US3695045A - Rock bolts - Google Patents

Rock bolts Download PDF

Info

Publication number
US3695045A
US3695045A US8345A US3695045DA US3695045A US 3695045 A US3695045 A US 3695045A US 8345 A US8345 A US 8345A US 3695045D A US3695045D A US 3695045DA US 3695045 A US3695045 A US 3695045A
Authority
US
United States
Prior art keywords
rock
hole
tension
bolt
rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US8345A
Inventor
Chester I Williams
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WILLIAMS FORM ENGINEERING Corp A MI CORP
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3695045A publication Critical patent/US3695045A/en
Assigned to WILLIAMS FORM ENGINEERING CORPORATION, A MI CORP. reassignment WILLIAMS FORM ENGINEERING CORPORATION, A MI CORP. ASSIGNMENT OF ASSIGNORS INTEREST. SEE RECORD FOR DETAILS Assignors: WILLIAMS, MABEL MARIE, PERSONAL REPRESENTATIVE OF THE ESTATE OF C. I. WILLIAMS, DEC'D.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D20/00Setting anchoring-bolts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0026Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection characterised by constructional features of the bolts
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D21/00Anchoring-bolts for roof, floor in galleries or longwall working, or shaft-lining protection
    • E21D21/0093Accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B13/00Dowels or other devices fastened in walls or the like by inserting them in holes made therein for that purpose
    • F16B13/14Non-metallic plugs or sleeves; Use of liquid, loose solid or kneadable material therefor

