US3693195A - Apparatus for surf generation - Google Patents

Apparatus for surf generation Download PDF

Info

Publication number
US3693195A
US3693195A US56314A US3693195DA US3693195A US 3693195 A US3693195 A US 3693195A US 56314 A US56314 A US 56314A US 3693195D A US3693195D A US 3693195DA US 3693195 A US3693195 A US 3693195A
Authority
US
United States
Prior art keywords
plunger
wave
water
displacement
enclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US56314A
Inventor
George E Richard
Eugene D Richard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3693195A publication Critical patent/US3693195A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H4/00Swimming or splash baths or pools
    • E04H4/0006Devices for producing waves in swimming pools

Definitions

  • ABSTRACT A tapered enclosure for a body of water has a wave' generator positioned in a relatively narrow and deeper end.
  • the wave generator is a buoyant plunger mounted for vertical reciprocation within a chamber having a shorewardly facing opening. Through a cyclic control system, the plunger is driven in phase with the forces of gravity and buoyancy act ing thereon, starting from a rest position through strokes of increasing amplitude until a desired steady state is attained to sequentially produce waves of a desired energy. Provision is made for varying the mass of the plunger and varying the input from a prime mover as a means of adjusting wave energy and frequency.
  • An alternative single-wave generator comprises an open bottom water-tight enclosure having air purge valves on its upper face and connected to a prime mover for raising the tank. Upon lowering, the purge valves open, allowing air to escape from the tank while the open lower end of the tank enters the water for filling to a predetermined level. Upon the tank being pulled upwardly, with the purge valves closed, a volume of water contained within the tank is upwardly displaced, above still water level, and released when the hydrostatic equilibrium between the contained water and the outer water is upset, as when the open lower end of the tank breaks the surface of the water.
  • the tapered planform and sloping floor of the enclosure provide a wave energy conserving contour, so oriented with respect to the generator as to provide a primary wave break trajectory of optimum length for the area utilized by the system.
  • a compound floor curvature may be provided to define a wave regenerating cavity to form a secondary wave out of the energy of a previously broken primary wave.
  • a water inlet is disposed adjacent the wave generator and an outlet or outlets are disposed adjacent a point or points of wave dissipation, along the shallow end of the enclosure, to
  • the system comprises a substantially enclosed body of water which, preferably, is somewhat tapered in planforrn.
  • the floor of the enclosure has a topography developing from .a relatively deep and narrow end to a shallow and wider shoreline, with the wave generator apparatus being disposed in the narrow deep end.
  • the generator apparatus is disposed within an energy conserving chamber having a shorewardly facing opening, with the floor of the enclosure rising forwardly away from the opening for substantially immediately generating a breaking wave near the generator housing opening.
  • the floor of the entire enclosure is graded along contour lines adapted to produce a wave which breaks laterally as the wave progresses towards the shore line, the planform walls of the enclosure conserving the wave energy and so directing the wave break that a surf rider may successfully travel a single primary wave for substantially the full length of the entire enclosure.
  • the floor Spaced forwardly from the wave generator, beyond the initial wave formation portion of the floor, the floor is formed with a wave regenerating cavity adapted to utilize broken primary wave energy for the regeneration of a successive wave in shallower portions of the enclosure. Circulation of water through the system is provided by a narrow inlet positioned sidewardly adjacent the wave generator housing and by one or more outlets located along the shoreline at positions of wave dissipation.
  • the wave generator comprises a massive buoyant plunger which is reciprocated vertically within its energy conserving chamber.
  • a control system maintains the driving force on the plunger in phase with the natural frequency of the plunger, enabling displacement of large volumes of water with minimal energy and power requirements.
  • the amount of displaced water, the rate of displacement and the depth of water determine the height, length and period of the wave propagated by the wave plunger.
  • the wave characteristics may be varied by adjustment of the plunger driving force or the plunger mass;
  • the control system includes a pilot means that automatically compensates for the gradually increasing amplitude of plunger stroke during starting, switching the input of the power means between plunger raising and plunger lowering modes in a way to reinforce the natural oscillatory motion of the plunger, to gradually increase the amplitude of the plunger stroke to a desired steady state.
  • single waves are produced by an open bottomed tank structure having airtight side walls and a top wall, the top wall being provided with a plurality of valves.
  • the tank structure is mounted on an inclined ramp, for leverage, and drivably connected to a prime mover by means of which the open bottom of the tank may be lowered into the body of relatively still water.
  • the valves open to. permit evacuation of air through the upper end of the tank while the tank fills with water, the valves being adapted to close upon the tank subsequently being lifted from the water.
  • the open bottom end of the tank clears the normal water level, the volume of water within the tank is discharged effecting displacement of the water thereunder in order to create a single wave which breaks as it moves shorewardly into shallower water.
  • FIG. 1 is a plan view of a surf generating system embodying the invention
  • FIG. 2 is a view similar to FIG. 1, on a smaller scale, showing trajectories of wave breakfor waves of a given period, of different energies;
  • FIG. 3 is a view similar to FIG. 2 showing trajectories of wave break for similar waves of different period;
  • FIG. 4 is a schematic view of the control system of the wave generator apparatus
  • FIG. 5 is a vertical sectional view of the wave generator, taken on the line 5-5 of FIG. 6;
  • FIG. 5a is a partial sectional view on the line Sa-Sa of FIG. 5;
  • FIG. 6 is a frontal elevation, partly in section, of the wave generator of FIG. 5;
  • FIG. 7 is a top plan view of the wave generator apparatus
  • FIG. 8 is a side elevational view of an alternative form of wave generator.
  • the system may comprise an enclosur'e, designated generally by the numeral 10, of a predetermined planform having fluid communication with a larger natural or man-made body of water 11.
  • the enclosure 10 is generally bounded by the structure ofa wave generator chamber 12 opening towards a shoreline 13 and, on opposite sides, by walls 14 and 15 which also comprise boundaries of spits of land 16 and 17, respectively.
  • Water from the larger body of water 11 is admitted into the enclosure 10 through an inlet passage18, adjacent the wave generator chamber 12, and passes out of the enclosure 10 at an outlet 19, between the shoreward end of the wall 15 and the shoreline 13.
  • the chamber 12 contains a wave generator apparatus 20, oriented to generate successive waves in a shoreward direction.
  • Enclosure 10 is formed with a floor 21, generally sloping upwardly towards the shoreline 13, and so oriented with respect to the generator 20 as to produce successive waves spanning the width of the enclosure 10, with each wave breaking laterally from right to left as viewed in FIG. 1.
  • FIG. 1 is adapted for an installation encompassing approximately sixty thousand square feet'of water surface in a cove of approximately 300 feet in length, from the generator 20 to a parallel line tangent to the shoreline 13. Since the topography of the floor 21 is essential in controlling the wave break it should be constructed of a material which is not subject to erosion as a result of the wave action. Accordingly, the floor 21 is preferably made of concrete or heavy rock, in the deeper portions at least, while sand may be distributed over the shallower portions and beyond the shoreline 13 onto a surrounding beach 22.
  • the side walls 14 and 15 are made of reinforced concrete, pilings, or the like.
  • the chamber 12 containing the wave generating apparatus is of a heavy construction to provide a stable support for the apparatus.
  • the generally U-shaped chamber is formed with a heavy footing 25 and surrounding wall 26, which may be of reinforced concrete, the entire chamber rising substantially above the undisturbed water level at the deeper end of the enclosure 10.
  • the rear wall of the chamber may be formed with an elevated portion 27 on top of which a rigid framework 28, composed of appropriate box, channel or I beam members, may be anchored to project forwardly as a superstructure for connection to the upper end of the wave generating apparatus and to support various components thereof.
