US3695820A - Gas burners - Google Patents

Gas burners Download PDF

Info

Publication number
US3695820A
US3695820A US30030A US3695820DA US3695820A US 3695820 A US3695820 A US 3695820A US 30030 A US30030 A US 30030A US 3695820D A US3695820D A US 3695820DA US 3695820 A US3695820 A US 3695820A
Authority
US
United States
Prior art keywords
nozzle
chamber
slit
gas
burner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US30030A
Inventor
Ivor Hawkes
Joshua Swithenbank
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3695820A publication Critical patent/US3695820A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/72Safety devices, e.g. operative in case of failure of gas supply
    • F23D14/74Preventing flame lift-off
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/62Mixing devices; Mixing tubes
    • F23D14/64Mixing devices; Mixing tubes with injectors

Definitions

  • the gas is fed through one or more nozzles directed in the desired direction of gas/air flow, and air is entrained around the peripheral surface of the expanding gas jet issuing from a nozzle, and mixed with the gas by the turbulence there created.
  • Such burners may operate using primary air only, induced in the manner described, or they may use both primary and secondary air, the latter being entrained into the flame already produced by the combustion with the primary air.
  • V gas as used throughout this specification is intended to embrace any artificially produced or natural gas, or any vapor that is suitable for combustion with air.
  • the principle object of the invention is to provide'a burner of simple design in which there is a greater rate of air entrainment than is possible with a conventional injector burner, so that for a given duty a smaller burner may be used than is possible with a conventional burner.
  • a further object is to provide a burner in which the air/gas mixture boundary velocity gradients at the nozzle exit are higher than in a conventional injector burner so that a higher turndown ratio and a higher combustion intensity can be achieved.
  • Yet another object is to provide a burner with a gas inlet orifice that is readily adjustable, so that a wide variety of gases can be burned efficiently by the same burner, with the possibility of remote control of the adjustment.
  • the invention also permits easy removal from the burner of grit or particles present in dirty gases.
  • a gas burner comprises an annular chamber, a throated nozzle surrounded near its inlet end by the chamber, a circular slit orifice opening from the chamber into the nozzle upstream of the throat, for the expansion of gas through the slit to form a Coanda wall jet around the inner peripheral converging wall of the nozzle, for the induction of air down the center of the nozzle, and a flame stabilizer mounted at one end of the nozzle.
  • the jet sheet follows the converging wall and the radial pressure gradient created by the curvature of the wall to its throat brings about a high degree of air entrainment. Stable combustion then results, at a point determined by the flame stabilizer.
  • the flame stabilizer may be mounted at the next exit end of the nozzle.
  • it may be a tunnel stabilizer of larger diameter than the exit end, to provide return eddy currents by the toroidal vortex created by the gas and air immediately on leaving the exit.
  • the exit stabilizer may be formed of an array of angled blades.
  • the flame stabilizer may however be mounted at the inlet end of the nozzle in the form of a vortex chamber with non-radial air inlet slots. This enables a highly turbulent helical vortex to be formed at the nozzle exit, for the stabilizing of the flame.
  • the whole of the air for stoichiometric combustion can be induced down the center of the nozzle or the air as induced may be primary air, secondary air being entrained into the flame region itself by the flame turbulence.
  • the burner has means for adjusting the gap, for tuning to this optimum during operation.
  • a further feature of the invention consists in the provision of a flexible annular diaphragm forming one wall of the annular orifice. At low gas pressure, the diaphragm limits the effective gap width appropriately, but at higher gas pressures the diaphragm is forced towards one side of the orifice to increase the gap width, until eventually it abuts one side of the orifice, so that the effective gap width remains fixed, appropriate to the normal working pressure of the gas. AT lower pressures than this, the diaphragm flexes to reduce the gap width and increase the pressure drop necessary to maintain the necessary entrainment.
  • the gap width may be adjustable, manually or remotely.
  • the inlet end of the nozzle may be axially adjustable with respect to an outer sleeve that forms one wall of the annular slit.
  • the adjustment may be manual, as by a screwthreaded connection between the noule and the sleeve or it may be controlled by fluid pressure, as by providing a chamber within the outlet sleeve, this making it possible for the adjustment of one burner or a plurality of burners simultaneously to be remotely controlled.
  • FIG. 1 is a longitudinal section of a burner, showing its annular orifice and other essential features of construction in diagrammatic manner;
  • FIG. 2 is an end view taken in the direction of arrow A in FIG. 1;
  • FIG. 3 is a longitudinal section of the inlet end of a burner provided with means for manually controlling the width of its annular orifice;
