US3692057A - Solenoid valve - Google Patents

Solenoid valve Download PDF

Info

Publication number
US3692057A
US3692057A US133360A US3692057DA US3692057A US 3692057 A US3692057 A US 3692057A US 133360 A US133360 A US 133360A US 3692057D A US3692057D A US 3692057DA US 3692057 A US3692057 A US 3692057A
Authority
US
United States
Prior art keywords
valve
zone
temperature
closure member
controlled ports
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US133360A
Inventor
John W Barnd
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3692057A publication Critical patent/US3692057A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0682Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid with an articulated or pivot armature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K11/00Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves
    • F16K11/02Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit
    • F16K11/04Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves
    • F16K11/052Multiple-way valves, e.g. mixing valves; Pipe fittings incorporating such valves with all movable sealing faces moving as one unit comprising only lift valves with pivoted closure members, e.g. butterfly valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0603Multiple-way valves
    • F16K31/0624Lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/10Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid with additional mechanism between armature and closure member
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/86493Multi-way valve unit
    • Y10T137/86847Pivoted valve unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/877With flow control means for branched passages
    • Y10T137/87788With valve or movable deflector at junction
    • Y10T137/8782Rotary valve or deflector

Definitions

  • This invention relates to temperature control arrangements and methods and more particularly to multi-zone temperature control systems and methods for controlling temperature and other factors in each of a plurality of rooms, zones or compartments.
  • the invention is applicable to multi-zone temperature control in general. It is described, however, in terms of controlling the ambient air temperature.
  • Additional objects of the invention are to provide multi-zone temperature control methods and arrangements in which individual zones are adjustably regulated according to their needs and in which such performance is accomplished without the need for separate circulating systems in each zone.
  • a further object of the invention is to provide methods and means for effecting individual temperature control in a plurality of zones supplied with a sin gle-pipe circulating system.
  • a still further object of the invention is to provide improved temperature control techniques which may be attained by simple modifications to known systems.
  • a still further object of the invention is to achieve multizone temperature control with a minimum of labor, materials and control apparatus, with simple localized circuit connections, and without the need for elaborate electrical, plumbing or duct networks between each of the controlled zones and the central heat or coolant plant and control center.
  • the invention consists in the novel methods, steps, parts, constructions, arrangements, combinations and improvements herein shown and described.
  • FIG. 1 is a diagrammatic and schematic view of an exemplary temperature-control arrangement according to the invention
  • FIGS. 2 and 2A are schematic fragmentary diagrams illustrating alternate thermostatic control arrangements.
  • FIG. 3 is an elevational sectional view partly schematic of a valve arrangement which may be employed in the system of FIG. 1.
  • FIG. 1 is illustratively applied to the control of temperature in a :multi-zone structure comprising a building having a basement L and upper levels N and M.
  • the upper levels N and M are divided into zones, A, B, C and D, E, F, respectively.
  • Zones A and D comprise master control zones while B, C, E and F comprise by-pass control zones.
  • two groups of master zone/by-pass zone combinations A, B, C and D, E, F are illustrated, it is to be understood that in practice either one such combination or three or more may be utilized with a number of by-pass zones selected as required.
  • zones A, B, F which need not be an enclosed area as shown but may be a particular thermal area, is provided with respective heat transfer means embodied as a heat exchanger 5A, 5B, 5F which is illustratively a convector radiator.
  • zones E and F illustratively include respective fan units6E, 6F, adapted to cooperate with the adjacent heat exchanger 5E, SF.
  • the illustrated system includes a heating system 9 in basement L with appropriate pumps, controls, etc. (not shown) and a single-pipe type water circulatory system connected thereto and including feed header l2, parallel branch pipe systems 12M and l2N connected thereto and disposed in levels M and N respectively and return header 13 to which the outlets of piping lines 12M, 12N are connected.
  • Line 13 connects in turn to the inlet of heating unit 9.
  • the branch pipe system 12N therein is illustratively connected to temperature responsive valve means in zone A embodied as a-solenoid operated two-way valve 1A.
  • the outlet end of valve 1A is connected toby-pass control means illustratively comprising a three-way manual valve 2A and a shunt pipe arrangement 20A, these being connected to heat exchanger 5A such that a portion of the circulating medium in branch 12N can be controlled to flow in an adjustable amount through heat exchanger 5A while the balance by-passes same.