  • the framework 28 substantially spans the length of the chamber 12 and, adjacent opposite ends, is rigidly connected to a pair of heavy columns 29, the lower ends of which are securely anchored within the footing 25.
  • the columns 29 serve as guide means for constraining a massive plunger 30 for reciprocation in a vertical plane.
  • the plunger may be made of a variety of materials, such as wood, concrete, or metal, and in a variety of sizes, proportional to the magnitude of waves desired to be produced.
  • the chamber 12 may be approximately 40 feet in length, i.e., between the side walls, with a depth of approximately 10 feet in order to accommodate, with clearance, a plunger on the order of 38 feet long, 12 feet wide and 8 feet in depth or height.
  • the mass and buoyancy of the plunger 30 are variable, as desired, and the control means includes a means for selectively limiting the input force whereby the apparatus is capable of generating waves of different energy and magnitude through a wide range.
  • the illustrative plunger 30 comprises an essentially waterproof metal tank made of appropriately reinforced sheet steel that, at opposite ends, is internally rigidly provided with a vertical pair of guide sleeves 31 that slideably receive the pair of guide posts 29.
  • the tank-like plunger 30 is provided with a filler opening means, not shown, by means of which a ballast material 32, for example a portion of the ambient water, may be introduced into the plunger in order to achieve a predetermined plunger mass. If a liquid such as water is employed as the ballast 32, slosh or baffle plates, or the like, may be provided internally of the tank-like structure in order to inhibit undesired random movement of the ballast material out of phase with the motion of the plunger.
  • the superstructure framework 28 mounts a spaced pair of pneumatic cylinders 33 adjacent the opposite ends of the plunger 30.
  • the cylinders 33 are vertically disposed, each having a downwardly projecting piston rod 34 extending inwardly into the plunger 30 for driving connection, at a lower end, to one of a pair of cross beams 35 rigidly affixed between opposite side walls of the tank-like plunger 30.
  • the pneumatic cylinders 33 are illustrated schematically only but, in actuality, are of a sufficient length to provide a sufficient amplitude of stroke to accomplish the desired amplitude of reciprocation of the plunger 30.
  • the piston rods 34 preferably each comprise a sleeved pair of members capable of being interlocked by a locking means 36 to achieve the proper degree of extension of the piston rods 34 for each different equilibrium level of the plunger.
  • This adjustment means may take the form, for example, of slots or holes V 37 formed in one portion of the piston rod assembly, as
  • the cylinders 33 are connected to an appropriate source of compressed air by means of a conduit 40, havingan adjustable pressure regulator 41 interposed therein, a four-way solenoid valve 42, and appropriate manifolds 43 and 44.
  • They cylinders 33 are, preferably, of the double acting type and, accordingly, the manifold 44 is connected between each cylinder 33 and the valve 42 in a manner to introduce compressed air to the lower end of each cylinder 33 beneath the piston.
  • the manifold 43 is interconnected between the valve 42 and the upper end of each cylinder 33 for cyclically introducing compressed air to the upper end of the cylinder above the piston.
  • the valve 42 is also provided with an outlet 45 alternately venting to the atmosphere air being discharged from either the upper or lower ends of the cylinders 33.
  • the valve 42 has a neutral position in which both of the manifolds 43 and 44 are vented to atmosphere through the outlet 45.
  • the solenoid valve 42 has a pair of terminals 46 and 47 connected in electrical parallel to opposite contacts 48 and 49 respectively of a single-pole double throw switch 50.
  • a power supply 51 is connected to the switch 50 via a main power switch 52 and to a common terminal 53 of the solenoid valve 42.
  • the arrangement is such that when the solenoid terminal 46 is energized compressed air is admitted to the lower manifold 44, while the upper manifold 43 is simultaneously in communication with the atmospheric outlet 45. Conversely, when the solenoid terminal 47 is energized compressed air is delivered through the manifold 43 to the upper end of the cylinders 33, while the lower manifold 44v is then vented to atmosphere via the outlet 45.
  • the solenoid valve 42 returnsto a neutral position in which both manifolds 43 and 44 are vented to atmosphere through the outlet 45.
  • the switch 50 comprises a portion of a pilotmeans adapted to translate reversals of the direction of oscillation of the plunger 30 into corresponding actuation of the solenoid valve 42 for delivering power in phase with the upward or downward movement of the plunger. Since the plunger 30 has neither upward or downward sense when it is at rest, a momentary manual switch 55 is utilized to initiate the plunger motion to, in turn, actuate the pilot means which, thereafter, automatically accomplishes actuation of the valve 42 to deliver power in phase with the plunger motion. Accordingly, a momentary manual switch 55 is connected between the solenoid valve terminal 46 and the power supply 51.
  • closing of the switch 55 opens the valve 42 in a manner to admit compressed air to the lower manifold 44 to initiate upward movement of the pistons in the train of cylinders 33, concurrently venting the upper end of the cylinders to atmosphere.
  • the cylinders 33 force the plunger 30 upwardly above its equilibrium position only a few inches on this initial input of power, simultaneously actuating the pilot means.
  • the switch 50 includes a switch arm 57 that is pivotally mounted, as at 58, to make and break contact with the opposed switch contacts 48 and 49.
  • This switch arm is a longitudinal extension of a switch actuating arm 59 having a lost-motion connection with a vertically elongated rod 60 that is affixed toand carried by the plunger 30.
  • the outer end of the switch actuating arm 59 telescopically slidably contains a rod 61 with a bifurcated outer end 62 mounting a roller 63 in frictional rolling engagement with a flat side or track of the member 60.
  • a spring 64 within the actuating arm 59 effects biasing of the roller 63 into contact with the member 60 throughout the arcuate range of movement of the switch actuating arm 69.
  • Compressed air now augments the mass of the plunger to move the plunger 30 downwardly below its equilibrium position until overcome by the increasing buoyant force on the plunger 30. Consequent reversal and rising of the plunger 30 effects another reversal of the switch 50, initiating a new cycle of reciprocation of the plunger, again or with the force of buoyancy now being augmented by the force of the compressed air.
  • the power supply 51 is merely shut down by openingof the switch 50.
  • the valve 42 returns to the neutral position.
  • both the upper and lower manifolds 43 and 44 are open to atmosphere, the plunger is then free to oscillate with natural declining frequency.
  • Steady state amplitude and frequency of the plunger 30 are adjustable by variation of the air pressure by adjustment of the regulator 41, and by varying the plunger mass, as by varying the amount of the ballast 32. By so controlling the motion of the plunger, water waves of various characteristics of height, frequency and wave length are generated.
  • the drive system just described may be modified whereby compressed air is delivered to single acting cylinders in phase with only one or the other of the forces of buoyancy and gravity acting on the'plunger 30. While not as efficient, such modification nevertheless attains the objective of phased reinforcing the natural oscillatory motion of the plunger 30, to displace large volumes of water with minimal energy and power requirements. It will also be apparent that other types of drive systems may be employed for delivering energy in phased relation with either or both of the forces of buoyancy and gravity acting on the plunger.
  • a cable system reeved on a suitable array of pulleys and drums employing slip clutches may be connected to either the top or bottom or both of the plunger 30, the slip clutches being adjusted for release at predetermined degrees of frictional engagement.
  • An alternative form of wave generator is shown in FIG. 8, adapted for generation of single waves.
  • the chamber 12 is modified to have a rear wall 70- that inclines rearwardly upwardly relativeto the open front end of the chamber.
  • a water tight tank 71 has an open lower end 72, and a top wall 73 mounting a plurality of purge valves 74.
  • a prime mover 75 is mounted on top of an embankment 76 or other surface behind and above the wall 70, the prime mover 75 havingv driving engagement with a drum 77 on which a cable 78 is wound upon actuation of the prime mover 75.
  • the other end of the cable 78 is connected to an appropriate bracket 79 secured to the top of the tank 71.
  • the forward face of the wall 70 is provided with a plurality of spaced vertically extending tracks 80, within which a plurality of wheel means 81 of the tank 71 are rollingly guided.
  • the tank 71 is preferably of elongated rectangular planforrn, as viewed from above i.e. normal to the plane of the top wall 73, and is made with a reinforced side wall construction, for example spaced surrounding bands 82, in order to resist the differential pressures to which the side walls in particular will be subjected.