Definitions

  • ABSTRACT A method of reinforcing a rock formation with rock bolts establishing a lock-in pre-stress condition inhibiting the initiation of movement of the formation, and structural features of a rock bolt assembly capable of use in the practice of the method.
  • ROCK BOLTS BACKGROUND OF THE INVENTION It is generally recognized that a stratified or fractured rock formation can be held in place by the use of bolts extending from the surface inward to a sufficient depth to suit the requirements of the particular conditions. Bolts of 40 feet in length are not uncommon. It has also been established that rock laminae can be locked together with bolts to function as a self-supporting beam to form the roof of tunnels or other excavations. It is common practice to provide anchor devices at the inner ends of the bolts so that some degree of tension can be developed between that point and a bearing plate placed over the surface opening of a hole in which the bolt is installed. These bolts are frequently given a protective covering and a bonding to the rock by injecting grout in the hole around the bolt rod.
  • Prior anchoring devices have generally proven inadequate to sustain the full load capability of the bolt rod, so that reliance had to be made on a bond between the bolt and the rock formation through the surrounding grout in order to develop the full load capability of any particular rock bolt installation. As long as reliance upon the grout was necessary, it is clearly out of the question to develop more than a relatively minor degree of pre-stress. Rock bolt installations were developed around these limitations. Once the grout had set, further pre-stress could not be considered due to the fact that the bolt became locked to the rock formation along its full length. It was therefore incapable of any further stretching, which would be necessary for any increase in stress. A further problem associated with conventional anchor devices is the general impossibility of grouting the anchor along with the bolt rod.
  • the present invention provides a method which can preserve the initial placement of a rock formation by applying pre-stress to an intensity corresponding to a working load of the rock bolt rod, which is related to the yield strength of the rod material, thus utilizing the primary strength characteristic of the bolt that would not involve displacement of the rock formation.
  • the components of a rock bolt assembly are adapted to permit this degree of pre-stress, and also permit the injection of grout to the point of full recirculation within the bolt hole throughout the length of the bolt assembly, including the anchor device.
  • the bolt is also adapted to be disengaged from the hole in the formation prior to grouting, if it is discovered during the setting of the anchor device that the rock formation is too soft or fractured to sustain the necessary intensity of set. This latter feature is obtained by utilizing a rotatively set anchor in combination with rod-section coupling having differential disengagement torque.
  • FIG. 1 is a sectional elevation showing the installation of a rock bolt assembly in a hole in a rock formation inclined upwardly from the entrance.
  • FIG. 2 is a sectional elevation on an enlarged scale over that of FIG. 1, showing the un-expanded condition of an anchor device.
  • FIG. 3 is a view of the mechanism shown in FIG. 2, in the expanded condition.
  • FIG. 4 is a transverse section on the plane 4-4 of FIG. 2, on an enlarged scale.
  • FIG. 5 is a schematic illustration showing a typical installation of a pattern of rock bolts to secure a roclt formation over a tunnel.
  • FIG. 6 is a perspective view of an anchor provided with a resilient shim sleeve.
  • FIG. 7 is a perspective view of the shim sleeve shown in FIG. 6, on an enlarged scale.
  • FIG. 8 is a fragmentary axial section through an expansible shell with one form of a peripheral concavity.
  • FIG. 9 is an axial section of an expansible shell with a modified form of peripheral concavity.
  • FIG. 10 is a diagram illustrating the stress condition in a rock formation resulting from the installation of a pattern of rock bolts.
  • FIG. 1 l is a view of the surface components of a rock bolt installation, and illustrating the application of grout.
  • FIG. 12 is a plan view of a surface bearing plate.
  • FIG. 13 is an exploded view showing a stopper for insertion in the entrance of the bolt hole, in conjunction with a vent tube insertable in the side passage in the stopper.
  • FIG. 14 is a plan view of a bevel washer used with the surface components of the rock bolt assembly.
  • FIG. 15 is a side elevation of the washer shown in FIG. 14.
  • FIG. 16 is a perspective view of a form of bearing plate capable of accommodation to large angles of deviation from a perpendicular relationship between the plane of the surface of the rock formation and the axis of the bolt rod.
  • FIG. 17 is a sectional elevation of a from of coupling uniting sections of the bolt rod.
  • FIG. 18 is a sectional elevation showing a modified form of locking arrangement for controlling back rotation of a coupling connection uniting two rod sections.
  • FIG. 19 is a sectional elevation showing a further modification of coupling arrangement uniting adjacent rod sections. 7
  • FIG. 20 illustrates a modified form of anchor assembly providing a relatively greater shell area, and adapted to prevent pull-through of the cone member in soft rock conditions.
  • FIG. 1 illustrates a typical installation of a rock bolt assembly in a rock formation 30, which has been prepared by drilling a hole 31 from the surface .32 to a sufficient depth to involve the desired amount of the rock formation in the securing effect of the rock bolt installation.
  • the rock bolt assembly includes the anchor device 33, a bolt rod 34 (which may be in one piece, or a series of axially interconnected sections), a surface plate 35, a bevel washer 36, and a standard nut 37.
  • FIG. 1 illustrates a typical installation of a rock bolt assembly in a rock formation 30, which has been prepared by drilling a hole 31 from the surface .32 to a sufficient depth to involve the desired amount of the rock formation in the securing effect of the rock bolt installation.
  • the rock bolt assembly includes the anchor device 33, a bolt rod 34 (which may be in one piece, or a series of axially interconnected sections), a surface plate 35, a bevel washer 36, and a standard nut 37.
  • FIG. 1 illustrates the condition of the installation immediately after grouting, in which a charge of liquid cementitious material is injected into the hole 31 surrounding the bolt rod and the anchor device to provide a protective sheathe around these components, and to bond them to the rock formation throughout the length of the assembly.
  • a sealant packing 38 is jammed into the entrance of the hole3l around the bolt rod, and the bearing plate 35 is placed down over it.
  • the flexible tube 39 traverses this packing; and becomes a means for carrying the grout into the hole.
  • Grout should always be injected at the low end of a hole, withprovision being made for the exhaust of the entrapped air as the charge of grout advances. Since the hole is inclined upwardly from the entrance in the FIG. 1 installation, grout is injectedthrough the tube '39, whichrepresents the low end of the hole in this form of installation. As the grout progressively fills the holefair is withdrawn through the conduit formed by the hollow interior of the bolt rod 34. The injection of the grout continues through the tube 39 until the hole is completelyfilled, which is indicated by movement of grout down through the bolt rod to the point where it emerges at the surface, in the manner illustrated in FIG. 11.
  • the injection of the grout is accomplished by any conventional form of .grout pump, which has a delivery tube 40 provided with a convenient adapter 41 for receiving the tube 39.
  • a pump of the type described in my US. Pat. No. 3,227,426 is recommended.
  • the stream of grout 42 emerging from the end of the bolt rod 34 provides a positive indication that the hole 31 has been completely filled. After the grouting operation has been completed, the hole in the bolt rod 34 from which the grout is shown emerging in FIG. 11,
  • the diameters of the holes in the bolt rod 34 and in the tube 39 are of the order of a quarter of an inch, or
  • FIGS. 2 and 3 The securing of the anchor device 33 is illustrated in FIGS. 2 and 3.
  • the components of the anchor device are shown installed on the threaded end 43 of the rod section 34.
  • a cone member 44 has a threaded central opening extending throughout its length, and is normally in threaded engagement with the rod section 43.
  • a thrust ring 45 is also in threaded engagement with the rod section 43, and is disposed at the extremity of the threaded portion of this section.
  • the expansible shell 46 surrounds the cone member 44, and is axially interposed between the cone and the thrust ring 45. Relative rotation between the rod section 34 and the cone 44 will result in movement of the cone 44 toward the axially-fixed thrust ring 45, resulting in the expansion of the shell 46.
  • This shell is C-shaped in cross-section, as best shown in FIG. 4.
  • the cone is provided with a key ridge 47 located within the discontinuity 48 of the C-shaped cross-section of the shell 46.
  • This discontinuity is provided to' facilitate the expansion of the shell, and works in conjunction with the point of weakness established by the axial groove 49 on the opposite side of the shell.
  • This portion of the shell functions somewhat in the manner of a hinge as the cone 44 advances to the left, as shown in FIGS. 2 and 3. Fracturing takes place initially in the shell adjacent the notched area 49, as the cone proceeds from the FIG. 2
  • This degree of anchor set will permit a much easier pre-stressing operation, which is accomplished by progressively tightening the nut 37 to a predetermined torque determined by the yield strength of the particular steel selected for the bolt rod 34, and by the cross-sectional area of this rod. These torque requirements are sufficiently high to present a real problem in the axial securing of the thrust ring 45. Because of the intensity of the forces involved, there is a strong tendency to frictionally induce continued rotation of the thrust ring with respect to the bolt rod during the setting operation, and to thus strip out the threaded engagement between the thrust ring 45 and the bolt rod.
