) Spectrometer amplifier compensation
US2961601A (en) Mean free path vacuum gage