  • the open lower end 72 of the tank lies in a plane such that when the tank 71 is in the fully raised position illustrated, the opening is positioned in an approximately horizontal plane.
  • a brake or clutch device (not shown) is released to allow the cable 78 to unwind from the drum 77.
  • the tank 71 is lowered into the water, filling through the opening 72 while the air captured within the tank escapes through the purge valves 74.
  • the valves 74 may be simple one-way flapper valves, or one-way spring loaded valves set to close automatically at a predetermined differential of ambient and interior air pressures.
  • the prime mover 75 may be actuated to lift it up the inclined rear wall 70, the valves 74 then being closed.
  • a given volume of water is raised and when the open bottom 72 of the plunger tank clears the normal still water level, or hydrostatic equilibrium is otherwise upset, the raised volume of water discharges resulting in the propagation of a water wave.
  • the alternative wave generator of FIG. 8 may be employed where patronage is limited and continuous wave production is not required, as well as in circumstances where the power supply may be limited.
  • FIG. 1 illustrates a presently preferred overall planform and underwater topography of the enclosure 10, that is adapted to make optimum utilization of the waves cyclically generated by the generator 20.
  • the combination of plan-form and underwater topography are adapted to provide optimum wave break forms; a maximum length of surf board run; generation and regeneration of breaking waves out of a single cycle of actuation of the generator 20; areas in which waves do not break to be utilized as pathways for surf boards returning to the ini tial wave build-up area or as calm swimming and diving area; and a shallow water region where waves are patterned to break in an optimum manner for belly boarding, surf rafting and body surfing.
  • one side wall 14 comprises a continuation of one side wall of the chamber 12, projecting shorewardly in a direction normal to the plane of the opening of the chamber 12.
  • the other side wall 15 diverges shorewardly away from the opposed side wall 14 to the shoreline.
  • the shoreline 13 curves away from the longer wall 15, beyond the projection of the relatively short wall 14, and thence curves towards the short wall 13 to merge thereinto at a location approximately opposite to the approximate mid point of the length of the wall 15.
  • contour lines 90 each being marked with its depth in feet below the mean or still water level of the water contained in the enclosure. It will be observed that the relatively deep water contour lines, immediately adjacent the opening of the chamber 12, range spanwise of the walls 14 and 15 in a direction generally paralleling the plunger of the generator apparatus 20, but gradually define more acute angles with the long wall 15 with decrease in depth along that wall. It will be observed, also, that certain contour lines a do not span the entire width of the enclosure 10 but, instead, define loops indicating a second deep water portion of the enclosure 10, elongated generally in a direction angularly related to the longitudinal axis of the plunger of the generator apparatus 20 and tending towards parallelism with the long wall 15.
  • the dashed line 91 of FIG. 1 illustrates the trajectory of the path of the leading edge break of a primary wave generated by the apparatus 20.
  • the wave initially breaks immediately in front of the generator apparatus 20 at the end 91a of the line, characterized as a fast and steep breaking wave section.
  • the wave height will gradually diminish as the wave progresses shoreward.
  • the wave break decreases gradually along the line 91, requiring numerous turning maneuvers by the surfer to maintain an optimum position in the wave if he is to successfully complete a run for the full length of the line 91.
  • the second deep water portion of the floor 21, as represented by the contour lines 90a, defines a regenerating cavity utilizing the energy of a previously broken primary wave to reform the wave before it has lost all of its energy of turbulence.
  • This regenerating cavity approximately corresponds in its longitudinal aspect to the initial portion of the path of the primary wave break, as indicated by the line 91, and effects reforming of the wave energy into a new secondary wave in the cove-like shallow water portion indicated at 92, as illustrated by the wave break trajectory along lines 93 and 94 in FIGS. 2 and 3.
  • FIG. 2 illustrates the manner in which the topography of the enclosure bottom 21 accommodates different wave heights of a given period in producing the wave break trajectories shown, both for the primary and secondary trajectories 96 and 93, respectively. As is shown by comparison of the 5 foot, 4 foot and 3 foot primary trajectories 96, the larger waves break in deeper water and yield a faster ride.
  • FIG. 3 illustrates different wave break primary and secondary trajectories 97 and 94, respectively, resulting from different wave generator frequencies.
  • the period T of the wave increases as the plunger moves more slowly.
  • the wave of the longer period e.g. 7 seconds, will yield a faster ride with a more critical and powerful wave section threatening the rider as he tries to escape in front of the break.
  • the same result follows with the secondary wave break trajectories compared in the shallower cove area 92.
  • a protective barrier 99 may be provided in the opening of the chamber 12 to prevent a user being drawn into contact with the generator 20.
  • This barrier may take the form of heavy wire-mesh fencing, as shown, or laterally spaced vertically and/or horizontally disposed rods or other relatively open rigid meansthat will not unduly. disturb the formation of waves emitted from the chamber 12.
  • each chamber may be provided with its own safety barrier.
  • control means interconnected with said power means, for cyclically drivingly connecting said power means to said plunger in phase with one, at least, of the forces of buoyancy and gravity acting on said plunger in a direction to augment one, at least, of such forces, in displacing said plunger.
  • An apparatus asin claim 1 that includes means for varying the'frequency of displacement of said plunger.
  • said means for varying the frequency of displacement of said plunger comprises a selectively controllable means to vary the output of said power means.
  • said means for varying the frequency of displacement of said plunger comprises a means to vary the mass of said plunger.
  • said means for varying the frequency of displacement of said plunger comprises a selectively controllable means to vary the output of said power means and a means to vary the mass of said plunger.
  • An apparatus as in claim 1 that includes means for limiting the amplitude of displacement of said plunger.
  • said means for limiting the amplitude of displacement of said plunger comprises a selectively controllable means to vary the output of said power means.
  • said means for limiting the amplitude of displacement of said plunger comprises a means to vary the mass of said plunger.
  • said means for limiting the amplitude of displacement of said plunger comprises a selectively controllable means to vary the output of said power means and a means to vary the mass of said plunger.
  • control means includes a pilot device adapted to translate a position of vertical displacement of said plunger out of a state of buoyant equilibrium into activation of said power means.
  • pilot device includes means for sensing reversal of the direction of vertical displacement of said plunger.
  • said enclosure having a generally tapered planform defined, in part, by a wave generatorchamber extending transversely of the narrower end of said tapered planform and, in part, by a pair of side walls diverging away from said chamber;
  • said enclosure having a floor sloping upwardly and shorewardly away from a shorewardly facing opening of said chamber;
  • a horizontally elongated, vertically reciprocable plunger in said chamber, having its long axis disposed transversely of said narrower end of said enclosure to displace water in waves spanning said side walls, upon reciprocation of said plunger;
  • said floor having a topography including contour lines disposed transversely of said side walls and angularly offset from said longitudinal axis of said plunger with increased angularity therebetween with increase in distance away from said plunger, in order to generate a wave break trajectory running laterally of each wave generated by said plunger;
  • contour lines also being so angularly related with the one of said side walls towards which the wave break trajectory extends as to decrease in angularity relative to said one wall with increase in distance away from said plunger, in order to deflect said trajectory away from said one sidewall to increase the length of said trajectory.
  • Apparatus as in claim 13 in which said enclosure has a water inlet adjacent to said chamber and a water outlet positioned adjacent the terminal end of said wave break trajectory whereby to induce water circulation through said enclosure as a result of wave motion.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