  • a shoulder against which the thrust ring can advance and also provide a diameter- .of the thrust ring sufficiently low to be less than the unexpanded diameter of the shell 46, and thus facilitate the insertion of the anchor assembly into the hole 31, and eliminate any substantial interference with the axial flow of grout to or from the end of the anchor through the unclosed C area of the shell and over the hardened slip washers and thrust rings.
  • a pair of hardened slip rings 505l which may be coated with oil or grease to minimize the torque transfer between the shell and the thrust ring.
  • the proportions of the thrust ring specified above operate best in conjunction with a particular slope relationship on the periphery of the cone 44.
  • the elements of the cone 44 are disposed at an angle with respect to the axis of the rod 34 of less than fifteen degrees, with ten degrees giving the best performance.
  • the conical periphery 52 engages a similarly shaped surface on the inside of the shell 46, the walls of which are wedgeshaped in axial cross-section. The fracturing of the shell as the expansion proceeds therefore generates a group of wedges spaced around the periphery of the conical surface 44 as the anchor takes holdof the walls of the hole 31. During the entire expansion of the anchor, these wedge sections move out in positions parallel to the original un-expanded condition, with at least the major portion of the periphery 53 of the shell remaining parallel to the axis of the bolt rod 34.
  • the surface components of the bolt rod assembly are shown in FIGS. 12 to 15.
  • the surface plate 35 has a keyhole shaped opening including the central portion 54 sized to receive the bolt rod 34.
  • the lateral extension 55 from the central portion 54 is too small to receive the bolt rod, and is provided for accommodating the flexible tube 39.
  • This arrangement prevents the rock bolt from migrating to a position in which the flexible tube 39 is pinched off.
  • the lateral extent of the portion 55 of the opening is such that it reaches beyond the diameter of the bevel washer 36 shown in FIGS. 14 and 15. The tube is thus permitted to emerge from the plate 35 at a position where it cannot be pinched off by the rod, the bevel washer, or by the nut 37.
  • This arrangement is shown and claimed in my U.S. Pat. No. 3,234,732.
  • the alignment of the components to accommodate a particular angularrelationship between the bolt axis and the surface of the rock formation can only be approximate.
  • the two washers constituting the pair can be rotatively adjusted with their beveled faces interengaged so that the slant between the two outer faces are then exactly in conformity with the alignment of the bolt axis and that of the plate pressed against the face of the rock formation. With the pair maintained in this relative angular position, they can then be rotated together to the correct position of the pair with respect to the plate.
  • the arrangement of a pair of these washers for adjustment in this manner normally will require a slightly greater clearance between the diameter of the bolt rod and the inside diameter of the washers, as the washers assume a canted relationship on the rod.
  • the stopper 56 shown in FIG. 13 can be used in place of the mass of sealant packing 38 illustrated in FIG. 1.,
  • the stopper 56 functions in the manner of a cork, and is provided with the small opening 57 extending axially within one side wall for receiving the tube 39.
  • the plug 56 is preferably of rubber or some material of similar characteristics.
  • FIG. 16 Another possible variant in surface assembly is illustrated in FIG. 16, in which a bearing plate 58 is used in conjunction with a bolt rod 59, where the angular relationship is greater than that which can readily be accommodated by the bevel washer shown in FIGS. 14 and 15.
  • the nut 60 (either directly, or through a suitable heavy washer) bears against the inclined arcuate flanges 61 for the transmission of bolt forces through the bearing plate 59 over to the rock formation.
  • Bearing plates of this type are usually fabricated of relatively heavy malleable cast iron.
  • FIGS. 17, 18, and 19 the arrangements shown in FIGS. 17, 18, and 19 can be used.
  • the threaded ends of the rod sections 61 and 62 terminate at such a point that these rod sections are threaded into the coupling 63 to the maximum extent prior to the interengagement of the ends of the rod sections 61 and 62.
  • the wedging action developed at the ends of the threaded portions of the rod sections produce a jamming action when the coupling is solidly tightened of a sufficient intensity to create a friction resistance to back-rotation which is in excess of the back-rotation torque required to un-set the anchor assembly.
  • a similar effect is produced in quite a different way by the arrangement shown in FIG.
  • FIGS. 8 and 9 illustrate modified forms of the anchor shell which facilitate the development of the frictional and pressure-centered retaining forces characteristic of the anchor assembly described in connection with FIGS. 2 and 3. It is common practice in the design of anchors to utilize a saw-toothed exterior, with the generally radial faces arranged to confront the pull-out forces operating against the anchor. In other words, the anchor shell is expected to act something along the line of a broach or file. Applicant has discovered that this principle is less effective than the use of a completely opposite orientation of the peripheral irregularities.
  • the pull-out strength of the anchor based only upon the shear strength of theimmediately surrounding rock formation is likely to develop less retaining force than a high degree of pressure exerted normally against the sloped surfaces 72-74 of the shell 75 shown in FIG. 9.
  • the shell 76 has ,an arcuate depression 77.
  • both this depression and the notched-shaped irregularities 72-74 of FIG. 9 are annular.
  • tangents to the curved surface 77, particularly at the inner (right-hand) extremity of the shell should be at approximately ten degrees with respect to the axis of the bolt rod.
  • FIGS. 6 and 7 illustrate arrangements that may be used when it appears that a bolt hole has been drilled somewhat oversized with respect to the anchor unit to be installed.
  • the C-shaped shim sleeve 78 has a discontinuity at 79 which permits circumferential expansion along with the expansible shell 80 around which the sleeve has been installed, as shown in FIG. 6.
  • the anchor assembly is the same as that illustrated in FIGS. 2 and 3, and includes the cone 81 and the thrust ring 82 assembled to the bolt rod 83.
  • the shim sleeve may be provided with a random number of holes as shown at 84 to facilitate the gripping action against the rock formation, but this is entirely optional.
  • Inwardly turned tabs as shown at 85 and 86 are provided at both ends for axial interengagement with the ends of the shell 80 to locate the shim sleeve with respect to the anchor assembly.
  • FIG. 20 illustrates a form of anchor assembly that can be used particularly well in relatively soft rock formations where a greater surface area on the shell is desirable. Comparison between FIG. 20 and FIG. 1 will bring out the relatively greater axial length of the shell in the FIG. 20 modification.
  • the slope of the peripheral surface of the cone 86 is received within the similarly shaped interior surface of the shell 87, which is restrained axially by the presence of the thrustring 88.
  • FIG. 20 illustrates the use of a solid bolt rod 89, in which the axial positioning of the thrust ring 88 is supplemented by the presence of the forged flat 90.
  • the cone 86 is provided with a shoulder 91 formed by a cylindrical enlargement of the diameter of the cone at that point, and this shoulder isdiscontinuous at the point 92.
  • the reason for this discontinuity is to allow for the flow of grout through an area which might otherwise be obstructed by the presence of the shoulder 91.
  • the key ridge 93 be disposed opposite the discontinuity 92, and that the discontinuity be somewhat wider than the key ridge at that point.
  • the height of the key ridge 93 then may be considered to decrease to zero approaching the discontinuity 92.
  • FIG. 5 illustrates a typical installation of a series of rock bolts to maintain the integrity of the rock formation over the upper portion of a tunnel.
  • the bolts assemblies 95-105 are all installed in the rock formation in a manner similar to that shown in FIG. 1, but in varying attitudes with respect to the horizontal. Grouting techniques will vary accordingly, as described previously.
  • the prestressed installation of these bolts is capable of binding the laminae of the rock formation 106 together to produce the effect of an arch beam extending over the top of the tunnel in a manner shown schematically in FIG. 10.
  • a group of bolts are shown installed along the dotted line axes which are generally radial to thecurvature of the tunnel, but may vary considerably from this arrangement as suggested in FIG. 5.
  • each bolt establishes a compression area from its point of application at the tunnel surface extending in a conical pattern at approximately 45 from the surface plate. These compression areas are shown defined in dotted lines in FIG. 10.
  • the cross hatched area 108 is produced, in which all of the area is under the compression established by the bolt pattern.
  • the presence of the cross hatched area causes the rock formation to function in the manner of a structural beam.
  • the bolts not only establish the the said method including drilling a hole in said formation an installing a rock bolt assembly equipped with an anchor device in said hole, wherein the improvement comprises the following operations in sequence:
  • steps for tensioning the said rock bolt assembly substantially up to a predetermined work load tension below the yield point of the bolt rod of said rock bolt assembly comprising, concomitantly applying tension to said bolt rod and elongating the same as a substantially linear function of the applied tension, increasing the applied tension and elongation of said bolt rod as a substantially linear function of increasing tension substantially to said work load tension, terminating the application of tension at a point'short of and representing a substantial fraction of the yield point of said bolt rod, maintaining said last named tension on said bolt rod;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Piles And Underground Anchors (AREA)
  • Dowels (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