  • FIG. 4 is a longitudinal section through the inlet end of a burner provided with fluid-pressure operated means for controlling the width of its annular orifice, the burner, also being fitted with an inlet vortex chamber;
  • FIG. 5 is a section taken to a smaller scale, on the line 55 of FIG. 4, and
  • FIG. 6 is a fragmentary longitudinal section through the inlet end of another burner provided with means for automatically controlling the width of its annular ori' fice.
  • a fuel gas inlet 1 leads to an annular chamber 2 provided with an annular orifice 3 (see also FIG. 2) from which the gas flows into a converging inlet 4 of a nozzle 5, to form a Coanda wall jet in the nozzle the jet flowing through a throat 6 and along a diverging length 7 of the nozzle to an exit 8.
  • Primary air for combustion is induced by the wall jet from the atmosphere into the inlet 4.
  • the inlet may be fitted with a vortex chamber 9, to provide for stabilization of the flame burning at the nozzle exit 8.
  • a vortex chamber is also shown in FIG. 4.
  • a tunnel type stabilizer 10 or a swirl type stabilizer, may be fitted on the nozzle exit 8 to stabilize the flame.
  • the gas and air flowing into the stabilizer 10 form return eddy currents beyond the shoulder formed by the larger diameter of the stabilizer as compared with the exit end of the nozzle 5.
  • the burner is therefore preferably adjustable as to gap width.
  • One adjustable construction is shown in FIG. 3.
  • the annular orifice 3 is formed between an outer sleeve and an inner nozzle plug 12, these being axially movable one relative to the other by means of screw threads 13, so that rotation of the sleeve 11 alters the gap proportionally to the pitch of the threads.
  • a spring 14 is compressed between the ends of the two components 11, 12.
  • An O-ring seal 15 prevents gas leakage.
  • a pointer 16 carried by the plug 12 protrudes from a slot 17 in the sleeve 11 and enables the gap width to be set in relation to scale markings (not shown) on the outside of the sleeve.
  • a pressure chamber 18 is formed by a sleeve 11A and a nozzle plug 12A. O-ring seals 15A, 15B prevent leakage from the chamber 18.
  • Pressure fluid admitted to the chamber 18 by an inlet 19 acts against the spring 14 and controls the width of the orifice gap 3 to an amount proportional to the force generated by the fluid pressure in overcoming the spring.
  • the pressure of the fluid in the chamber 18 should be such that the net axial force caused by changes in fuel gas pressure in the chamber 2 is negligible compared to that generated by the control pressure, thus rendering the gap width insensitive to changes in fuel gas pressure.
  • FIG. 4 has the advantage that the orifice gaps on a large number of burners can be rapidly and similarly altered from a location remote from the burners, by inter-coupling the fluid chambers 16 to a common control source of pressure fluid.
  • FIG. 4 also shows the vortex chamber 9, for inducing into the primary air, formed integrally with the sleeve 11A. Air approaches the vortex chamber as shown by the arrows B, and is then sucked into the chamber by the Coanda wall jet of the nozzle. It enters the chamber 9 through oblique slots 20 (see FIG. 5), and is caused to produce a vortex, which continues to and beyond the nozzle exit (FIG. 1).
  • FIG. 6 provides for automatically increasing the air entrainment ratio, at very low fuel gas pressures.
  • a flexible annular diaphragm 21 is clamped between an outer sleeve 1 1B and an end cover 11C (providing the nozzle inlet 4), so as to form one wall of the annular orifice 3.
  • the width of the orifice gap is the distance between the end 22 of a plug 128 providing the nozzle proper, and the inner edge 23 ;of the undistorted diaphragm.
  • the diaphragm distorts towards the end cover 11C until it eventually contacts a point 24 on the latter, to leave between the diaphragm and the point 22 the maximum gap width required for the efiicient operation of the burner at the normal working pressure of the gas supplied to the chamber 2.
  • a flame stabilizer 9 mounted at the inlet end may be made dismountable, e.g., separate from the sleeve 1 1A of FIG. 4.
  • a gas burner comprising;
  • said burner including a circular slit orifice opening from the chamber into the nozzle upstream of the throat, said nozzle and said slit being arranged to produce a Coanda effect entraining air as an oxidizer as a result of fuel gas under pressure issuing from said slit,
  • a flame stabilizer mounted at one end of the nozzle, said flame stabilizer being mounted at the inlet end of the nozzle and is in the form of a vortex chamber with non-radial air inlet slots,
  • a gas burner comprising:
  • a source of fuel gas an annular chamber for receiving a supply of fuel gas under pressure from said source,
  • said burner including a circular slit orifice opening from the chamber into the nozzle upstream of the throat, said nozzle and said slit being arranged to produce a Coanda effect entraining air as an oxidizer as a result of fuel gas under pressure issuing from said slit,
  • a flame stabilizer mounted at one end of the nozzle
  • end stabilizer is a tunnel stabilizer of larger diameter than the exit end, to provide return eddy currents by the helical vortex created by the gas and air immediately on leaving the exit.
  • a gas burner comprising:
  • a throated nozzle surrounded near its inlet end by the chamber, a circular slit orifice opening from the chamber into the nozzle upstream of the throat,