A tapered enclosure for a body of water has a wave generator positioned in a relatively narrow and deeper end. In one form, the wave generator is a buoyant plunger mounted for vertical reciprocation within a chamber having a shorewardly facing opening. Through a cyclic control system, the plunger is driven in phase with the forces of gravity and buoyancy acting thereon, starting from a rest position through strokes of increasing amplitude until a desired steady state is attained to sequentially produce waves of a desired energy. Provision is made for varying the mass of the plunger and varying the input from a prime mover as a means of adjusting wave energy and frequency.

Description

ilnited States Patent Richard et al.
[ 1 ARRABALUSEQRSHKF GEHERATIQN [72] Inventors: George E. Richard, 6507 Seaside Walk, Long Beach, Calif. 90803; Eugene D. Richard, 11570 Victory Blvd., Hollywood, Calif. 91606 [22] Filed: July 20, 1970 [21] Appl. No.: 56,314
[52] US. Cl ..4/l72.16 [51] Int. Cl ..E04h 3/16, E04h 3/18 [58] Field of Search ..4/l72.16, 172.15, 172; 61/1, 61/5 [56] References Cited UNITED STATES PATENTS 2,995,103 8/1961 Waas et a1. ..114/40 3 1 30,701 4/1964 Langballe ..1 14/40 2,002,043 5/1935 Price ..4/172.16 490,484 III 893 Mackaye ..4/172.16 X 586,983 7/1897 Wharton, Jr ..4/172. 16 3,005,207 10/1961 Matrai ..4/172.16 3,473,334 10/1969 Dexter ..61/1
[151 3,693,195 1 Sept. 26, 1972 ll/l969 1/1971 Andersen .;....6l/1 Barr ..4/172.16
[5 7] ABSTRACT A tapered enclosure for a body of water has a wave' generator positioned in a relatively narrow and deeper end. In one form, the wave generator is a buoyant plunger mounted for vertical reciprocation within a chamber having a shorewardly facing opening. Through a cyclic control system, the plunger is driven in phase with the forces of gravity and buoyancy act ing thereon, starting from a rest position through strokes of increasing amplitude until a desired steady state is attained to sequentially produce waves of a desired energy. Provision is made for varying the mass of the plunger and varying the input from a prime mover as a means of adjusting wave energy and frequency.
15 Claims, 9 Drawing Figures PATENTED SEP 2 6 I972 SHEET 3 0F 3 APPARATUS FOR SURF GENERATOR An alternative single-wave generator comprises an open bottom water-tight enclosure having air purge valves on its upper face and connected to a prime mover for raising the tank. Upon lowering, the purge valves open, allowing air to escape from the tank while the open lower end of the tank enters the water for filling to a predetermined level. Upon the tank being pulled upwardly, with the purge valves closed, a volume of water contained within the tank is upwardly displaced, above still water level, and released when the hydrostatic equilibrium between the contained water and the outer water is upset, as when the open lower end of the tank breaks the surface of the water.
The tapered planform and sloping floor of the enclosure provide a wave energy conserving contour, so oriented with respect to the generator as to provide a primary wave break trajectory of optimum length for the area utilized by the system. A compound floor curvature may be provided to define a wave regenerating cavity to form a secondary wave out of the energy of a previously broken primary wave. A water inlet is disposed adjacent the wave generator and an outlet or outlets are disposed adjacent a point or points of wave dissipation, along the shallow end of the enclosure, to
provide a circulatory system adapted for convenient monitoring and maintaining of optimum water quality.
BACKGROUND OF THE INVENTION cerned, it has not heretofore beenpossible to produce waves of ocean magnitude and energy, specifically adapted for surf riding and the like, on an efficient and economical basis. Typically, wave generation has been performed with devices which require great amounts of power when attempted to be used to produce waves of any real recreational utility, i.e., of suitable size, shape and energy. These devices employ strictly scheduled and fixed processes of mechanical movement which inhibit efficient wave generation. As a result, excessive prime mover capacity and unduly massive structures have been required in order to withstand the forces involved, when applied to full scale wave generation. In addition, previously available systems are not adapted to utilizetheir wave energy by channeling it to produce waves of a desired energy that break along predetermined trajectories.
SUMMARY OF THE INVENTION The system comprises a substantially enclosed body of water which, preferably, is somewhat tapered in planforrn. The floor of the enclosure has a topography developing from .a relatively deep and narrow end to a shallow and wider shoreline, with the wave generator apparatus being disposed in the narrow deep end. The generator apparatus is disposed within an energy conserving chamber having a shorewardly facing opening, with the floor of the enclosure rising forwardly away from the opening for substantially immediately generating a breaking wave near the generator housing opening. The floor of the entire enclosure is graded along contour lines adapted to produce a wave which breaks laterally as the wave progresses towards the shore line, the planform walls of the enclosure conserving the wave energy and so directing the wave break that a surf rider may successfully travel a single primary wave for substantially the full length of the entire enclosure. Spaced forwardly from the wave generator, beyond the initial wave formation portion of the floor, the floor is formed with a wave regenerating cavity adapted to utilize broken primary wave energy for the regeneration of a successive wave in shallower portions of the enclosure. Circulation of water through the system is provided by a narrow inlet positioned sidewardly adjacent the wave generator housing and by one or more outlets located along the shoreline at positions of wave dissipation.
The wave generator comprises a massive buoyant plunger which is reciprocated vertically within its energy conserving chamber. A control system maintains the driving force on the plunger in phase with the natural frequency of the plunger, enabling displacement of large volumes of water with minimal energy and power requirements. The amount of displaced water, the rate of displacement and the depth of water determine the height, length and period of the wave propagated by the wave plunger. The wave characteristics may be varied by adjustment of the plunger driving force or the plunger mass; The control system includes a pilot means that automatically compensates for the gradually increasing amplitude of plunger stroke during starting, switching the input of the power means between plunger raising and plunger lowering modes in a way to reinforce the natural oscillatory motion of the plunger, to gradually increase the amplitude of the plunger stroke to a desired steady state.
In an alternative form of generator, single waves are produced by an open bottomed tank structure having airtight side walls and a top wall, the top wall being provided with a plurality of valves. The tank structure is mounted on an inclined ramp, for leverage, and drivably connected to a prime mover by means of which the open bottom of the tank may be lowered into the body of relatively still water. Upon immersion of the tank, the valves open to. permit evacuation of air through the upper end of the tank while the tank fills with water, the valves being adapted to close upon the tank subsequently being lifted from the water. As the open bottom end of the tank clears the normal water level, the volume of water within the tank is discharged effecting displacement of the water thereunder in order to create a single wave which breaks as it moves shorewardly into shallower water.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a plan view of a surf generating system embodying the invention;
FIG. 2 is a view similar to FIG. 1, on a smaller scale, showing trajectories of wave breakfor waves of a given period, of different energies;
FIG. 3 is a view similar to FIG. 2 showing trajectories of wave break for similar waves of different period;
FIG. 4 is a schematic view of the control system of the wave generator apparatus;
FIG. 5 is a vertical sectional view of the wave generator, taken on the line 5-5 of FIG. 6;
FIG. 5a is a partial sectional view on the line Sa-Sa of FIG. 5;
FIG. 6 is a frontal elevation, partly in section, of the wave generator of FIG. 5;
FIG. 7 is a top plan view of the wave generator apparatus;
FIG. 8 is a side elevational view of an alternative form of wave generator.