A method of reinforcing a rock formation with rock bolts establishing a lock-in pre-stress condition inhibiting the initiation of movement of the formation, and structural features of a rock bolt assembly capable of use in the practice of the method.

Description

United States Patent I Williams a [451 Oct. 3, 1972 ROCK BOLTS [72] Inventor: Chester 1. Williams, 347 Greenbriar,
SE, Grand Rapids, Mich. 49506 [22] Filed: Feb. 3, 1970 [21] Appl. No.: 8,345
[52] US. Cl. ..61/45 B, 52/698, 85/75 [51] Int. Cl. ..E2ld 20/02 [58] Field of Search ..6l/45 B; 52/704, 707, 698,
[56] References Cited UNITED STATES PATENTS 4/1968 Williams ..52/698 X Williams 2.....61/45 B 2,667,037 1/1954 Thomas et al. ..52/698 X 3,222,873 12/1965 Williams ..6l/45 B 3,301,123 1/1967 Worley ..6l/45 B X 3,379,019 4/1968 Williams ..52/704 X Primary Examiner-Dennis L. Taylor AtmrneyGlenn B. Morse [57] ABSTRACT A method of reinforcing a rock formation with rock bolts establishing a lock-in pre-stress condition inhibiting the initiation of movement of the formation, and structural features of a rock bolt assembly capable of use in the practice of the method.
4 cm, 20 Drawing Figures PATENTED m 3 m2 SHEET 1 or 5 nvvw TOR CHESTER/.W/LL/AMS PATENTEDHBI3 m2 3.695.045
SHEET 2 0f 5' v lNl/ENTOR CHESTER WILLIAMS PATENTED "E 3 I973 SHEET 3 BF 5 PATENTEHnma m2 3.695.045
sum 5 or s "IIVVENTOR c/ gsrm WILLIAMS A k, W
ROCK BOLTS BACKGROUND OF THE INVENTION It is generally recognized that a stratified or fractured rock formation can be held in place by the use of bolts extending from the surface inward to a sufficient depth to suit the requirements of the particular conditions. Bolts of 40 feet in length are not uncommon. It has also been established that rock laminae can be locked together with bolts to function as a self-supporting beam to form the roof of tunnels or other excavations. It is common practice to provide anchor devices at the inner ends of the bolts so that some degree of tension can be developed between that point and a bearing plate placed over the surface opening of a hole in which the bolt is installed. These bolts are frequently given a protective covering and a bonding to the rock by injecting grout in the hole around the bolt rod.
A peculiarity of materials under stress has presented a problem in the design and installation of these rock bolts. It is fundamental that a bolt rod must be stretched in order to develop tension. It follows that a bolt installed without some degree of pre-stress will exhibit no restraining power on the rock formation until the formation actually begins to move. This is precisely the condition that the bolt is installed to prevent. It is not only desirable topreserve the solidity of the rock formation insofar as is possible, but it is also desirable to obtain the benefits of the well-known stick-slip friction characteristics which result in making it much easier to hold-a movable object in place prior to actual commencement of movement than it is afterward.
Prior anchoring devices have generally proven inadequate to sustain the full load capability of the bolt rod, so that reliance had to be made on a bond between the bolt and the rock formation through the surrounding grout in order to develop the full load capability of any particular rock bolt installation. As long as reliance upon the grout was necessary, it is clearly out of the question to develop more than a relatively minor degree of pre-stress. Rock bolt installations were developed around these limitations. Once the grout had set, further pre-stress could not be considered due to the fact that the bolt became locked to the rock formation along its full length. It was therefore incapable of any further stretching, which would be necessary for any increase in stress. A further problem associated with conventional anchor devices is the general impossibility of grouting the anchor along with the bolt rod. This is due to the fact that these devices did not adequately provide for flow of the grout along the full length of the bolt assembly, including the anchor, nor for a passage of the grout along beside the anchor. Either a hollow bolt rod or a separate conduit must be provided extending over the full length of the assembly, or it is obvious that the grout cannot be deposited beyond the end of the bolt assembly with any degree of certainty. It is also obvious that these conditions render adequate inspection of a completed bolt assembly, particularly with regard to the completion of the grouting, almost impossible. In summary, prior rock bolt assemblies have not been designed such that the adequacy of the installation is immediately evident to an inspector 'whose observations are necessarily confined to the surface area of the installation.
The present invention provides a method which can preserve the initial placement of a rock formation by applying pre-stress to an intensity corresponding to a working load of the rock bolt rod, which is related to the yield strength of the rod material, thus utilizing the primary strength characteristic of the bolt that would not involve displacement of the rock formation. The components of a rock bolt assembly are adapted to permit this degree of pre-stress, and also permit the injection of grout to the point of full recirculation within the bolt hole throughout the length of the bolt assembly, including the anchor device. The bolt is also adapted to be disengaged from the hole in the formation prior to grouting, if it is discovered during the setting of the anchor device that the rock formation is too soft or fractured to sustain the necessary intensity of set. This latter feature is obtained by utilizing a rotatively set anchor in combination with rod-section coupling having differential disengagement torque.
DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional elevation showing the installation of a rock bolt assembly in a hole in a rock formation inclined upwardly from the entrance.
FIG. 2 is a sectional elevation on an enlarged scale over that of FIG. 1, showing the un-expanded condition of an anchor device.
FIG. 3 is a view of the mechanism shown in FIG. 2, in the expanded condition.
FIG. 4 is a transverse section on the plane 4-4 of FIG. 2, on an enlarged scale.
FIG. 5 is a schematic illustration showing a typical installation of a pattern of rock bolts to secure a roclt formation over a tunnel.
FIG. 6 is a perspective view of an anchor provided with a resilient shim sleeve.
FIG. 7 is a perspective view of the shim sleeve shown in FIG. 6, on an enlarged scale.
FIG. 8 is a fragmentary axial section through an expansible shell with one form of a peripheral concavity.
FIG. 9 is an axial section of an expansible shell with a modified form of peripheral concavity.
FIG. 10 is a diagram illustrating the stress condition in a rock formation resulting from the installation of a pattern of rock bolts.
FIG. 1 l is a view of the surface components of a rock bolt installation, and illustrating the application of grout.
FIG. 12 is a plan view of a surface bearing plate.
FIG. 13 is an exploded view showing a stopper for insertion in the entrance of the bolt hole, in conjunction with a vent tube insertable in the side passage in the stopper.
FIG. 14 is a plan view of a bevel washer used with the surface components of the rock bolt assembly.
FIG. 15 is a side elevation of the washer shown in FIG. 14.
FIG. 16 is a perspective view of a form of bearing plate capable of accommodation to large angles of deviation from a perpendicular relationship between the plane of the surface of the rock formation and the axis of the bolt rod.
FIG. 17 is a sectional elevation of a from of coupling uniting sections of the bolt rod.
FIG. 18 is a sectional elevation showing a modified form of locking arrangement for controlling back rotation of a coupling connection uniting two rod sections.
' FIG. 19 is a sectional elevation showing a further modification of coupling arrangement uniting adjacent rod sections. 7
, FIG. 20 illustrates a modified form of anchor assembly providing a relatively greater shell area, and adapted to prevent pull-through of the cone member in soft rock conditions.
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 illustrates a typical installation of a rock bolt assembly in a rock formation 30, which has been prepared by drilling a hole 31 from the surface .32 to a sufficient depth to involve the desired amount of the rock formation in the securing effect of the rock bolt installation. The rock bolt assembly includes the anchor device 33, a bolt rod 34 (which may be in one piece, or a series of axially interconnected sections), a surface plate 35, a bevel washer 36, and a standard nut 37. FIG. 1 illustrates the condition of the installation immediately after grouting, in which a charge of liquid cementitious material is injected into the hole 31 surrounding the bolt rod and the anchor device to provide a protective sheathe around these components, and to bond them to the rock formation throughout the length of the assembly. To facilitate the grouting operation, a sealant packing 38 is jammed into the entrance of the hole3l around the bolt rod, and the bearing plate 35 is placed down over it. The flexible tube 39 traverses this packing; and becomes a means for carrying the grout into the hole.
Grout should always be injected at the low end of a hole, withprovision being made for the exhaust of the entrapped air as the charge of grout advances. Since the hole is inclined upwardly from the entrance in the FIG. 1 installation, grout is injectedthrough the tube '39, whichrepresents the low end of the hole in this form of installation. As the grout progressively fills the holefair is withdrawn through the conduit formed by the hollow interior of the bolt rod 34. The injection of the grout continues through the tube 39 until the hole is completelyfilled, which is indicated by movement of grout down through the bolt rod to the point where it emerges at the surface, in the manner illustrated in FIG. 11. The injection of the grout is accomplished by any conventional form of .grout pump, which has a delivery tube 40 provided with a convenient adapter 41 for receiving the tube 39. A pump of the type described in my US. Pat. No. 3,227,426 is recommended. The stream of grout 42 emerging from the end of the bolt rod 34 provides a positive indication that the hole 31 has been completely filled. After the grouting operation has been completed, the hole in the bolt rod 34 from which the grout is shown emerging in FIG. 11,
together with the tube 39, are plugged as shown in FIG. 1 to sustain at least some degree of grout pressure within the hole 31 until a complete set has taken place. After this has occurred, the tube 39 has no further use. The diameters of the holes in the bolt rod 34 and in the tube 39 are of the order of a quarter of an inch, or
larger (depending on rod diameter) and it has been found that plugs in the generalshape of golf tees have been very effective and easy to handle in performing the lower extremity of the hole in the rock formation.
Emergence of the grout through the tube 39 would then give the indication of a completed grouting opera-' tion. In either case, it will be noted that this completion is assured by at least a momentary complete recirculation of grout within the hole 31 throughout the length of the rock bolt assembly. Some forms of rock bolt assemblies utilize a solid rod, rather than the hollow form illustrated in the drawings. When the solid rod is used, a side tube of the general nature of the tube 39 is lashed in some convenient form to the bolt rod, and preferably extends over the full length of the entire rock bolt assembly. One advantage to the use of the hollow bolt rod is the freedom of the assembly from displacement of the full-length tube which is likely to occur as the anchor device 31 is set" by rotation of the rod from the surface. w
The securing of the anchor device 33 is illustrated in FIGS. 2 and 3. The components of the anchor device are shown installed on the threaded end 43 of the rod section 34. A cone member 44 has a threaded central opening extending throughout its length, and is normally in threaded engagement with the rod section 43. A thrust ring 45 is also in threaded engagement with the rod section 43, and is disposed at the extremity of the threaded portion of this section. The expansible shell 46 surrounds the cone member 44, and is axially interposed between the cone and the thrust ring 45. Relative rotation between the rod section 34 and the cone 44 will result in movement of the cone 44 toward the axially-fixed thrust ring 45, resulting in the expansion of the shell 46. This shell is C-shaped in cross-section, as best shown in FIG. 4. To assure that the shell does not rotate on the cone 44, the cone is provided with a key ridge 47 located within the discontinuity 48 of the C-shaped cross-section of the shell 46. This discontinuity is provided to' facilitate the expansion of the shell, and works in conjunction with the point of weakness established by the axial groove 49 on the opposite side of the shell. This portion of the shell functions somewhat in the manner of a hinge as the cone 44 advances to the left, as shown in FIGS. 2 and 3. Fracturing takes place initially in the shell adjacent the notched area 49, as the cone proceeds from the FIG. 2
to the FIG. 3 position. The setting of the anchor must proceed to the point where the shell is jammed solidly against the wall of the hole 31 with a sufficient intensity of force to permit the anchor assembly to resist the full working load of the bolt rod 34, which corresponds to the yield strength of a selected steel rod commonly anywhere from an inch to two inches or more in diameter.