  • the temperature control capacity, e.g., heating capacity, of exchanger 5A in master control zone A ' is adjusted.
  • Exchanger 5A may in practice comprise a plurality of spaced interconnected heat exchanger units.
  • zone B From the interconnected outlet sides of exchanger 5A and shunt 20A, serial connection is made to zone B via a section ab of the pipe 12N.
  • the inlet connection to zone B includes flow responsive control means embodied as a flow responsive electrical switch 148.
  • fluid flow is directed to temperature responsive by-pass control means including a three-way valve 43 which is illustratively solenoid actuated and is connected to exchanger 5B and the associated shunt line 208.
  • exchanger 5B may in practice cornprise a plurality of individual exchange units.
  • the outlet side of 5B may include a check valve SE to prevent heat exchange during the by-pass mode.
  • the solenoid operated by-pass valve is preferably of a type in which a valve failure leaves the associated heat exchanger open, i.e., not by-passed.
  • zone B serial connection is made via section be of l2N to zone C which illustratively is equipped with a by-pass exchanger system 3C, 4C, 5C, C similar to zone B, but which does not include flow responsive switch means such as 14B.
  • zone C which illustratively is equipped with a by-pass exchanger system 3C, 4C, 5C, C similar to zone B, but which does not include flow responsive switch means such as 14B.
  • the outlet side of the control system in zone C is connected to return header 13.
  • Branch piping 12M in level M serially interconnects the temperature control system of zones D, E and F between inlet header 12 and return header 13.
  • the piping and valve arrangement of master control zone D is similar to corresponding zone A.
  • zones E and F have installations similar to the corresponding arrangements of B and C, respectively.
  • zones E and F also illustratively include respective fans or impellers 6E, 6F which operate in conjunction with the related heat exchanger 5E, 5F.
  • zone F includes a flow responsive switch 14F while corresponding zone C does not.
  • the outlet side of the control arrangement in zone F is connected to the return header 13.
  • valve 1A in master control zone A is controlled by the thermostat 8A, these elements being serially connected to power terminals P P
  • the solenoid of valve 1D in master control zone D is controlled by a thermostat, 8D, which connects the solenoid to the power terminals P and P when the thermostatic switch is closed.
  • the thermostat 8A illustratively includes a mode selector switch 8A for effecting both heating and cooling operations.
  • Control over the three-way valve 4B in zone B is effected with a circuit embodied as the serial combination of flow responsive switch 14B, the valve solenoid,
  • thermostat 7B includes in series, a manual mode switch 26B and thermostatic contacts B.
  • the circuit of zone B is energized from the power terminals P P thereof which may be connected via a local outlet in zone B to P and P or, to any other locally available power source. Where reduced potentials are appropriate, the terminals P P may be connected to the power terminals by way of a transformer.
  • zone B and one or more of the other by-pass zones may include a plurality of exchange units 5B with respective solenoid valves 4B, jointly controlled by the thermostat 7B.
  • Zone C is similar to zone B except for the omission of a flow responsive switch.
  • the electrical control components in each zone have ratings enabling them to be operated from the power source in the zone either directly or via a transformer. In this way the inherent feature of the invention of achieving control by local means is put to best advantage.
  • the valve 4E of zone E has its solenoid controlled from a circuit energized from power terminals P and P
  • This circuit, starting at P includes the serial combination of flow responsive switch 14E, manual cut-off 26E, thermostat 7E, thermostatic contacts 25E, the solenoid of valve 4E, and the return to power terminal P
  • the valve 4F in zone F is controlled by a similar circuit.
  • the fan unit 6B in zone E is controlled from power terminals P and P by way of a circuit which, starting at P includes the flow responsive switch 14E, manual cut-out 26E, thermostat 7E, thermostatic contacts 27E,
  • the fan unit in zone F is controlled by a similar circuit.
  • certain control factors obtain for heating functions.
  • the associated two-way valve 1A or 1D is opened to provide circulation through the entire corresponding circuit 12M or l2N.
  • the master control zone thermostats 8A, 8D each close when the respective zone temperature t or t is equal to or less than the corresponding desired or set temperature T or T each opens when the zone temperature t, or L, is above the set temperature T, or T by an amount Ar representing the switching range.