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Abstract

A gas burner comprises an annular chamber surrounding the fuel and air inlet end of a throated nozzle, with a circular slit orifice opening from the chamber into the nozzle upstream of the throat, and a flame stabilizer at one end of the nozzle, fuel gas passing through the slit expanding to form a Coanda wall jet around the inlet peripheral converging wall of the nozzle and inducing a flow of air down the center of the nozzle, the radial pressure gradient created by the jet sheet following the converging wall of the nozzle to its throat bringing about a high degree of air entrainment, whereby stable combustion results, at a point determined by the flame stabilizer.

Description

United States Patent [1511 3,695,820 Hawkes et al. 4511 Oct, 3, 1972 GAS BURNERS 3,047,208 7/1962 Coanda ..239/DIG. 7 [72] Inventors: 1V0! Hawkes, BOX 127, Lyme, N.I'l.; FOREIGN PATENTS OR APPLICATIONS Joshua Swnthenbank, Bryce Hill Lane Hame age 845,676 8/1960 Great Britain ..239/D1G. 7 [221 F1led= P" 20, 1970 857,780 4/1939 France ..60/39.49 [21] A 1. No.: 30 030 pp Primary Examiner-Carroll B. Dority, Jr.
Attorney-Bums, Doane, Swecker & Mathis [30] Foreign Application Priority Data April 19, 1969 Great Britain ..20,1 10/69 [57] ABSTRACT A gas burner comprises an annular chamber surround- [52] US. Cl. .......431/354, 431/350, 239/401, ing the fuel and air inlet end of a throated nozzle, with 239/403, 239/417 a circular slit orifice opening from the chamber into [51] Int. Cl ..F23d 13/40 the nozzle upstream of the throat, and a fl i [58] Field of Search .....431/350, 353, 354; 60/3949; izer at one end of the nozzle, fuel gas passing through 239 7 403 401 39 C, 4 7 the slit expanding to form a Coanda wall jet around the inlet peripheral converging wall of the nozzle and [56] References Cited inducing a flow of air down the center of the nozzle, the radial pressure gradient created by the jet sheet UNITED STATES PATENTS following the converging wall of the nozzle to its throat bringing about a high degree of air entrainment, 858,189 6/1907 Leps ..431/354 whereby stable combustion results, at a point detep 1,885,067 10/ 1932 Woodeson ..239/403 mined by the flame Stabilizer 3,220,460 11/1965 Goubsky ..431/353 X 3,391,981 7/1968 Voorheis et al. ..43 1/185 8 Claims, 6 Drawing Figures This invention relates to gas burners of the injector type in which air for combustion is entrained by the flow of the fuel gas under pressure.
In the usual injector type burner, the gas is fed through one or more nozzles directed in the desired direction of gas/air flow, and air is entrained around the peripheral surface of the expanding gas jet issuing from a nozzle, and mixed with the gas by the turbulence there created. Such burners may operate using primary air only, induced in the manner described, or they may use both primary and secondary air, the latter being entrained into the flame already produced by the combustion with the primary air.
The word gas as used throughout this specification is intended to embrace any artificially produced or natural gas, or any vapor that is suitable for combustion with air. V
The principle object of the invention is to provide'a burner of simple design in which there is a greater rate of air entrainment than is possible with a conventional injector burner, so that for a given duty a smaller burner may be used than is possible with a conventional burner.
A further object is to provide a burner in which the air/gas mixture boundary velocity gradients at the nozzle exit are higher than in a conventional injector burner so that a higher turndown ratio and a higher combustion intensity can be achieved.
Yet another object is to provide a burner with a gas inlet orifice that is readily adjustable, so that a wide variety of gases can be burned efficiently by the same burner, with the possibility of remote control of the adjustment.
Arising from the simple design of the burner, the invention also permits easy removal from the burner of grit or particles present in dirty gases.
According to the present invention a gas burner comprises an annular chamber, a throated nozzle surrounded near its inlet end by the chamber, a circular slit orifice opening from the chamber into the nozzle upstream of the throat, for the expansion of gas through the slit to form a Coanda wall jet around the inner peripheral converging wall of the nozzle, for the induction of air down the center of the nozzle, and a flame stabilizer mounted at one end of the nozzle. By the Coanda effect, the jet sheet follows the converging wall and the radial pressure gradient created by the curvature of the wall to its throat brings about a high degree of air entrainment. Stable combustion then results, at a point determined by the flame stabilizer.
The flame stabilizer may be mounted at the next exit end of the nozzle. Thus, it may be a tunnel stabilizer of larger diameter than the exit end, to provide return eddy currents by the toroidal vortex created by the gas and air immediately on leaving the exit. Alternatively, the exit stabilizer may be formed of an array of angled blades.