While the initial setting operation is performed by rotation of the rod 34, an examination of the configuration of the components of the anchor assembly shown in FIG. 2 will make it obvious that a subsequent movement to the rod to the left, once the shell 33 has been solidly placed against the rock formation, will result in further movement of the cone into the shell (accom panied by a movement of the thrust ring 44 away from the adjacent end of the shell as the axial rod movement takes place). It is nevertheless preferable that the initial set of the anchor assembly by rotation should be sufficient to resist all of the applied loading. This degree of anchor set will permit a much easier pre-stressing operation, which is accomplished by progressively tightening the nut 37 to a predetermined torque determined by the yield strength of the particular steel selected for the bolt rod 34, and by the cross-sectional area of this rod. These torque requirements are sufficiently high to present a real problem in the axial securing of the thrust ring 45. Because of the intensity of the forces involved, there is a strong tendency to frictionally induce continued rotation of the thrust ring with respect to the bolt rod during the setting operation, and to thus strip out the threaded engagement between the thrust ring 45 and the bolt rod. It is preferable to provide a shoulder against which the thrust ring can advance, and also provide a diameter- .of the thrust ring sufficiently low to be less than the unexpanded diameter of the shell 46, and thus facilitate the insertion of the anchor assembly into the hole 31, and eliminate any substantial interference with the axial flow of grout to or from the end of the anchor through the unclosed C area of the shell and over the hardened slip washers and thrust rings. To further facilitaterelative rotation between the thrust ring 45 and the shell 46, it is preferable to incorporate a pair of hardened slip rings 505l, which may be coated with oil or grease to minimize the torque transfer between the shell and the thrust ring.
The proportions of the thrust ring specified above operate best in conjunction with a particular slope relationship on the periphery of the cone 44. The elements of the cone 44 are disposed at an angle with respect to the axis of the rod 34 of less than fifteen degrees, with ten degrees giving the best performance. The conical periphery 52 engages a similarly shaped surface on the inside of the shell 46, the walls of which are wedgeshaped in axial cross-section. The fracturing of the shell as the expansion proceeds therefore generates a group of wedges spaced around the periphery of the conical surface 44 as the anchor takes holdof the walls of the hole 31. During the entire expansion of the anchor, these wedge sections move out in positions parallel to the original un-expanded condition, with at least the major portion of the periphery 53 of the shell remaining parallel to the axis of the bolt rod 34.
The surface components of the bolt rod assembly are shown in FIGS. 12 to 15. The surface plate 35 has a keyhole shaped opening including the central portion 54 sized to receive the bolt rod 34. The lateral extension 55 from the central portion 54 is too small to receive the bolt rod, and is provided for accommodating the flexible tube 39. This arrangement prevents the rock bolt from migrating to a position in which the flexible tube 39 is pinched off. The lateral extent of the portion 55 of the opening is such that it reaches beyond the diameter of the bevel washer 36 shown in FIGS. 14 and 15. The tube is thus permitted to emerge from the plate 35 at a position where it cannot be pinched off by the rod, the bevel washer, or by the nut 37. This arrangement is shown and claimed in my U.S. Pat. No. 3,234,732. Using a single washer 36, the alignment of the components to accommodate a particular angularrelationship between the bolt axis and the surface of the rock formation can only be approximate. By the use of a pair of these washers, however, it becomes possible to adjust the assembly to an exact angular relationship so that the bearing forces are transmitted uniformly around the opening 54, rather than exclusively at one point. The two washers constituting the pair can be rotatively adjusted with their beveled faces interengaged so that the slant between the two outer faces are then exactly in conformity with the alignment of the bolt axis and that of the plate pressed against the face of the rock formation. With the pair maintained in this relative angular position, they can then be rotated together to the correct position of the pair with respect to the plate. The arrangement of a pair of these washers for adjustment in this manner normally will require a slightly greater clearance between the diameter of the bolt rod and the inside diameter of the washers, as the washers assume a canted relationship on the rod.
The stopper 56 shown in FIG. 13 can be used in place of the mass of sealant packing 38 illustrated in FIG. 1., The stopper 56 functions in the manner of a cork, and is provided with the small opening 57 extending axially within one side wall for receiving the tube 39. The plug 56 is preferably of rubber or some material of similar characteristics. Another possible variant in surface assembly is illustrated in FIG. 16, in which a bearing plate 58 is used in conjunction with a bolt rod 59, where the angular relationship is greater than that which can readily be accommodated by the bevel washer shown in FIGS. 14 and 15. The nut 60 (either directly, or through a suitable heavy washer) bears against the inclined arcuate flanges 61 for the transmission of bolt forces through the bearing plate 59 over to the rock formation. Bearing plates of this type are usually fabricated of relatively heavy malleable cast iron.
The inevitable variations in conditions in a rock formation which may be expected in the installation of large numbers of rock bolts are such that it frequently becomes necessary to disengage an anchor that has only been partially set. This situation occurs when the rock formation appears to be too soft to take the full intensity of set of the anchor, or the anchor appears to have been lodged in a fractured area that did not have sufficient density to accommodate the necessary pressures. In such cases, it is desirable to back-rotate the anchor assembly from the FIG. 3 to the FIG. 2 positions. Since it is common practice to make up the lengths of relatively long bolt rods in a number of sections interconnected by couplings, it is obvious that a problem arises the moment one attempts to back-rotate the anchor assembly. To assure that all of such backrotation takes place at the anchor rather than at any one of the couplings, the arrangements shown in FIGS. 17, 18, and 19 can be used. In FIG. 17, the threaded ends of the rod sections 61 and 62 terminate at such a point that these rod sections are threaded into the coupling 63 to the maximum extent prior to the interengagement of the ends of the rod sections 61 and 62. The wedging action developed at the ends of the threaded portions of the rod sections produce a jamming action when the coupling is solidly tightened of a sufficient intensity to create a friction resistance to back-rotation which is in excess of the back-rotation torque required to un-set the anchor assembly. A similar effect is produced in quite a different way by the arrangement shown in FIG. 18, in which the rod sections 64 and 65 are interconnected by the coupling 66. No attempt has been made in this arrangement to control the length of threaded interengagement, but the lock washer 67 is interposed between the ends of the rod sections. As the coupling is tightened down in the illustrated position, the presence of the lock washer tends to inhibit back rotation such as would loosen the coupling..In FIG. 19, an effect is produced which is quite similar in principle to that illustrated in FIG. 17. In this case, however, the rod sections 68 and 69 are threaded to any convenient length in excess of half the length of the coupling 70, and the coupling itself is provided with a discontinuous threading leaving the central portion 71 with incomplete threads. Each of the rod sections 68 and 69 is thus threaded in as far as it will go, and the coupling is then given a severe tightening torque, resulting in a binding action at the incomplete threads in the center portion of the coupling.
- The central hole at the rod ends should be bevelled (countersunk) to minimize flow resistance to grout in all cases.
FIGS. 8 and 9 illustrate modified forms of the anchor shell which facilitate the development of the frictional and pressure-centered retaining forces characteristic of the anchor assembly described in connection with FIGS. 2 and 3. It is common practice in the design of anchors to utilize a saw-toothed exterior, with the generally radial faces arranged to confront the pull-out forces operating against the anchor. In other words, the anchor shell is expected to act something along the line of a broach or file. Applicant has discovered that this principle is less effective than the use of a completely opposite orientation of the peripheral irregularities. In other words, the pull-out strength of the anchor based only upon the shear strength of theimmediately surrounding rock formation is likely to develop less retaining force than a high degree of pressure exerted normally against the sloped surfaces 72-74 of the shell 75 shown in FIG. 9. In FIG. 8, the shell 76 has ,an arcuate depression 77. Preferably, both this depression and the notched-shaped irregularities 72-74 of FIG. 9 are annular. In the case of the sloped surfaces 72-74, it is preferable that these be kept at around ten degrees with respect to the axis of the bolt rod. Correspondingly, tangents to the curved surface 77, particularly at the inner (right-hand) extremity of the shell, should be at approximately ten degrees with respect to the axis of the bolt rod.
FIGS. 6 and 7 illustrate arrangements that may be used when it appears that a bolt hole has been drilled somewhat oversized with respect to the anchor unit to be installed. The C-shaped shim sleeve 78 has a discontinuity at 79 which permits circumferential expansion along with the expansible shell 80 around which the sleeve has been installed, as shown in FIG. 6. The anchor assembly is the same as that illustrated in FIGS. 2 and 3, and includes the cone 81 and the thrust ring 82 assembled to the bolt rod 83. The shim sleeve may be provided with a random number of holes as shown at 84 to facilitate the gripping action against the rock formation, but this is entirely optional. Inwardly turned tabs as shown at 85 and 86 are provided at both ends for axial interengagement with the ends of the shell 80 to locate the shim sleeve with respect to the anchor assembly.
FIG. 20 illustrates a form of anchor assembly that can be used particularly well in relatively soft rock formations where a greater surface area on the shell is desirable. Comparison between FIG. 20 and FIG. 1 will bring out the relatively greater axial length of the shell in the FIG. 20 modification. The slope of the peripheral surface of the cone 86 is received within the similarly shaped interior surface of the shell 87, which is restrained axially by the presence of the thrustring 88. FIG. 20 illustrates the use of a solid bolt rod 89, in which the axial positioning of the thrust ring 88 is supplemented by the presence of the forged flat 90. The cone 86 is provided with a shoulder 91 formed by a cylindrical enlargement of the diameter of the cone at that point, and this shoulder isdiscontinuous at the point 92. The reason for this discontinuity is to allow for the flow of grout through an area which might otherwise be obstructed by the presence of the shoulder 91. In order to assure the flow of grout completely around all surfaces of the cone which are exposed, it is preferable that the key ridge 93 be disposed opposite the discontinuity 92, and that the discontinuity be somewhat wider than the key ridge at that point. To further facilitate the flow of grout, it is preferable to provide the inclined'surface 94 to define the end of the key ridge 93, rather than permitting this member to come to an abrupt shoulder at that point. The height of the key ridge 93 then may be considered to decrease to zero approaching the discontinuity 92.
FIG. 5 illustrates a typical installation of a series of rock bolts to maintain the integrity of the rock formation over the upper portion of a tunnel. The bolts assemblies 95-105 are all installed in the rock formation in a manner similar to that shown in FIG. 1, but in varying attitudes with respect to the horizontal. Grouting techniques will vary accordingly, as described previously. The prestressed installation of these bolts is capable of binding the laminae of the rock formation 106 together to produce the effect of an arch beam extending over the top of the tunnel in a manner shown schematically in FIG. 10. In FIG. 10, a group of bolts are shown installed along the dotted line axes which are generally radial to thecurvature of the tunnel, but may vary considerably from this arrangement as suggested in FIG. 5. The inside surfaceof the tunnel is indicated at 107, and each bolt establishes a compression area from its point of application at the tunnel surface extending in a conical pattern at approximately 45 from the surface plate. These compression areas are shown defined in dotted lines in FIG. 10. At the point where the compression areas of adjacent bolts overlap, the cross hatched area 108 is produced, in which all of the area is under the compression established by the bolt pattern. A similar condition exists at the opposite ends of the bolts. The presence of the cross hatched area causes the rock formation to function in the manner of a structural beam. The bolts not only establish the the said method including drilling a hole in said formation an installing a rock bolt assembly equipped with an anchor device in said hole, wherein the improvement comprises the following operations in sequence:
to prevent sections of the rock formation'from falling away from the surface 107. This is further prevented, in most tunnel installations, by securing wire mesh across the exposed rock bolt ends, and securing it at the threading of the bolt rods outward of the retaining nuts. The wire mesh can be supplemented by a layer of plastering, if desired.
1 claim:
1. A method of securing a rock formation in position,
setting said anchor device;
steps for tensioning the said rock bolt assembly substantially up to a predetermined work load tension below the yield point of the bolt rod of said rock bolt assembly, said steps comprising, concomitantly applying tension to said bolt rod and elongating the same as a substantially linear function of the applied tension, increasing the applied tension and elongation of said bolt rod as a substantially linear function of increasing tension substantially to said work load tension, terminating the application of tension at a point'short of and representing a substantial fraction of the yield point of said bolt rod, maintaining said last named tension on said bolt rod; and
grouting said rock bolt assembly in said hole to substantially fill said hole with grout around said bolt rod.
2. A method as defined in claim 1, wherein said