  • a range of 2 F is illustrative.
  • switches 8A or 8D closed, as when the corresponding zone temperature is less than the set temperature, the respective two-way valve solenoid is actuated to open the valve 1A or 1D. (At the same time, an appropriate control action may occur at heating unit 9 as required).
  • Thermostats 8A and 8D are seen to each control circulation through its respective branch system l2N and 12M via control over the respective valve IA, ID.
  • zone A an above-temperature condition in zone A results in the cut-off of flow through zones B and C as well.
  • zones E and F which are controlled in this respect by zone D.
  • zones be selected for master zones which have the greatest anticipated rate of temperature loss. These zones are then instrumented as shown in A and D. If zone B rather than zone A qualified as a master zone, then the valve and thermostatic systems in these two zones , would be reversed from that illustrated.
  • the heating capacity in each of the master control zones A and D is less than that of zones B, C, E and F.
  • the manually adjustable by-pass valves 2A and 2D are provided in zones A and D so that relatively less heating capacity for zones A and D may be achieved by bypassing an appropriate amount of heating medium around or past heat exchangers 5A and 5D respectively. Balanced operation of the system is aided by this condition.
  • thermostatic elements 7B, 7C, 7E and 7F An additional preferred condition in the illustrated system relates to the thermostatic elements 7B, 7C, 7E and 7F.
  • the heating function contacts 25B, 25C, 25E and 25F thereof will be considered. These contacts are designed to open and close when the respective ambient temperature rises above and falls below a switching temperature T which is equal to the set temperature T T etc., plus A t,, where A t is approximately equal to
  • T T etc. the set temperature
  • a t is approximately equal to
  • switch contacts 25B will close when the zone B temperature, t exceeds 72 F and will open when t, falls below 72 F.
  • the thermostatic contacts 25B are also provided.
  • 25C, 25E and 25F are reverse acting relative to the master zone thermostats; the former close in the case of excess temperature while the master zone contacts of thermostats 8A and 8D open.
  • Zones B, E and F also include flow responsive switches 14B, 14E and 14F, respectively, in their control circuits.
  • the flow responsive switch e.g., 14B
  • the flow responsive switch may be used to cut off power, not only in the zone where it is installed, but in all other connected by-pass zones, e.g., zone C, as well.
  • Exemplary control operations in zone B involve the closure of contacts 25B when the temperature in zone B rises above the switching temperature T,,. If the manual switch 26B is in the H-position, and assuming flow through lines ab so that switch 14B is closed, then the closure of contacts 25B will cause actuation of the solenoid valve 4B whereupon the heating medium is by-passed around exchanger 5B through shunt 20B to terminate the heating operation in zone B.
  • zones C, E and F Similar control functions characterize zones C, E and F. In zones E and F the above action is supplemented by the operation of fan units 6E and 6F. For example, when the temperature in zone E becomes excessive, the contacts 25E close while the complementary contacts 27E open. The closing of 25E provides by-pass while the opening of 27E deactivates the respective fan unit 6E.
  • contacts 25E open to deenergize valve 4E; hot water is thus fed to heat exchanger 5E.
  • contacts 27E close whereby the fan 6E is energized to circulate air through the now-heating exchanger 5E.
  • An exemplary overall system heating operation may be described under the initial assumption that temperature in each zone is falling.
  • T the heating mode contacts of thermostat 8A close whereupon valve 1A is opened; medium flow in level N commences.
  • heating of zone A commences to reverse the previously assumed falling temperature condition.
  • the contacts 25B thereof will be open when heating of zone A commences.
  • the by-pass value 48 will thus be deenergized and the hot water now flowing due to the action in zone A will also flow through heat exchanger 58 in zone B and cause the temperature in zone B to rise as well.
  • zone C A similaraction prevails with respect to zone C if the temperature therein has fallen below the switching temperature of thermostat 7C. If the temperature in either or both of zone B and C is above the respective switching temperature then the flow in that zone resulting from the control action in A, will be by-passed.