DESCRIPTION OF THE PREFERRED EMBODIMENTS As will be apparent, the invention may be employed in natural or artificial bodies of water. For example, referring to FIG. 1, the system may comprise an enclosur'e, designated generally by the numeral 10, of a predetermined planform having fluid communication with a larger natural or man-made body of water 11. The enclosure 10 is generally bounded by the structure ofa wave generator chamber 12 opening towards a shoreline 13 and, on opposite sides, by walls 14 and 15 which also comprise boundaries of spits of land 16 and 17, respectively. Water from the larger body of water 11 is admitted into the enclosure 10 through an inlet passage18, adjacent the wave generator chamber 12, and passes out of the enclosure 10 at an outlet 19, between the shoreward end of the wall 15 and the shoreline 13. The chamber 12 contains a wave generator apparatus 20, oriented to generate successive waves in a shoreward direction. Enclosure 10 is formed with a floor 21, generally sloping upwardly towards the shoreline 13, and so oriented with respect to the generator 20 as to produce successive waves spanning the width of the enclosure 10, with each wave breaking laterally from right to left as viewed in FIG. 1.
The specific example of FIG. 1 is adapted for an installation encompassing approximately sixty thousand square feet'of water surface in a cove of approximately 300 feet in length, from the generator 20 to a parallel line tangent to the shoreline 13. Since the topography of the floor 21 is essential in controlling the wave break it should be constructed of a material which is not subject to erosion as a result of the wave action. Accordingly, the floor 21 is preferably made of concrete or heavy rock, in the deeper portions at least, while sand may be distributed over the shallower portions and beyond the shoreline 13 onto a surrounding beach 22. By the same token, in order to give permanence to the desired planform of the enclosure 10, the side walls 14 and 15 are made of reinforced concrete, pilings, or the like.
The chamber 12 containing the wave generating apparatus is of a heavy construction to provide a stable support for the apparatus. Thus, as is indicated in FIG. 5, the generally U-shaped chamber is formed with a heavy footing 25 and surrounding wall 26, which may be of reinforced concrete, the entire chamber rising substantially above the undisturbed water level at the deeper end of the enclosure 10. As is shown in FIG. 6, the rear wall of the chamber may be formed with an elevated portion 27 on top of which a rigid framework 28, composed of appropriate box, channel or I beam members, may be anchored to project forwardly as a superstructure for connection to the upper end of the wave generating apparatus and to support various components thereof. The framework 28 substantially spans the length of the chamber 12 and, adjacent opposite ends, is rigidly connected to a pair of heavy columns 29, the lower ends of which are securely anchored within the footing 25.
As is best shown in FIGS. 5 and 6, the columns 29 serve as guide means for constraining a massive plunger 30 for reciprocation in a vertical plane. The plunger may be made of a variety of materials, such as wood, concrete, or metal, and in a variety of sizes, proportional to the magnitude of waves desired to be produced. For example, in a layout such as that of FIG. 1, the chamber 12 may be approximately 40 feet in length, i.e., between the side walls, with a depth of approximately 10 feet in order to accommodate, with clearance, a plunger on the order of 38 feet long, 12 feet wide and 8 feet in depth or height. In any event,
what is desired is a plunger capable of sufficient water displacement to generate waves of the desired height,
that is buoyant and, also, is of great mass, in order to utilize the forces of buoyancy and gravity in reciprocating the great mass of the plunger, with sufficient vertical amplitude of stroke to generate desired wave heights. In the present example, the mass and buoyancy of the plunger 30 are variable, as desired, and the control means includes a means for selectively limiting the input force whereby the apparatus is capable of generating waves of different energy and magnitude through a wide range.
More specifically, the illustrative plunger 30 comprises an essentially waterproof metal tank made of appropriately reinforced sheet steel that, at opposite ends, is internally rigidly provided with a vertical pair of guide sleeves 31 that slideably receive the pair of guide posts 29. The tank-like plunger 30 is provided with a filler opening means, not shown, by means of which a ballast material 32, for example a portion of the ambient water, may be introduced into the plunger in order to achieve a predetermined plunger mass. If a liquid such as water is employed as the ballast 32, slosh or baffle plates, or the like, may be provided internally of the tank-like structure in order to inhibit undesired random movement of the ballast material out of phase with the motion of the plunger.
The superstructure framework 28 mounts a spaced pair of pneumatic cylinders 33 adjacent the opposite ends of the plunger 30. As is shown in FIGS. 5 and 6, the cylinders 33 are vertically disposed, each having a downwardly projecting piston rod 34 extending inwardly into the plunger 30 for driving connection, at a lower end, to one of a pair of cross beams 35 rigidly affixed between opposite side walls of the tank-like plunger 30. It will be appreciated that the pneumatic cylinders 33 are illustrated schematically only but, in actuality, are of a sufficient length to provide a sufficient amplitude of stroke to accomplish the desired amplitude of reciprocation of the plunger 30. At the same time, the plunger 30, when adjusted for the desired mass, seeks its own equilibrium level relative to the normal still water level of the enclosure 10. Accordingly, the piston rods 34 preferably each comprise a sleeved pair of members capable of being interlocked by a locking means 36 to achieve the proper degree of extension of the piston rods 34 for each different equilibrium level of the plunger. This adjustment means may take the form, for example, of slots or holes V 37 formed in one portion of the piston rod assembly, as
indicated at 37, spaced longitudinally thereof, and adapted to receive the locking pin means.
As is schematically shown in FIG. 4, the cylinders 33 are connected to an appropriate source of compressed air by means of a conduit 40, havingan adjustable pressure regulator 41 interposed therein, a four-way solenoid valve 42, and appropriate manifolds 43 and 44. They cylinders 33 are, preferably, of the double acting type and, accordingly, the manifold 44 is connected between each cylinder 33 and the valve 42 in a manner to introduce compressed air to the lower end of each cylinder 33 beneath the piston. Conversely, the manifold 43 is interconnected between the valve 42 and the upper end of each cylinder 33 for cyclically introducing compressed air to the upper end of the cylinder above the piston. The valve 42 is also provided with an outlet 45 alternately venting to the atmosphere air being discharged from either the upper or lower ends of the cylinders 33. In addition, the valve 42 has a neutral position in which both of the manifolds 43 and 44 are vented to atmosphere through the outlet 45.
The solenoid valve 42 has a pair of terminals 46 and 47 connected in electrical parallel to opposite contacts 48 and 49 respectively of a single-pole double throw switch 50. A power supply 51 is connected to the switch 50 via a main power switch 52 and to a common terminal 53 of the solenoid valve 42. The arrangement is such that when the solenoid terminal 46 is energized compressed air is admitted to the lower manifold 44, while the upper manifold 43 is simultaneously in communication with the atmospheric outlet 45. Conversely, when the solenoid terminal 47 is energized compressed air is delivered through the manifold 43 to the upper end of the cylinders 33, while the lower manifold 44v is then vented to atmosphere via the outlet 45. When the power switch 52 is open, the solenoid valve 42 returnsto a neutral position in which both manifolds 43 and 44 are vented to atmosphere through the outlet 45.