The flame stabilizer may however be mounted at the inlet end of the nozzle in the form of a vortex chamber with non-radial air inlet slots. This enables a highly turbulent helical vortex to be formed at the nozzle exit, for the stabilizing of the flame.
By suitable proportioning of the relative dimensions of the circular slit diameter and gap, and the diameter of the nozzle throat, the whole of the air for stoichiometric combustion can be induced down the center of the nozzle or the air as induced may be primary air, secondary air being entrained into the flame region itself by the flame turbulence. For any given gas and burner configuration there is an optimum slit gap width for maximum flame intensity, and preferably the burner has means for adjusting the gap, for tuning to this optimum during operation. Once the gap has been set, the gas/air entrainment ratio is comparatively insensitive to gas pressure over a wide range, and down to comparatively low pressures. At very low gas pressures.
approaching pilot light operation, the pressure drop across the gap from the annular chamber into the nozzle may be insufficient to produce an effective Coanda wall jet and therefore the burner tends to burn overrich as insufficient air is entrained. To overcome this, a further feature of the invention consists in the provision of a flexible annular diaphragm forming one wall of the annular orifice. At low gas pressure, the diaphragm limits the effective gap width appropriately, but at higher gas pressures the diaphragm is forced towards one side of the orifice to increase the gap width, until eventually it abuts one side of the orifice, so that the effective gap width remains fixed, appropriate to the normal working pressure of the gas. AT lower pressures than this, the diaphragm flexes to reduce the gap width and increase the pressure drop necessary to maintain the necessary entrainment.
Whether or not such a flexible diaphragm is provided, the gap width may be adjustable, manually or remotely. Thus, the inlet end of the nozzle may be axially adjustable with respect to an outer sleeve that forms one wall of the annular slit. The adjustment may be manual, as by a screwthreaded connection between the noule and the sleeve or it may be controlled by fluid pressure, as by providing a chamber within the outlet sleeve, this making it possible for the adjustment of one burner or a plurality of burners simultaneously to be remotely controlled.
The invention will now be further described with reference to several embodiments shown in the accompanying diagrams, in which:
FIG. 1 is a longitudinal section of a burner, showing its annular orifice and other essential features of construction in diagrammatic manner;
FIG. 2 is an end view taken in the direction of arrow A in FIG. 1;
FIG. 3 is a longitudinal section of the inlet end of a burner provided with means for manually controlling the width of its annular orifice;
FIG. 4 is a longitudinal section through the inlet end of a burner provided with fluid-pressure operated means for controlling the width of its annular orifice, the burner, also being fitted with an inlet vortex chamber;
FIG. 5 is a section taken to a smaller scale, on the line 55 of FIG. 4, and
FIG. 6is a fragmentary longitudinal section through the inlet end of another burner provided with means for automatically controlling the width of its annular ori' fice.
In FIG. 1, a fuel gas inlet 1 leads to an annular chamber 2 provided with an annular orifice 3 (see also FIG. 2) from which the gas flows into a converging inlet 4 of a nozzle 5, to form a Coanda wall jet in the nozzle the jet flowing through a throat 6 and along a diverging length 7 of the nozzle to an exit 8. Primary air for combustion is induced by the wall jet from the atmosphere into the inlet 4. The inlet may be fitted with a vortex chamber 9, to provide for stabilization of the flame burning at the nozzle exit 8. Such a vortex chamber is also shown in FIG. 4. Alternatively, a tunnel type stabilizer 10, or a swirl type stabilizer, may be fitted on the nozzle exit 8 to stabilize the flame.
The gas and air flowing into the stabilizer 10 form return eddy currents beyond the shoulder formed by the larger diameter of the stabilizer as compared with the exit end of the nozzle 5.
The efficient burning of different gases necessitates an appropriate gap width for the orifice 3. The burner is therefore preferably adjustable as to gap width. One adjustable construction is shown in FIG. 3. The annular orifice 3 is formed between an outer sleeve and an inner nozzle plug 12, these being axially movable one relative to the other by means of screw threads 13, so that rotation of the sleeve 11 alters the gap proportionally to the pitch of the threads. To take up thread backlash and provide a resistance to the rotary motion, a spring 14 is compressed between the ends of the two components 11, 12. An O-ring seal 15 prevents gas leakage. A pointer 16 carried by the plug 12 protrudes from a slot 17 in the sleeve 11 and enables the gap width to be set in relation to scale markings (not shown) on the outside of the sleeve.