  • zones B and C Since the relative heating capacity of zones B and C is, by manual adjustment of valve 2A and by appropriate selection of master zones as noted above, made greater than zone A, then the temperatures in these zones will rise at a rate faster than that rate prevailing at zone A. When zone B and zone C temperatures reach the respective switching temperatures, the associated thermostatic contacts 258 and 25C will close. When this occurs, the associated by-pass valve 4B and 4C is energized thus providing the By-pass action and terminating the heating condition in the respective zone. At a later time the temperature in master control zone A rises by the amount Ar illustratively 2 F, above the setpoint of zone A. At this time the contacts in thermostat 8A open and valve 1A is thus deenergized and closed.
  • Circulation thus ceases not only through zone A but through zones B and C as well; it is assumed that temperature will drop in all zones under these conditions.
  • the respective by-pass valve is deenergized and the as sociated heat exchanger is thus placed in readiness to receive hot water as soon as the temperature in zone A drops to the point where the heating-circulating action is once again initiated.
  • the switching temperature in zones B and C is set, illustratively 2 F, or slightly more, above the desired temperature T T etc., for these zones so that a drop below the switching temperature should not become excessive unless there is a much greater rate of temperature loss in these zones than in zone A. As noted hereinbefore this condition is avoided by proper selection of the master zone.
  • zones A,B and C in level N also apply to zones D, E and F in level M.
  • radiators in a particular zone need not be controlled as described above and in a well balanced installation within a large building only a fraction of the radiators in large open areas may need the by-pass arrangement.
  • illustrated control elements including valves and switches may be reversed or otherwise modified as is well known in the art, provided additional complementary reversals are made so that the net control effect remains unchanged.
  • FIG. 1 includes schematic representations of a coolant source and control system 9C which, with the aid of valve 30 in line 12 and valve 31 in line 13, may be substituted in the system for the heating unit 9.
  • the cooling unit 9C includes the required pump, control arrangements and the like (not shown).
  • level N is shown equipped for cooling, it being assumed that circulation through level M as well as the control circuits thereof, are cut-ofi during these operations.
  • Switch 8D may include a section for disabling operations in zone D while 26E and 26F perform like functions in zones E and F.
  • the mode selector 8A in zone A is switched to the C-position whereupon those con tacts of thermostat 8A are activated which are complementary to the heating contacts.
  • a temperature above the set value T by some increment At e.g., 2 F, causes these contacts to close; they open when zone A temperature falls below T,,,.
  • the mode selectors 26B and 26C in zones B and C respectively are also set to their C-positions whereby thermostatic contacts 28B and 28C assume control. Each of these contacts opens when the switch temperature exceeds the set value and closes when the switch temperature falls below the set value.
  • the switching value is set equal to the desired value plus an increment which equals or exceeds the range of thermostatic element 8A in zone A.
  • valve 1A is deenergized and therefore closed; there is no coolant circulation and by-pass valves 43 and 4C are in the by-pass position. Zones B and C remain bypassed until the respective ambient temperature exceeds the set value, T T which is illustratively 70.
  • T T which is illustratively 70.
  • the related contacts 28B, 28C open and the associated by-pass valve 48, 4C is transferred out of the by-pass position to allow cooling to commence.
  • the controlling contacts of thermostat 8A close thereby opening valve 1A and initiating a cooling action in unit 9C. Circulation and cooling of zone A thus commences. Cooling in zones B and C thus commences as well.
  • the cooling of zone B and C is preferably rapid; as the temperatures of these zones drop below the set value, the by-pass condition is reestablished through the closure of contacts 28B, 28C.
  • valve 1A When zone A has cooled below the set temperature T then the active contacts thereof open; valve 1A is deenergized and circulation and cooling cease in zones A, B and C.
  • thermostats 7B and 7C are in the cooling mode substantially equal to the respective set value.
  • thermostatic control elements 73, 7C, 7E and 7F be more sensitive than those in the associated master control zones A and D.
  • suitable thermostatic elements may be employed. An illustrative control arrangement is shown in FIG. 2.
  • a snap acting thermostatic element B1 includes a switching arm Kl adapted in one position to close a pair of fixed contacts C1, C2 by way of a bridge G1 on an insulated portion of the arm.
  • K which represents the low temperature condition
  • a contact C is connected to the element arm and thus to a terminal T,.
  • This circuit is insu. lated from the circuit involving contacts C, and C,.
  • switch arm K In its other or high temperature position, switch arm K, provides a connection between a contact C, and the terminal T,.
  • heaters H In thermal relationship with element B, is a pair of heaters H, and H these heaters being energized under certain conditions from power source terminals P,,, P, as described more fully hereinafter.