The switch 50 comprises a portion of a pilotmeans adapted to translate reversals of the direction of oscillation of the plunger 30 into corresponding actuation of the solenoid valve 42 for delivering power in phase with the upward or downward movement of the plunger. Since the plunger 30 has neither upward or downward sense when it is at rest, a momentary manual switch 55 is utilized to initiate the plunger motion to, in turn, actuate the pilot means which, thereafter, automatically accomplishes actuation of the valve 42 to deliver power in phase with the plunger motion. Accordingly, a momentary manual switch 55 is connected between the solenoid valve terminal 46 and the power supply 51. As a result, closing of the switch 55 opens the valve 42 in a manner to admit compressed air to the lower manifold 44 to initiate upward movement of the pistons in the train of cylinders 33, concurrently venting the upper end of the cylinders to atmosphere. The cylinders 33 force the plunger 30 upwardly above its equilibrium position only a few inches on this initial input of power, simultaneously actuating the pilot means.
The switch 50 includes a switch arm 57 that is pivotally mounted, as at 58, to make and break contact with the opposed switch contacts 48 and 49. This switch arm is a longitudinal extension of a switch actuating arm 59 having a lost-motion connection with a vertically elongated rod 60 that is affixed toand carried by the plunger 30. Thus,as can be seen from FIG. 5a, the outer end of the switch actuating arm 59 telescopically slidably contains a rod 61 with a bifurcated outer end 62 mounting a roller 63 in frictional rolling engagement with a flat side or track of the member 60. A spring 64 within the actuating arm 59 effects biasing of the roller 63 into contact with the member 60 throughout the arcuate range of movement of the switch actuating arm 69.
As will now be apparent, initial upward movement of the plunger 30 effects corresponding upward movement of the member 60 with consequent counterclockwise pivoting of the-switch arm 59 to close contact 48. Then, when the gravitational force of the plunger 30 overcomes the lifting forces on the plunger, to reverse the plunger direction, the switch actuating arm 59 pivots clockwise as the gravitational force of the plunger effects lowering of the elongate member 60. Accordingly, the switch arm 57 now makes contact with the other switch terminal 49, energizing the solenoid valve 42 to admit compressed air to the top of the pistons in the cylinders 33, while air in the lower ends of the cylinders is bled to atmosphere through the manifolds 44 and outlet 45. Compressed air now augments the mass of the plunger to move the plunger 30 downwardly below its equilibrium position until overcome by the increasing buoyant force on the plunger 30. Consequent reversal and rising of the plunger 30 effects another reversal of the switch 50, initiating a new cycle of reciprocation of the plunger, again or with the force of buoyancy now being augmented by the force of the compressed air.
It will be seen that this cycle continues, with each stroke of the plunger 30 being reinforced sothat the amplitude of the plunger stroke gradually increases until a steady state condition is attained, the magnitude of the amplitude being a function of the mass of the plunger and the preadjusted compressed air input.
In order to deactivate this system, the power supply 51 is merely shut down by openingof the switch 50. As a result, the valve 42 returns to the neutral position. As both the upper and lower manifolds 43 and 44 are open to atmosphere, the plunger is then free to oscillate with natural declining frequency.
Steady state amplitude and frequency of the plunger 30 are adjustable by variation of the air pressure by adjustment of the regulator 41, and by varying the plunger mass, as by varying the amount of the ballast 32. By so controlling the motion of the plunger, water waves of various characteristics of height, frequency and wave length are generated.
As will now be apparent, the drive system just described may be modified whereby compressed air is delivered to single acting cylinders in phase with only one or the other of the forces of buoyancy and gravity acting on the'plunger 30. While not as efficient, such modification nevertheless attains the objective of phased reinforcing the natural oscillatory motion of the plunger 30, to displace large volumes of water with minimal energy and power requirements. It will also be apparent that other types of drive systems may be employed for delivering energy in phased relation with either or both of the forces of buoyancy and gravity acting on the plunger. For example, a cable system reeved on a suitable array of pulleys and drums employing slip clutches may be connected to either the top or bottom or both of the plunger 30, the slip clutches being adjusted for release at predetermined degrees of frictional engagement. An alternative form of wave generator is shown in FIG. 8, adapted for generation of single waves. In this modification, the chamber 12 is modified to have a rear wall 70- that inclines rearwardly upwardly relativeto the open front end of the chamber. In this case, a water tight tank 71 has an open lower end 72, and a top wall 73 mounting a plurality of purge valves 74. A prime mover 75 is mounted on top of an embankment 76 or other surface behind and above the wall 70, the prime mover 75 havingv driving engagement with a drum 77 on which a cable 78 is wound upon actuation of the prime mover 75. The other end of the cable 78 is connected to an appropriate bracket 79 secured to the top of the tank 71.
The forward face of the wall 70 is provided with a plurality of spaced vertically extending tracks 80, within which a plurality of wheel means 81 of the tank 71 are rollingly guided. With this inclined track system, it will be apparent that leverage is provided to minimize the force required to roll the tank 71 upwardly, in operation of the wave generator.
The tank 71 is preferably of elongated rectangular planforrn, as viewed from above i.e. normal to the plane of the top wall 73, and is made with a reinforced side wall construction, for example spaced surrounding bands 82, in order to resist the differential pressures to which the side walls in particular will be subjected. The open lower end 72 of the tank lies in a plane such that when the tank 71 is in the fully raised position illustrated, the opening is positioned in an approximately horizontal plane.
In the operation of the form of generator shown in FIG. 8, a brake or clutch device (not shown) is released to allow the cable 78 to unwind from the drum 77. As a result, the tank 71 is lowered into the water, filling through the opening 72 while the air captured within the tank escapes through the purge valves 74. The valves 74 may be simple one-way flapper valves, or one-way spring loaded valves set to close automatically at a predetermined differential of ambient and interior air pressures. In any event, after a volume of water has entered the tank 71, the prime mover 75 may be actuated to lift it up the inclined rear wall 70, the valves 74 then being closed. As a result a given volume of water is raised and when the open bottom 72 of the plunger tank clears the normal still water level, or hydrostatic equilibrium is otherwise upset, the raised volume of water discharges resulting in the propagation of a water wave.
The alternative wave generator of FIG. 8 may be employed where patronage is limited and continuous wave production is not required, as well as in circumstances where the power supply may be limited.
FIG. 1 illustrates a presently preferred overall planform and underwater topography of the enclosure 10, that is adapted to make optimum utilization of the waves cyclically generated by the generator 20. Within the given area of the enclosure '10, the combination of plan-form and underwater topography are adapted to provide optimum wave break forms; a maximum length of surf board run; generation and regeneration of breaking waves out of a single cycle of actuation of the generator 20; areas in which waves do not break to be utilized as pathways for surf boards returning to the ini tial wave build-up area or as calm swimming and diving area; and a shallow water region where waves are patterned to break in an optimum manner for belly boarding, surf rafting and body surfing.
For the foregoing purposes, it will be observed that one side wall 14 comprises a continuation of one side wall of the chamber 12, projecting shorewardly in a direction normal to the plane of the opening of the chamber 12. The other side wall 15 diverges shorewardly away from the opposed side wall 14 to the shoreline. The shoreline 13 curves away from the longer wall 15, beyond the projection of the relatively short wall 14, and thence curves towards the short wall 13 to merge thereinto at a location approximately opposite to the approximate mid point of the length of the wall 15.