In FIG. 4, a pressure chamber 18 is formed by a sleeve 11A and a nozzle plug 12A. O-ring seals 15A, 15B prevent leakage from the chamber 18. Pressure fluid admitted to the chamber 18 by an inlet 19 acts against the spring 14 and controls the width of the orifice gap 3 to an amount proportional to the force generated by the fluid pressure in overcoming the spring. The pressure of the fluid in the chamber 18 should be such that the net axial force caused by changes in fuel gas pressure in the chamber 2 is negligible compared to that generated by the control pressure, thus rendering the gap width insensitive to changes in fuel gas pressure.
The construction of FIG. 4 has the advantage that the orifice gaps on a large number of burners can be rapidly and similarly altered from a location remote from the burners, by inter-coupling the fluid chambers 16 to a common control source of pressure fluid.
FIG. 4 also shows the vortex chamber 9, for inducing into the primary air, formed integrally with the sleeve 11A. Air approaches the vortex chamber as shown by the arrows B, and is then sucked into the chamber by the Coanda wall jet of the nozzle. It enters the chamber 9 through oblique slots 20 (see FIG. 5), and is caused to produce a vortex, which continues to and beyond the nozzle exit (FIG. 1).
The construction of FIG. 6 provides for automatically increasing the air entrainment ratio, at very low fuel gas pressures. A flexible annular diaphragm 21 is clamped between an outer sleeve 1 1B and an end cover 11C (providing the nozzle inlet 4), so as to form one wall of the annular orifice 3. At zero pressure difference between the annular chamber 2 and the atmosphere, the width of the orifice gap is the distance between the end 22 of a plug 128 providing the nozzle proper, and the inner edge 23 ;of the undistorted diaphragm. As the fuel gas pressure increases, the diaphragm distorts towards the end cover 11C until it eventually contacts a point 24 on the latter, to leave between the diaphragm and the point 22 the maximum gap width required for the efiicient operation of the burner at the normal working pressure of the gas supplied to the chamber 2.
Where the flame stabilizer 10 is mounted at the exit end, the annular slit 3 is readily accessible for cleaning. For cleaning purposes, a flame stabilizer 9 mounted at the inlet end may be made dismountable, e.g., separate from the sleeve 1 1A of FIG. 4.
What we claim is:
l. A gas burner comprising;
a source of fuel gas,
an annular chamber for receiving a supply of fuel gas under pressure from said source,
a convergent-divergent throated nozzle surrounded near its inlet end by said annular chamber,
said burner including a circular slit orifice opening from the chamber into the nozzle upstream of the throat, said nozzle and said slit being arranged to produce a Coanda effect entraining air as an oxidizer as a result of fuel gas under pressure issuing from said slit,
a flame stabilizer mounted at one end of the nozzle, said flame stabilizer being mounted at the inlet end of the nozzle and is in the form of a vortex chamber with non-radial air inlet slots,
whereby expansion of gas through the slit forms a Coanda wall jet around the inner peripheral converging wall of the nozzle for the induction of air down the center of the nozzle.
2. A gas burner comprising:
a source of fuel gas, an annular chamber for receiving a supply of fuel gas under pressure from said source,
a convergent-divergent throated nozzle surrounded near its inlet end by said annular chamber,
said burner including a circular slit orifice opening from the chamber into the nozzle upstream of the throat, said nozzle and said slit being arranged to produce a Coanda effect entraining air as an oxidizer as a result of fuel gas under pressure issuing from said slit,
means for adjusting the gap where the slit opens into the nozzle,
a flame stabilizer mounted at one end of the nozzle,
whereby expansion of gas through the slit forms .a
Coanda wall jet around the inner peripheral converging wall of the nozzle for the induction of air down the center of the nozzle.
3. A gas burner as in claim 2, wherein the flame stabilizer is mounted at the exit end of the nozzle.
4. A gas burner as in claim 3, wherein the end stabilizer is a tunnel stabilizer of larger diameter than the exit end, to provide return eddy currents by the helical vortex created by the gas and air immediately on leaving the exit.
5. A gas burner comprising:
an annular chamber,
a throated nozzle surrounded near its inlet end by the chamber, a circular slit orifice opening from the chamber into the nozzle upstream of the throat,
sleeve that forms one wall of the annular orifice.
7. A gas burner as in claim 6, wherein the adjustment is manual, as by a screwthreaded connection between the nozzle and the sleeve.
8. A gas burner as in claim 6, wherein said nozzle and said chamber are movable axially thereof and include piston means for displacing said chamber selectively relative to said nozzle, whereby the adjustment of the gap is made by said piston means.