  • a mode selector switch S In circuit connection with the thermostatic switch is a mode selector switch S, including ganged sections S and S,,,.
  • the switch has three positions, C, OFF, and H, applicable to the cooling, shut down and heating modes, respectively.
  • the operation of the thermostatic control will be described in relation to its control over the by-pass valve V, having a solenoid L,.
  • the valve is connected to the input of exchanger E, and to shunt pipe 101 to provide the by-pass control functions hereinbefore described. Cooling and heating media are selectively applied to the inlet of V, via pipe 100 while the outlet from the exchanger is by way of a pipe 102.
  • the valve may be adapted for manual adjustment in addition to solenoid control. With the aid of a suitable indicator such as lamp Q1 connected across the solenoid to indicate system cycling, the valve may be initially manually adjusted to establish system balance.
  • Heater H is connected between power terminal P and thermostatic contact C Heater H, is connected between power terminal P and the C-contact of switch section S,,. Terminal P is also connected to thermostatic contact C,. Solenoid L, is connected between power terminal P, and terminal T, of the element B,. The arms of switch sections 5,, and S,, are connected together and to power terminal P The C-contact of S, is connected to thermostatic contact C, on B, while contact C, thereof is connected to contact H on S,,,.
  • Heating operation involves the setting of mode selector S, to the H-position. It is initially assumed that the ambient temperature is below the set value T,, illustratively in which case thermostatic switch arm K, is in the position shown. Under these conditions heater H, is energized by way of the circuit which is connected from terminal P through H through C, and C, to terminal P Each heater is preferably designed to elevate the thermostatic temperature t above ambient temperature 1,, by an amount At, which is approximately equal to the operating range or sensitivity of the thermostatic element B,. For illustration, this increment will be assumed to be 2 F. l-Ience, each heater raises the thermostat temperature by 2 above ambient, for a total of 4.
  • the thermostatic element is designed such that a thermostat temperature T,, which is 4 above the set point, illustratively 74, causes the arm K, to switch to the high temperature position (to the left in FIG. 2) while a thermostat temperature T which is 2 above the set point, illustratively 72, causes the arm K, to switch to the low temperature or illustrated position.
  • the thermostat temperature With the ambient temperature at or below the 70 set point then the thermostat temperature will be at or below 72 and the switch will be in the position shown with heater H, energized.
  • the thermostat temperature When the ambient temperature rises to 2 above the set point, i.e., to 72 then the thermostat temperature will exceed the set point by 4, i.e., will be greater then 74. This is the upper switching temperature.
  • arm K will switch to the high temperature position. When this occurs contacts C, and C, are disconnected and the circuit to heater H, is opened; while the contact C, is engaged and circuit to the solenoid L, of valve V, is closed.
  • This closed circuit may be traced from terminal P through the solenoid to terminal T, and thence through the thermal element to contact C,; from C, the circuit connection is to contact H of S,,, and thence to power terminal P Hence, when the ambient temperature is 72 (and thermostat temperature 74), valve V, is energized to cause bypass action. With the heater H, deenergized, the thermostat temperature drops and approaches ambient temperature.
  • the switching action essentially occurs about a point, e.g., 72 F ambient.
  • switch S is set to the C-position.
  • heater H is connected between the power terminals as may be seen by tracing the path from terminal P through H,, through the C-contact and arm of S,,,, and thence to power terminal P Hence, this heater is continuously energized in the cooling mode independent of the switching actions of element 8,.
  • the thermostat temperature When the ambient temperature is greater than the desired temperature, e.g., 70, then the thermostat temperature is higher than 72. Assuming these conditions for a sufficient length of time, the arm K, is in the high temperature position. When the ambient temperature drops below the set value 70 the thermostat temperature drops below 72 and arm K, switches to the low temperature position. When this occurs solenoid L, is actuated from terminal P through the solenoid, through terminal T, and contact C to the C-contact of S,,,. From that point connection is made via the arm of S, to power terminal P The by-pass operation is thus initiated. At the same time, heater H, is energized from terminal P through the heater and via contacts C, and C, to terminal P In view of this action the thermostat temperature will rise 4 above ambient temperature.