Claims (4)

1. A method of securing a rock formation in position, the said method including drilling a hole in said formation an installing a rock bolt assembly equipped with an anchor device in said hole, wherein the improvement comprises the following operations in sequence: setting said anchor device; steps for tensioning the said rock bolt assembly substantially up to a predetermined work load tension below the yield point of the bolt rod of said rock bolt assembly, said steps comprising, concomitantly applying tension to said bolt rod and elongating the same as a substantially linear function of the applied tension, increasing the applied tension and elongation of said bolt rod as a substantially linear function of increasing tension substantially to said work load tension, terminating the application of tension at a point short of and representing a substantial fraction of the yield point of said bolt rod, maintaining said last named tension on said bolt rod; and grouting said rock bolt assembly in said hole to substantially fill said hole with grout around said bolt rod.
2. A method as defined in claim 1, wherein said grouting is delivered into said hole at the low end thereof via a conduit, and continued under pressure until grout is recirculated in said hole throughout the length of said rock bolt assembly.
3. A method as defined in claim 2, wherein the flow of liquid grout is subsequently plugged while in liquid form to permit the same to set under pressure in said hole.
4. A method as defined in claim 1, wherein said anchor device is set initially to an intensity sufficient to sustain said last named tension.
US8345A 1970-02-03 1970-02-03 Rock bolts Expired - Lifetime US3695045A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US834570A 1970-02-03 1970-02-03

Publications (1)

Publication Number Publication Date
US3695045A true US3695045A (en) 1972-10-03

Family

ID=21731095

Family Applications (1)

Application Number Title Priority Date Filing Date
US8345A Expired - Lifetime US3695045A (en) 1970-02-03 1970-02-03 Rock bolts

Country Status (7)