The topography of the floor 21 of the enclosure 10 is shown by contour lines 90, each being marked with its depth in feet below the mean or still water level of the water contained in the enclosure. It will be observed that the relatively deep water contour lines, immediately adjacent the opening of the chamber 12, range spanwise of the walls 14 and 15 in a direction generally paralleling the plunger of the generator apparatus 20, but gradually define more acute angles with the long wall 15 with decrease in depth along that wall. It will be observed, also, that certain contour lines a do not span the entire width of the enclosure 10 but, instead, define loops indicating a second deep water portion of the enclosure 10, elongated generally in a direction angularly related to the longitudinal axis of the plunger of the generator apparatus 20 and tending towards parallelism with the long wall 15.
The dashed line 91 of FIG. 1 illustrates the trajectory of the path of the leading edge break of a primary wave generated by the apparatus 20. Thus, the wave initially breaks immediately in front of the generator apparatus 20 at the end 91a of the line, characterized as a fast and steep breaking wave section. Immediately thereafter, due to the divergence of the walls 14 and 15 and the gradually decreasing shallowness of the water, the wave height will gradually diminish as the wave progresses shoreward. As a consequence, the wave break decreases gradually along the line 91, requiring numerous turning maneuvers by the surfer to maintain an optimum position in the wave if he is to successfully complete a run for the full length of the line 91.
The second deep water portion of the floor 21, as represented by the contour lines 90a, defines a regenerating cavity utilizing the energy of a previously broken primary wave to reform the wave before it has lost all of its energy of turbulence. This regenerating cavity approximately corresponds in its longitudinal aspect to the initial portion of the path of the primary wave break, as indicated by the line 91, and effects reforming of the wave energy into a new secondary wave in the cove-like shallow water portion indicated at 92, as illustrated by the wave break trajectory along lines 93 and 94 in FIGS. 2 and 3.
Referring to FIG. 1, it will be seen by comparison of the wave break trajectory line 91 and the adjacent wall l'that the topography of the enclosure bottom is such that waves do not break within this strip of water, generally indicated at 95. Similarly, waves do not break within the regenerating cavity included within the second deep water contour lines 90a, so that these two areas are useable as pathways for surf boards returning to the initial wave build-up, or as relatively calm swimming and diving areas.
FIG. 2 illustrates the manner in which the topography of the enclosure bottom 21 accommodates different wave heights of a given period in producing the wave break trajectories shown, both for the primary and secondary trajectories 96 and 93, respectively. As is shown by comparison of the 5 foot, 4 foot and 3 foot primary trajectories 96, the larger waves break in deeper water and yield a faster ride.
FIG. 3 illustrates different wave break primary and secondary trajectories 97 and 94, respectively, resulting from different wave generator frequencies. When the plunger is more massive, the period T of the wave increases as the plunger moves more slowly. For a given wave height, the wave of the longer period, e.g. 7 seconds, will yield a faster ride with a more critical and powerful wave section threatening the rider as he tries to escape in front of the break. The same result follows with the secondary wave break trajectories compared in the shallower cove area 92.
A protective barrier 99 may be provided in the opening of the chamber 12 to prevent a user being drawn into contact with the generator 20. This barrier may take the form of heavy wire-mesh fencing, as shown, or laterally spaced vertically and/or horizontally disposed rods or other relatively open rigid meansthat will not unduly. disturb the formation of waves emitted from the chamber 12. As will be apparent, if the wave generation is accomplished by a row of relatively small, synchronized plungers in individual chambers, rather than by a single large, greatly elongated plunger of the given example, each chamber may be provided with its own safety barrier. l
While certain presently preferred embodiments of the invention have been disclosed, it will be apparent that various modifications in the design, arrangement of ports and instrumentalities of the invention are obviously possible.
We claim:'
1. In an apparatus for generating waves in a body of water, the combination comprising:
a plunger supported by the body of water;
power means connected to said plunger to effect vertical displacement of said plunger in the water in at least one direction;
and control means, interconnected with said power means, for cyclically drivingly connecting said power means to said plunger in phase with one, at least, of the forces of buoyancy and gravity acting on said plunger in a direction to augment one, at least, of such forces, in displacing said plunger.
2. Apparatus as in claim 1 in whichsaid plunger has a mean density less than that of the water.
3. An apparatus asin claim 1 that includes means for varying the'frequency of displacement of said plunger.
4..An apparatus as in claim 3 in which said means for varying the frequency of displacement of said plunger comprises a selectively controllable means to vary the output of said power means.
5. An apparatus as in claim 3 in which said means for varying the frequency of displacement of said plunger comprises a means to vary the mass of said plunger.
6. An apparatus as in claim 3 in which said means for varying the frequency of displacement of said plunger comprises a selectively controllable means to vary the output of said power means and a means to vary the mass of said plunger.
7. An apparatus as in claim 1 that includes means for limiting the amplitude of displacement of said plunger.
8. An apparatus as in claim 7 in which said means for limiting the amplitude of displacement of said plunger comprises a selectively controllable means to vary the output of said power means.
. 9. An apparatus as in claim 7 in which said means for limiting the amplitude of displacement of said plunger comprises a means to vary the mass of said plunger.
10. An apparatus as in claim 7 .in which said means for limiting the amplitude of displacement of said plunger comprises a selectively controllable means to vary the output of said power means and a means to vary the mass of said plunger.
11. An apparatus as in claim 2 in which said control means includes a pilot device adapted to translate a position of vertical displacement of said plunger out of a state of buoyant equilibrium into activation of said power means.
12. An apparatus as in claim 11 in which said pilot device includes means for sensing reversal of the direction of vertical displacement of said plunger.
13. Surf generating apparatus comprising:
an enclosure for the body of water inwhich the surf is to be generated;
said enclosure having a generally tapered planform defined, in part, by a wave generatorchamber extending transversely of the narrower end of said tapered planform and, in part, by a pair of side walls diverging away from said chamber;
said enclosure having a floor sloping upwardly and shorewardly away from a shorewardly facing opening of said chamber;
a horizontally elongated, vertically reciprocable plunger, in said chamber, having its long axis disposed transversely of said narrower end of said enclosure to displace water in waves spanning said side walls, upon reciprocation of said plunger;
said floor having a topography including contour lines disposed transversely of said side walls and angularly offset from said longitudinal axis of said plunger with increased angularity therebetween with increase in distance away from said plunger, in order to generate a wave break trajectory running laterally of each wave generated by said plunger;
said contour lines also being so angularly related with the one of said side walls towards which the wave break trajectory extends as to decrease in angularity relative to said one wall with increase in distance away from said plunger, in order to deflect said trajectory away from said one sidewall to increase the length of said trajectory.
14. Apparatus as in claim 13 in which said enclosure has a water inlet adjacent to said chamber and a water outlet positioned adjacent the terminal end of said wave break trajectory whereby to induce water circulation through said enclosure as a result of wave motion.