  • the desired temperature e.g. 70
  • FIG. 2A Another embodiment of a thermostatic control element suitable for use according to the invention is illustrated in FIG. 2A.
  • the control system therein illustrated differs from the arrangement 0F FIG. 2 in the following respects.
  • the circuit of heater H, instead of being completed through the contacts C, and C, of FIG. 2, is controlled by a pair of relays K, and K,
  • Relay K has its field connected between the C contact of S, and contact C, of thermostatic element 8,.
  • Relay K is connected between the H contact of S,,, and contact C, of B,.
  • One of the normally open contacts of K is connected to contact C of S,,,.
  • the other contact is connected along with one of the normally closed contacts of K,, to one side of heater H,.
  • the other side of this heater is connected to power terminal P,
  • the other normally closed contact of relay K is connected to contact H of S,,.
  • the switch is shown inits low temperature position.
  • heater H With the mode selector in the H [heating] position, and in the illustrated low temperature condition, heater H, is energized via the normally closed contacts of K, and contact H of 8,, so that it is connected between terminals P, and P,. K, is deenergized since C, is open. Heater H, is deenergized because C of 8,, is not in the circuit.
  • relay K When element B, transfers to the high temperature position, relay K, is connected in series with solenoid L, across the power terminals P and P The actuation of K, causes the normally closed contacts thereof to open whereby the circuit of heater H, is opened.
  • the switch S In the cooling mode the switch S, is set to the C position. Heater H, is thereby energized. With the thermostatic element B, in the low temperature condition, relay K, is energized via the C contact of S,,,, the C contact of B,, and the solenoid L,. With the K, thus energized, heater H, is connected across the power source terminals via the now-closed contacts of K, and contact C of S,,,. When B, is transferred to the high temperature condition, K, is deenergized thus deenergizing H,.
  • FIG. 2A It may be seen that the overall operation of the arrangement of FIG. 2A is similar to that of FIG. 2.
  • a solenoid actuated valve suitable for use according to the invention is illustrated in FIG. 3 and comprises a valve body 30 having an inlet connector 31 threaded into the valve interior in one side thereof, a by-pass connector 32 threaded into the interior in another side thereof, and an outlet connector 33 similarly threaded in a third side.
  • Connectors 32 and 33 include integral valve seat sections 32a and 33a, respectively.
  • Valve casing 30 includes a flange section 35 adapted to mate with a flat member 36 forming a support for solenoid means 37 and the case 38 therefor.
  • Member 36 includes assembly holes 36a in alignment with holes 35a in the flange, and is conveniently tapped centrally to threadably receive an annular base 40 on which solenoid 37 is mounted. Through the center of 40 and a packing or seal 40a therein, solenoid core or armature 37a extends, passing into the interior of valve body 30.
  • core piece 370 is pivotally coupled with clearance to a compound valve head 41 having one valve section 41a adapted to control outlet 33, and another generally orthogonal section 41b for closing by-pass 32a.
  • Valve 41 is pivoted to the valve body as by a pin 41c.
  • valve is shown approaching the energized position where outlet 33 is closed and 32 opened.
  • a spring 45 which coaxially surrounds magnet core 37a or an extension thereof and is compressed between valve 51 and a recess in member 36, urges the valve in the clockwise direction as shown in the figure, causing 32 to close and 33 to open.
  • outlet 33 may be plugged.
  • outlet 32 may be plugged.
  • a short travel flow control valve comprising a valve body having two adjacent angularly displaced outer walls and two controlled ports extending through said angularly displaced outer walls with their flow axes in non-parallel relation, each of said controlled ports having an internal valve seat, a unitary valve closure member pivotally secured to said valve body internally thereof comprising a pair of angularly displaced rigidly interconnected closure sections disposed to seal in cooperation with said valve seats said controlled ports according to the pivotal position of said closure member, said closure sections of said closure member extending with respect to each other at an angular displacement substantially the same as the angular displacement of said controlled ports, said closure sections being formed so that said controlled ports cannot be sealed simultaneously, and a single actuator means operatively coupled to said closure member for independently controlling the entire pivotal movement thereof in both directions.
  • said actuator means comprising a connector portion extending in axial alignment with one of said controlled ports, said connector portion being connected to the closure section of said pivotal closure member which controls said axially aligned port on the internal side thereof opposite to the side which faces and engages the valve seat of said port.