Claims (8)

1. A gas burner comprising: a source of fuel gas, an annular chamber for receiving a supply of fuel gas under pressure from said source, a convergent-divergent throated nozzle surrounded near its inlet end by said annular chamber, said burner including a circular slit orifice opening from the chamber into the nozzle upstream of the throat, said nozzle and said slit being arranged to produce a Coanda effect entraining air as an oxidizer as a result of fuel gas under pressure issuing from said slit, a flame stabilizer mounted at one end of the nozzle, said flame stabilizer being mounted at the inlet end of the nozzle and is in the form of a vortex chamber with non-radial air inlet slots, whereby expansion of gas through the slit forms a Coanda wall jet around the inner peripheral converging wall of the nozzle for the induction of air down the center of the nozzle.
2. A gas burner comprising: a source of fuel gas, an annular chamber for receiving a supply of fuel gas under pressure from said source, a convergent-divergent throated nozzle surrounded near its inlet end by said annular chamber, said burner including a circular slit orifice opening from the chamber into the nozzle upstream of the throat, said nozzle and said slit being arranged to produce a Coanda effect entraining air as an oxidizer as a result of fuel gas under pressure issuing from said slit, means for adjusting the gap where the slit opens into the nozzle, a flame stabilizer mounted at one end of the nozzle, whereby expansion of gas through the slit forms a Coanda wall jet around the inner peripheral converging wall of the nozzle for the induction of air down the center of the nozzle.
3. A gas burner as in claim 2, wherein the flame stabilizer is mounted at the exit end of the nozzle.
4. A gas burner as in claim 3, wherein the end stabilizer is a tunnel stabilizer of larger diameter than the exit end, to provide return eddy currents by the helical vortex created by the gas and air immediately on leaving the exit.
5. A gas burner comprising: an annular chamber, a throated nozzle surrounded near its inlet end by the chamber, a circular slit orifice opening from the chamber into the nozzle upstream of the throat, a flexible annular diaphragm forming one wall of the annular orifice, a flame stabilizer mounted at one end of the nozzle, and a fuel gas inlet to the annular chamber, whereby expansion of gas through the slit will form a Coanda wall jet around the inner peripheral converging wall of the nozzle, for the induction of air down the center of the nozzle.
6. A gas burner as in claim 5, wherein the inlet end of the nozzle is axially adjustable with respect to an outer sleeve that forms one wall of the annular orifice.
7. A gas burner as in claim 6, wherein the adjustment is manual, as by a screwthreaded connection between the nozzle and the sleeve.
8. A gas burner as in claim 6, wherein said nozzle and said chamber are movable axially thereof and include piston means for displacing said chamber selectively relative to said nozzle, whereby the adjustment of the gap is made by said piston means.
US30030A 1969-04-19 1970-04-20 Gas burners Expired - Lifetime US3695820A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB20110/69A GB1193820A (en) 1969-04-19 1969-04-19 Improvements in or relating to Gas Burners

Publications (1)

Publication Number Publication Date
US3695820A true US3695820A (en) 1972-10-03

Family

ID=10140551

Family Applications (1)