Claims (15)

1. In an apparatus for generating waves in a body of water, the combination comprising: a plunger supported by the body of water; power means connected to said plunger to effect vertical displacement of said plunger in the water in at least one direction; and control means, interconnected with said power means, for cyclically drivingly connecting said power means to said plunger in phase with one, at least, of the forces of buoyancy and gravity acting on said plunger in a direction to augment one, at least, of such forces, in displacing said plunger.
2. Apparatus as in claim 1 in which said plunger has a mean density less than that of the water.
3. An apparatus as in claim 1 that includes means for varying the frequency of displacement of said plunger.
4. An apparatus as in claim 3 in which said means for varying the frequency of displacement of said plunger comprises a selectively controllable means to vary the output of said power means.
5. An apparatus as in claim 3 in which said means for varying the frequency of displacement of said plunger comprises a means to vary the mass of said plunger.
6. An apparatus as in claim 3 in which said means for varying the frequency of displacement of said plunger comprises a selectively controllable means to vary the output of said power means and a means to vary the mass of said plunger.
7. An apparatus as in claim 1 that includes means for limiting the amplitude of displacement of said plunger.
8. An apparatus as in claim 7 in which said means for limiting the amplitude of displacement of said plunger comprises a selectively controllable means to vary the output of said power means.
9. An apparatus as in claim 7 in which said means for limiting the amplitude of displacement of said plunger comprises a means to vary the mass of said plunger.
10. An apparatus as in claim 7 in which said means for limiting the amplitude of displacement of said plunger comprises a selectively controllable means to vary the output of said power means and a means to vary the mass of said plunger.
11. An apparatus as in claim 2 in which said control means includes a pilot device adapted to translate a position of vertical displacement of said plunger out of a state of buoyant equilibrium into activation of said power means.
12. An apparatus as in claim 11 in which said pilot device includes means for sensing reversal of the direction of vertical displacement of said plunger.
13. Surf generating apparatus comprising: an enclosure for the body of water in which the surf is to be generated; said enclosure having a generally tapered planform defined, in part, by a wave generator chamber extending transversely of the narrower end of said tapered planform and, in part, by a pair of side walls diverging away from said chamber; said enclosure having a floor sloping upwardly and shorewardly away from a shorewardly facing opening of said chamber; a horizontally elongated, vertically reciprocable plunger, in said chamber, having its long axis disposed transversely of said narrower end of said enclosure to displace water in waves spanning said side walls, upon reciprocation of said plunger; said floor having a topography including contour lines disposed transversely of said side walls and angularly offset from said longitudinal axis of said plunger with increased angularity therebetween with increase in distance away from said plunger, in order to generate a wave break trajectory running laterally of each wave generated by said plunger; said contour lines also being so angularly related with the one of said side walls towards which the wave break trajectory extends as to decrease in angularity relative to said one wall with increase in distance away from said plunger, in order to deflect said trajectory away from said one side wall to increase the length of said trajectory.
14. Apparatus as in claim 13 in which said enclosure has a water inlet adjacent to said chamber and a water outlet positioned adjacent the terminal end of said wave break trajectory whereby to induce water circulation through said enclosure as a result of wave motion.
15. Apparatus as in claim 13 in which said floor topography includes an undulant portion defining a wave regenerating cavity positioned shorewardly adjacent to an initial part of said trajectory and comprising second contour lines defining oppositely sloping portions of said floor with said second contour lines generally following the path of said trajectory.
US56314A 1970-07-20 1970-07-20 Apparatus for surf generation Expired - Lifetime US3693195A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US5631470A 1970-07-20 1970-07-20

Publications (1)

Publication Number Publication Date
US3693195A true US3693195A (en) 1972-09-26

Family

ID=22003592

Family Applications (1)

Application Number Title Priority Date Filing Date
US56314A Expired - Lifetime US3693195A (en) 1970-07-20 1970-07-20 Apparatus for surf generation

Country Status (1)

Country Link
US (1) US3693195A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539719A (en) * 1984-02-08 1985-09-10 Automated Swimpools, Inc. Pneumatic surf wave production for pools
US4774731A (en) * 1987-05-27 1988-10-04 Nippon Kokan Kabushiki Kaisha Wave pool
US20150089731A1 (en) * 2013-10-02 2015-04-02 Thomas J. Lochtefeld Method and apparatus for managing and controlling breaker waves in a wave pool

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US490484A (en) * 1893-01-24 Steele mackaye
US586983A (en) * 1897-07-27 Amusement apparatus
US2002043A (en) * 1933-11-16 1935-05-21 Price Owen Alfred Means for producing artificial waves
US2995103A (en) * 1955-05-06 1961-08-08 Waas Heinrich Icebreaker
US3005207A (en) * 1959-01-13 1961-10-24 Matrai Miklos Swimming pool
US3130701A (en) * 1961-08-15 1964-04-28 Poul O Langballe Icebreakers
US3473334A (en) * 1968-06-24 1969-10-21 Phillip Dexter Apparatus and method for producing waves
US3477233A (en) * 1966-03-07 1969-11-11 F Andersen Wave machine installations
US3557559A (en) * 1969-05-12 1971-01-26 Douglas W Barr Wave-generating apparatus

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US490484A (en) * 1893-01-24 Steele mackaye
US586983A (en) * 1897-07-27 Amusement apparatus
US2002043A (en) * 1933-11-16 1935-05-21 Price Owen Alfred Means for producing artificial waves
US2995103A (en) * 1955-05-06 1961-08-08 Waas Heinrich Icebreaker
US3005207A (en) * 1959-01-13 1961-10-24 Matrai Miklos Swimming pool
US3130701A (en) * 1961-08-15 1964-04-28 Poul O Langballe Icebreakers
US3477233A (en) * 1966-03-07 1969-11-11 F Andersen Wave machine installations
US3473334A (en) * 1968-06-24 1969-10-21 Phillip Dexter Apparatus and method for producing waves
US3557559A (en) * 1969-05-12 1971-01-26 Douglas W Barr Wave-generating apparatus

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4539719A (en) * 1984-02-08 1985-09-10 Automated Swimpools, Inc. Pneumatic surf wave production for pools
US4774731A (en) * 1987-05-27 1988-10-04 Nippon Kokan Kabushiki Kaisha Wave pool
US20150089731A1 (en) * 2013-10-02 2015-04-02 Thomas J. Lochtefeld Method and apparatus for managing and controlling breaker waves in a wave pool
US11572702B2 (en) * 2013-10-02 2023-02-07 Thomas J. Lochtefeld Method and apparatus for managing and controlling breaker waves in a wave pool
US20230243171A1 (en) * 2013-10-02 2023-08-03 Thomas J. Lochtefeld Method and apparatus for managing and controlling breaker waves in a wave pool

Similar Documents

Publication Publication Date Title
US3789612A (en) Method of surf generation
AU2019232904B2 (en) Surfing wave generation
US4276664A (en) Apparatus for wave-making
US7815396B2 (en) Reflecting wave generator apparatus and method
US9920544B1 (en) Plunger wave generator apparatus for efficiently producing waves in a body of water
US4976570A (en) Apparatus and method for generating waves in a body of water
US3777494A (en) Wave energy motors
KR20060094018A (en) Wave power station
US3693195A (en) Apparatus for surf generation
US3961480A (en) Pressure source and systems incorporating it
US4276661A (en) Wave-making apparatus
US4246756A (en) Pressure source and systems incorporating it
US10519679B1 (en) Plunger artificial wave making apparatus
NO912371L (en) PROCEDURE AND DEVICE FOR SUBMISSION AND INSTALLATION OF FOUNDATION CONSTRUCTIONS ON THE SEA.
US3793534A (en) Method of surf generation
US4462762A (en) Wave action machine
JPS632158Y2 (en)
US4276846A (en) Recovery apparatus
GB2196697A (en) Wave power machine
US10953299B1 (en) Wave tainer displacement wave generator
GB2027129A (en) Submerged Pressure Operated Hydraulic Ram
JPH0598651A (en) Press-in method for undersea foundation
US11686116B2 (en) Plunger wave making generator system
KR101734226B1 (en) A positive development system using the wave height
RU2005838C1 (en) Floating breakwater