  • a valve in accordance with claim 3 further com prising spring means operatively coupled to said closure member for normally biasing said closure member into sealing engagement with the valve seat of one of said controlled ports and out of sealing engagement with the valve seat of the other of said controlled ports, and wherein said actuator means operates against said spring means to open said normally closed port and cloe 'dno all 0 ned o.
  • said actuator means further comprising a solenoid.
  • a valve in accordance with claim 1 further comprising spring means operatively coupled to said closure member for nonnally biasing said closure member into sealing engagement with the valve seat of one of said controlled ports and out of sealing engagement with the valve seat of the other of said controlled ports, and wherein said actuator means operates against said spring means to open said normally closed port and close said normally opened port.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Temperature (AREA)

Abstract

A solenoid valve having two controlled outlet ports wherein a pivotally mounted valve closure member having two angularly displaced closure sections coupled to a movable solenoid core is employed to simultaneously control the openings of the outlet ports.

Description

United States Patent 15 3,692,057 Barnd 1 Sept. 19, 1972 [541 SOLENOID VALVE 99,727 2/1870 Sweet ..137/120 2,040,930 5/1936 Frisch ..l37/625.44
w. 11 d., [72] Invent lg g m'lk z 498,545 5/1893 Gold ..137/625.44x 2,224,508 12/1940 Burroughs ..137/120 [22] Filed: AprIl12,1971 2,562,631 7/1951 Morrison ..251/138x [21] App1 No ,133,360 2,736,151 2/1956 McKenzie ..251/138x 3,244,397 5/1966 Fattor ..251/138 x Related Application We 3,367,368 2/1968 Jenkins ..137/625.44 161)] Continuation of Ser. No. 812,583, April 2,
1969, abandoned, which is a division of Ser. No. 647,578, April 24, 1967, which is a division of Ser. No. 350,791, March 10, 1964, Pat. No. 3,351,128.
Primary Examiner-Arnold Rosenthal Attorney-Morgan, Finnegan, Durham & Pine 5 7 ABSTRACT 52 US. Cl. ..137/625.44, 137/612, 251/138 A valve having two Controlled Outlet ports 511 1m. 01. ..Fl6k 11/02,F16k 31/00 wherein Pivmany mwmed valve closure member [58] Field of Search ..137/625.44, 612, 120, 121, having two angularly displaced closure Sections 37 5 /1 33 pled to a movable solenoid core is employed to simultaneously control the openings of the outlet ports. [56] References Cited UNITED STATES PATENTS 10 Claims, 4 Drawing Figures 2,244,986 6/1941 Drane ..137/612 X 20ml am. 5528 INVENTOR {75 ATTOR N EYS.
SHEET 1 [IF 3 PATENTEDSEP 19 I972- mmw la John W. Burnd SOLENOID VALVE This application is a continuation of application, Ser. No. 812,583, filed Apr. 2, 1969, now abandoned, which in turn was a division of copending application, Ser. No. 647,578, filed Apr. 24, 1967 for an invention entitled Multi-Zone Temperature Control. Application Ser. No. 647,578 was, in turn, a copending division of application, Ser. No. 350,791, now US. Pat. No. 3,351,128, filed on Mar. 10, 1964 for Multi-Zone Temperature Control."
This invention relates to temperature control arrangements and methods and more particularly to multi-zone temperature control systems and methods for controlling temperature and other factors in each of a plurality of rooms, zones or compartments.
The invention is applicable to multi-zone temperature control in general. It is described, however, in terms of controlling the ambient air temperature.
The varying thermal conditions and requirements in the rooms of a building make individual temperature control in each or many of the rooms a desirable objective. However, the practical realization of such an ar-. rangement frequently involves costly systems or modifications beyond the means of the user. Where economies are practiced to reducethese costs, system performance suffers.
It is accordingly an object of the invention to provide an efficient and yet economical arrangement and method for multi-zone temperature control.
Additional objects of the invention are to provide multi-zone temperature control methods and arrangements in which individual zones are adjustably regulated according to their needs and in which such performance is accomplished without the need for separate circulating systems in each zone.
A further object of the invention is to provide methods and means for effecting individual temperature control in a plurality of zones supplied with a sin gle-pipe circulating system.
A still further object of the invention is to provide improved temperature control techniques which may be attained by simple modifications to known systems.