Application Number Title Priority Date Filing Date
US30030A Expired - Lifetime US3695820A (en) 1969-04-19 1970-04-20 Gas burners

Country Status (2)

Country Link
US (1) US3695820A (en)
GB (1) GB1193820A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833337A (en) * 1971-04-29 1974-09-03 British Petroleum Co Flarestacks
US3950125A (en) * 1974-05-23 1976-04-13 Noralco Overseas, Inc. Burners
FR2324988A1 (en) * 1973-01-18 1977-04-15 Flaregas Eng Ltd APPARATUS FOR MIXING AIR WITH EXHAUST GASES, ESPECIALLY FOR TORCHERS
US4073613A (en) * 1974-06-25 1978-02-14 The British Petroleum Company Limited Flarestack Coanda burners with self-adjusting slot at pressure outlet
US4125361A (en) * 1975-11-12 1978-11-14 The British Petroleum Company Limited Baffle
US4332547A (en) * 1979-10-01 1982-06-01 Macdonald Jr James D Thrust augmenter ejector combustion device
US4846143A (en) * 1988-04-19 1989-07-11 Lincoln Foodservice Products, Inc. Small gas power burner
US5458136A (en) * 1993-03-31 1995-10-17 Paul Ritzau Pari-Werk Gmbh Assembly for producing aerosol pulses
US5857419A (en) * 1996-06-20 1999-01-12 Selas Corporation Of America Converging burner tip
CN1110648C (en) * 1993-03-20 2003-06-04 卡伯特公司 Apparatus and method for burning combustible gases
US20060035183A1 (en) * 2003-02-14 2006-02-16 Richard Carroni Mixer
US20070107436A1 (en) * 2005-11-14 2007-05-17 General Electric Company Premixing device for low emission combustion process
US20070119169A1 (en) * 2005-11-28 2007-05-31 Al Berger Turbo-lag compensation system having an ejector
US20070283939A1 (en) * 2005-11-28 2007-12-13 Al Berger Turbo-lag compensation system for an engine
EP3217094A1 (en) 2016-03-11 2017-09-13 Air Products And Chemicals, Inc. Burner apparatus and method of combustion
US20200378597A1 (en) * 2016-06-03 2020-12-03 BSH Hausgeräte GmbH Gas burner and domestic cooking appliance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1593391A (en) * 1977-01-28 1981-07-15 British Petroleum Co Flare
US4993977A (en) * 1989-06-21 1991-02-19 Fmc Corporation Water jet propulsion module
US5823759A (en) * 1993-03-20 1998-10-20 Cabot Corporation Apparatus and method for burning combustible gases

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US858189A (en) * 1906-11-24 1907-06-25 Henry M Leps Burner for natural gas.
US1885067A (en) * 1928-01-19 1932-10-25 Clarke Chapman Ltd Fuel burner
FR857780A (en) * 1939-04-06 1940-09-28 Method and device for propulsion
DE948350C (en) * 1938-10-22 1956-08-30 Brev Et Procedes Coanda Sa D E Injector, ejector or other similarly usable jet devices
GB845676A (en) * 1956-11-14 1960-08-24 Sebac Nouvelle Sa An improved spraying device
US3047208A (en) * 1956-09-13 1962-07-31 Sebac Nouvelle Sa Device for imparting movement to gases
US3220460A (en) * 1963-04-12 1965-11-30 Colt Ventilation & Heating Ltd Heat generators
US3391981A (en) * 1966-06-13 1968-07-09 Coen Company Forced air draft burner construction for combustible gases

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US858189A (en) * 1906-11-24 1907-06-25 Henry M Leps Burner for natural gas.
US1885067A (en) * 1928-01-19 1932-10-25 Clarke Chapman Ltd Fuel burner
DE948350C (en) * 1938-10-22 1956-08-30 Brev Et Procedes Coanda Sa D E Injector, ejector or other similarly usable jet devices
FR857780A (en) * 1939-04-06 1940-09-28 Method and device for propulsion
US3047208A (en) * 1956-09-13 1962-07-31 Sebac Nouvelle Sa Device for imparting movement to gases
GB845676A (en) * 1956-11-14 1960-08-24 Sebac Nouvelle Sa An improved spraying device
US3220460A (en) * 1963-04-12 1965-11-30 Colt Ventilation & Heating Ltd Heat generators
US3391981A (en) * 1966-06-13 1968-07-09 Coen Company Forced air draft burner construction for combustible gases