Country Link
US (1) US3695045A (en)
JP (1) JPS5518840B1 (en)
CA (1) CA948898A (en)
DE (1) DE2105888C3 (en)
GB (6) GB1323034A (en)
SU (1) SU393845A3 (en)
ZA (1) ZA71333B (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3908386A (en) * 1970-08-03 1975-09-30 Chester I Williams Rock bolt for remote installation
US3936924A (en) * 1973-09-21 1976-02-10 Yoshio Ichise Releaseable steel cable anchor and method for withdrawing the same
US3971177A (en) * 1975-01-09 1976-07-27 Shoichi Kimura Earth anchor work method and anchor device
US3987635A (en) * 1975-04-01 1976-10-26 Exchem Holdings Limited Method of reinforcing rock strata
US4052860A (en) * 1974-12-09 1977-10-11 Environmental Engineering Dr. Ing. Alterman Ltd. Construction of underground tunnels and rock chambers
US4116012A (en) * 1976-11-08 1978-09-26 Nippon Concrete Industries Co., Ltd. Method of obtaining sufficient supporting force for a concrete pile sunk into a hole
US4146094A (en) * 1975-11-11 1979-03-27 Bergwerksverband Gmbh Tubular one-way closure for injecting a material into a hole
US4371293A (en) * 1978-09-25 1983-02-01 Wilcox Raymond J Mine roof bearing plate
US4518282A (en) * 1981-08-27 1985-05-21 Republic Corporation Mine roof bearing plate with embossed area having conical and cylindrical sections
US5441372A (en) * 1993-05-05 1995-08-15 Premetalco, Inc. Rock bolt shell and cone
WO2002002910A2 (en) 2000-06-30 2002-01-10 Noranda Inc. Appartus and method for a yieldable tendon mine support
WO2002075116A1 (en) * 2001-03-15 2002-09-26 Atlas Copco Rock Drills Ab A method for stabilization of rock and soil masses, and a rock bolt for practicing the method
US6499268B2 (en) * 2000-04-28 2002-12-31 Peter James Reinforcing structures
WO2004099569A1 (en) * 2003-05-12 2004-11-18 Atlas Copco Rock Drills Ab Method and device for rock bolting
GB2404710A (en) * 2000-12-21 2005-02-09 William Henry Ollis A masonry anchor
US20060150566A1 (en) * 2004-12-29 2006-07-13 Okabe Co., Inc. Anchoring system
US20060204341A1 (en) * 2003-05-12 2006-09-14 Morgan Kanflod Method and device for rock bolting
US20070286686A1 (en) * 2006-06-09 2007-12-13 Precision Pier, Usa, Inc. Method For Installing A Solidifying Material Pier Anchorage System
US20080219775A1 (en) * 2007-03-09 2008-09-11 Frederic Mercier-Langevin Bolt assembly
US20100098509A1 (en) * 2006-11-02 2010-04-22 Jonathan Jonny Melic Anchor bolt assembly
US20120180423A1 (en) * 2011-01-19 2012-07-19 Seismic Design Toolbox, Inc. Yielding Rod to Counter Seismic Activity
US20140037388A1 (en) * 2011-02-24 2014-02-06 Tomi Ahola Rock bolt
US8807877B1 (en) * 2008-09-19 2014-08-19 Rhino Technologies Llc Tensionable spiral bolt with resin nut and related methods
CN105485308A (en) * 2015-12-29 2016-04-13 武汉正通传动技术有限公司 Reamed hole bolt provided with outer ring
EP3159554A1 (en) 2015-10-23 2017-04-26 HILTI Aktiengesellschaft Method for fixing a spreading anchor to a substrate, in which a curable composition is inserted into the annulus around the expansion anchor
EP3189901A1 (en) 2016-01-11 2017-07-12 HILTI Aktiengesellschaft Injector for filling an annular area around an anchor bolt
US9829026B2 (en) 2013-08-08 2017-11-28 Howa Corporation Anchor bolt
US10060809B1 (en) * 2016-10-27 2018-08-28 Larry C. Hoffman Friction stabilizer pull tester and method
RU2802410C1 (en) * 2023-02-09 2023-08-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уральский государственный горный университет" Injector-anchor for fixing cracked roof of mine workings

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3120809A1 (en) * 1981-05-25 1982-12-16 Hilti AG, 9494 Schaan ANCHOR BOLT WITH CYLINDRICAL BOLT BODY
FI76624C (en) * 1985-11-07 1988-11-10 Tampella Oy Ab Method and apparatus and means for performing wire bolting of bearings
GB2233056A (en) * 1989-05-25 1991-01-02 Ryan Mining Services Limited Rock bolt for mine roofs
AUPM772594A0 (en) * 1994-08-29 1994-09-22 Scott-Smith, Philip Anthony Split-lock bar
JP4036756B2 (en) * 2001-04-26 2008-01-23 “アールバーク”・トウンネーラウスバーウ・ゲゼルシヤフト・エム・ベー・ハー Method and apparatus for opening a hole and fixing a support to the hole
AT412361B (en) * 2002-09-03 2005-01-25 Hammer Rene METHOD AND DEVICE FOR SAVING THE MOUNTAIN AND REMOVING STOOLS, TUNNELS & DIG.
AT501875B1 (en) 2005-06-07 2008-05-15 Alwag Tunnelausbau Gmbh METHOD AND DEVICE FOR DRILLING, IN PARTICULAR FITTING OR TURNING OF A HOLE IN GROUND OR ROCK MATERIAL
AU2015255248B2 (en) * 2015-11-12 2021-05-13 Jusand Nominees Pty Ltd Safety system and method for protecting against a hazard of drill rod failure in a drilled rock bore
CN109162660A (en) * 2018-10-30 2019-01-08 中国电建集团成都勘测设计研究院有限公司 Interior anchor formula orifice closing device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2667037A (en) * 1949-08-24 1954-01-26 Edward M Thomas Suspension roof support
US3222873A (en) * 1961-07-31 1965-12-14 Chester I Williams Groutable rock anchor
US3234742A (en) * 1962-07-05 1966-02-15 Chester I Williams Groutable rock bolt assembly and procedure
US3301123A (en) * 1966-03-30 1967-01-31 William E Worley Mine roof bolts
US3379019A (en) * 1965-05-03 1968-04-23 Chester I. Williams Rock bolt assembly for upgrouting operations
US3379016A (en) * 1965-01-11 1968-04-23 Chester I. Williams Rock bolt assembly and procedure for use in conjunction with blasting operations

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2667037A (en) * 1949-08-24 1954-01-26 Edward M Thomas Suspension roof support
US3222873A (en) * 1961-07-31 1965-12-14 Chester I Williams Groutable rock anchor
US3234742A (en) * 1962-07-05 1966-02-15 Chester I Williams Groutable rock bolt assembly and procedure
US3379016A (en) * 1965-01-11 1968-04-23 Chester I. Williams Rock bolt assembly and procedure for use in conjunction with blasting operations
US3379019A (en) * 1965-05-03 1968-04-23 Chester I. Williams Rock bolt assembly for upgrouting operations
US3301123A (en) * 1966-03-30 1967-01-31 William E Worley Mine roof bolts

Cited By (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3908386A (en) * 1970-08-03 1975-09-30 Chester I Williams Rock bolt for remote installation
US3936924A (en) * 1973-09-21 1976-02-10 Yoshio Ichise Releaseable steel cable anchor and method for withdrawing the same
US4052860A (en) * 1974-12-09 1977-10-11 Environmental Engineering Dr. Ing. Alterman Ltd. Construction of underground tunnels and rock chambers
US3971177A (en) * 1975-01-09 1976-07-27 Shoichi Kimura Earth anchor work method and anchor device
US3987635A (en) * 1975-04-01 1976-10-26 Exchem Holdings Limited Method of reinforcing rock strata
US4146094A (en) * 1975-11-11 1979-03-27 Bergwerksverband Gmbh Tubular one-way closure for injecting a material into a hole
US4116012A (en) * 1976-11-08 1978-09-26 Nippon Concrete Industries Co., Ltd. Method of obtaining sufficient supporting force for a concrete pile sunk into a hole
US4371293A (en) * 1978-09-25 1983-02-01 Wilcox Raymond J Mine roof bearing plate
US4518282A (en) * 1981-08-27 1985-05-21 Republic Corporation Mine roof bearing plate with embossed area having conical and cylindrical sections
US5441372A (en) * 1993-05-05 1995-08-15 Premetalco, Inc. Rock bolt shell and cone
US6499268B2 (en) * 2000-04-28 2002-12-31 Peter James Reinforcing structures
WO2002002910A2 (en) 2000-06-30 2002-01-10 Noranda Inc. Appartus and method for a yieldable tendon mine support
US6390735B1 (en) 2000-06-30 2002-05-21 Noranda Inc. Apparatus and method for a yieldable tendon mine support
GB2404710B (en) * 2000-12-21 2005-04-20 William Henry Ollis Masonry anchor and method for installing a masonry anchor
GB2404710A (en) * 2000-12-21 2005-02-09 William Henry Ollis A masonry anchor
WO2002075116A1 (en) * 2001-03-15 2002-09-26 Atlas Copco Rock Drills Ab A method for stabilization of rock and soil masses, and a rock bolt for practicing the method
US7318689B2 (en) 2003-05-12 2008-01-15 Atlas Copco Rock Drills Ab Method and device for rock bolting
US20060204341A1 (en) * 2003-05-12 2006-09-14 Morgan Kanflod Method and device for rock bolting
WO2004099569A1 (en) * 2003-05-12 2004-11-18 Atlas Copco Rock Drills Ab Method and device for rock bolting
AU2004236621B2 (en) * 2003-05-12 2009-07-23 Atlas Copco Rock Drills Ab Method and device for rock bolting
CN1788139B (en) * 2003-05-12 2012-02-01 阿特拉斯科普科凿岩机股份公司 Method and device for rock bolting
US20060150566A1 (en) * 2004-12-29 2006-07-13 Okabe Co., Inc. Anchoring system
US20070286686A1 (en) * 2006-06-09 2007-12-13 Precision Pier, Usa, Inc. Method For Installing A Solidifying Material Pier Anchorage System
US20100098509A1 (en) * 2006-11-02 2010-04-22 Jonathan Jonny Melic Anchor bolt assembly
US8382410B2 (en) * 2006-11-02 2013-02-26 Jonathan Jonny Melic Anchor bolt assembly
US20080219775A1 (en) * 2007-03-09 2008-09-11 Frederic Mercier-Langevin Bolt assembly
US8807877B1 (en) * 2008-09-19 2014-08-19 Rhino Technologies Llc Tensionable spiral bolt with resin nut and related methods
US20120180423A1 (en) * 2011-01-19 2012-07-19 Seismic Design Toolbox, Inc. Yielding Rod to Counter Seismic Activity
US20140037388A1 (en) * 2011-02-24 2014-02-06 Tomi Ahola Rock bolt
US8998541B2 (en) * 2011-02-24 2015-04-07 Suomen Metallityö Oy Rock bolt
US9829026B2 (en) 2013-08-08 2017-11-28 Howa Corporation Anchor bolt
EP3159554A1 (en) 2015-10-23 2017-04-26 HILTI Aktiengesellschaft Method for fixing a spreading anchor to a substrate, in which a curable composition is inserted into the annulus around the expansion anchor
WO2017067945A1 (en) 2015-10-23 2017-04-27 Hilti Aktiengesellschaft Method for fixing an expansion anchor to a substrate, in which a curable mass is introduced in the annular space around the expansion anchor
TWI622708B (en) * 2015-10-23 2018-05-01 希爾悌股份有限公司 Method for fixing an expansion anchor on a substrate, wherein curable mass is introduced into the annular space around the expansion anchor, and a fastening device formed by the expansion anchor and the substrate
US10202999B2 (en) 2015-10-23 2019-02-12 Hilti Aktiengesellschaft Method for fixing an expansion anchor to a substrate, in which a curable mass is introduced in the annular space around the expansion anchor
CN105485308A (en) * 2015-12-29 2016-04-13 武汉正通传动技术有限公司 Reamed hole bolt provided with outer ring
EP3189901A1 (en) 2016-01-11 2017-07-12 HILTI Aktiengesellschaft Injector for filling an annular area around an anchor bolt
WO2017121706A1 (en) 2016-01-11 2017-07-20 Hilti Aktiengesellschaft Injector for filling an annular space around an anchor bolt
US10060809B1 (en) * 2016-10-27 2018-08-28 Larry C. Hoffman Friction stabilizer pull tester and method
RU2802410C1 (en) * 2023-02-09 2023-08-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Уральский государственный горный университет" Injector-anchor for fixing cracked roof of mine workings

Also Published As

Publication number Publication date
GB1323031A (en) 1973-07-11
SU393845A3 (en) 1973-08-10
GB1323035A (en) 1973-07-11
CA948898A (en) 1974-06-11
JPS5518840B1 (en) 1980-05-21
DE2105888C3 (en) 1978-06-01
GB1323037A (en) 1973-07-11
GB1323034A (en) 1973-07-11
GB1323036A (en) 1973-07-11
DE2105888B2 (en) 1977-10-06
GB1323033A (en) 1973-07-11
ZA71333B (en) 1971-10-27
DE2105888A1 (en) 1971-08-12

Similar Documents

Publication Publication Date Title
US3695045A (en) Rock bolts
US3837258A (en) Rock bolts
CN107387141B (en) Self-drilling type differential grouting combined anchor rod and anchoring method thereof
US4295761A (en) Post tensionable grouted anchor assembly
US4664561A (en) Combined resin-mechanical mine roof bolt anchor
US4611954A (en) Apparatus and method for mine installations
US4861197A (en) Roof bolt system
CA2754710C (en) Friction bolt
US5437830A (en) Process of making a rod for use in reinforcing an underground rock formation
US6698980B2 (en) Rock stabilizing apparatus and method
US4129007A (en) Anchor device for resin anchor system
US5064311A (en) Mine roof support structure and method
US3306051A (en) Rock bolt
EA037677B1 (en) Locally anchored self-drilling hollow rock bolt
US20200063556A1 (en) Friction rock bolt
US3326004A (en) Procedure for reinforcing a rock formation
US5052861A (en) Roof bolt with plastic sleeve and mechanical anchor
US5689923A (en) Device for securing steel reinforcing or prestressing members in an anchorage
US2442113A (en) Tunnelling and like subterranean operations
CA2452271C (en) An improved apparatus for ground support
US3349662A (en) Rotatively-set anchor assembly for a mine bolt
EP3000963B1 (en) Mine support assembly for anchoring in a bore hole in the form of an improved rock bolt
US4047388A (en) Method for coupling axially aligned tunnel sections and apparatus therefor
US3908386A (en) Rock bolt for remote installation
US3234742A (en) Groutable rock bolt assembly and procedure

Legal Events

Date Code Title Description
AS Assignment

Owner name: WILLIAMS FORM ENGINEERING CORPORATION, A MI CORP.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WILLIAMS, MABEL MARIE, PERSONAL REPRESENTATIVE OF THE ESTATE OF C. I. WILLIAMS, DEC D.;REEL/FRAME:005001/0009

Effective date: 19881219