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833337A (en) * 1971-04-29 1974-09-03 British Petroleum Co Flarestacks
FR2324988A1 (en) * 1973-01-18 1977-04-15 Flaregas Eng Ltd APPARATUS FOR MIXING AIR WITH EXHAUST GASES, ESPECIALLY FOR TORCHERS
US3950125A (en) * 1974-05-23 1976-04-13 Noralco Overseas, Inc. Burners
US4073613A (en) * 1974-06-25 1978-02-14 The British Petroleum Company Limited Flarestack Coanda burners with self-adjusting slot at pressure outlet
US4125361A (en) * 1975-11-12 1978-11-14 The British Petroleum Company Limited Baffle
US4332547A (en) * 1979-10-01 1982-06-01 Macdonald Jr James D Thrust augmenter ejector combustion device
US4846143A (en) * 1988-04-19 1989-07-11 Lincoln Foodservice Products, Inc. Small gas power burner
CN1110648C (en) * 1993-03-20 2003-06-04 卡伯特公司 Apparatus and method for burning combustible gases
US5458136A (en) * 1993-03-31 1995-10-17 Paul Ritzau Pari-Werk Gmbh Assembly for producing aerosol pulses
US5857419A (en) * 1996-06-20 1999-01-12 Selas Corporation Of America Converging burner tip
ES2148029A1 (en) * 1996-06-20 2000-10-01 Selas Corp Of America Converging burner tip
US20060035183A1 (en) * 2003-02-14 2006-02-16 Richard Carroni Mixer
US8266911B2 (en) * 2005-11-14 2012-09-18 General Electric Company Premixing device for low emission combustion process
US20070107436A1 (en) * 2005-11-14 2007-05-17 General Electric Company Premixing device for low emission combustion process
US20070119169A1 (en) * 2005-11-28 2007-05-31 Al Berger Turbo-lag compensation system having an ejector
US20070283939A1 (en) * 2005-11-28 2007-12-13 Al Berger Turbo-lag compensation system for an engine
US7314043B1 (en) 2005-11-28 2008-01-01 Ford Global Technologies Llc Turbo-lag compensation system for an engine
US7877996B2 (en) 2005-11-28 2011-02-01 Ford Global Technologies, Llc Turbo-lag compensation system having an ejector
EP3217094A1 (en) 2016-03-11 2017-09-13 Air Products And Chemicals, Inc. Burner apparatus and method of combustion
WO2017153348A1 (en) 2016-03-11 2017-09-14 Air Products And Chemicals, Inc. Burner apparatus and method of combustion
US10914468B2 (en) 2016-03-11 2021-02-09 Technip Benelux B.V. Burner apparatus and method of combustion
US20200378597A1 (en) * 2016-06-03 2020-12-03 BSH Hausgeräte GmbH Gas burner and domestic cooking appliance
US11543122B2 (en) * 2016-06-03 2023-01-03 BSH Hausgeräte GmbH Gas burner and domestic cooking appliance

Also Published As

Publication number Publication date
GB1193820A (en) 1970-06-03

Similar Documents

Publication Publication Date Title
US3695820A (en) Gas burners
US2515845A (en) Flame pocket fluid fuel burner
US4708638A (en) Fluid fuel fired burner
US2621477A (en) Combustion apparatus having valve controlled passages for preheating the fuel-air mixture
US3574506A (en) Blow torch burner
US5511970A (en) Combination burner with primary and secondary fuel injection
US4482313A (en) Gasburner system
GB2080513A (en) A solid fuel burner
KR930010360A (en) Annular combustion chamber and how it works
US3663154A (en) Blow torch burner
US3676048A (en) Excess air burner
US4805411A (en) Combustion chamber for gas turbine
GB1319361A (en) Portable gas fuelled cooking device
US3315726A (en) Industrial burner
US3255802A (en) Method and apparatus for producing flame jet and controlling temperature and flame stability of same
US3363661A (en) Apparatus for producing a flame jet by combusting counter flow reactants
US1671494A (en) Fuel burner
US3816061A (en) Fuel mixing chamber for heating torches
US3182711A (en) Nozzle mixing type gas burner
SE8004978L (en) WITH BLUE CREATING WORKING BURNER
US1692853A (en) Liquid-fuel burner
ES409672A1 (en) Fluid fuel burners
US2759473A (en) Radiant tube gas burner
US3915624A (en) Gas burners
SU1508050A1 (en) Burner