A still further object of the invention is to achieve multizone temperature control with a minimum of labor, materials and control apparatus, with simple localized circuit connections, and without the need for elaborate electrical, plumbing or duct networks between each of the controlled zones and the central heat or coolant plant and control center.
Further objects and advantages of the invention include the attainment of personal comfort and fuel savings by means of efficient temperature control with a simple temperature control arrangement and process.
The foregoing and other objects and advantages of the invention will be set forth in part hereinafter and in part will be obvious herefrom or may be learned by practice with the invention, the same being realized and attained by means of the instrumentalities pointed out in the appended claims.
The invention consists in the novel methods, steps, parts, constructions, arrangements, combinations and improvements herein shown and described.
Serving to illustrate exemplary embodiments of the invention are the drawings of which:
FIG. 1 is a diagrammatic and schematic view of an exemplary temperature-control arrangement according to the invention;
FIGS. 2 and 2A are schematic fragmentary diagrams illustrating alternate thermostatic control arrangements; and
FIG. 3 is an elevational sectional view partly schematic of a valve arrangement which may be employed in the system of FIG. 1.
The embodiment of FIG. 1 is illustratively applied to the control of temperature in a :multi-zone structure comprising a building having a basement L and upper levels N and M. The upper levels N and M are divided into zones, A, B, C and D, E, F, respectively. Zones A and D comprise master control zones while B, C, E and F comprise by-pass control zones. Although two groups of master zone/by-pass zone combinations A, B, C and D, E, F are illustrated, it is to be understood that in practice either one such combination or three or more may be utilized with a number of by-pass zones selected as required.
Each zone, A, B, F, which need not be an enclosed area as shown but may be a particular thermal area, is provided with respective heat transfer means embodied as a heat exchanger 5A, 5B, 5F which is illustratively a convector radiator. In addition, zones E and F illustratively include respective fan units6E, 6F, adapted to cooperate with the adjacent heat exchanger 5E, SF.
The illustrated system includes a heating system 9 in basement L with appropriate pumps, controls, etc. (not shown) and a single-pipe type water circulatory system connected thereto and including feed header l2, parallel branch pipe systems 12M and l2N connected thereto and disposed in levels M and N respectively and return header 13 to which the outlets of piping lines 12M, 12N are connected. Line 13 connects in turn to the inlet of heating unit 9.
With reference to level N, the branch pipe system 12N therein is illustratively connected to temperature responsive valve means in zone A embodied as a-solenoid operated two-way valve 1A. The outlet end of valve 1A is connected toby-pass control means illustratively comprising a three-way manual valve 2A and a shunt pipe arrangement 20A, these being connected to heat exchanger 5A such that a portion of the circulating medium in branch 12N can be controlled to flow in an adjustable amount through heat exchanger 5A while the balance by-passes same. By this arrangement the temperature control capacity, e.g., heating capacity, of exchanger 5A in master control zone A 'is adjusted. Exchanger 5A may in practice comprise a plurality of spaced interconnected heat exchanger units.
From the interconnected outlet sides of exchanger 5A and shunt 20A, serial connection is made to zone B via a section ab of the pipe 12N. The inlet connection to zone B includes flow responsive control means embodied as a flow responsive electrical switch 148. From 14B, fluid flow is directed to temperature responsive by-pass control means including a three-way valve 43 which is illustratively solenoid actuated and is connected to exchanger 5B and the associated shunt line 208. As with SA, exchanger 5B may in practice cornprise a plurality of individual exchange units. The outlet side of 5B may include a check valve SE to prevent heat exchange during the by-pass mode. The solenoid operated by-pass valve is preferably of a type in which a valve failure leaves the associated heat exchanger open, i.e., not by-passed.
From zone B, serial connection is made via section be of l2N to zone C which illustratively is equipped with a by-pass exchanger system 3C, 4C, 5C, C similar to zone B, but which does not include flow responsive switch means such as 14B. The outlet side of the control system in zone C is connected to return header 13.
Branch piping 12M in level M serially interconnects the temperature control system of zones D, E and F between inlet header 12 and return header 13. The piping and valve arrangement of master control zone D is similar to corresponding zone A. Similarly, zones E and F have installations similar to the corresponding arrangements of B and C, respectively. However, zones E and F also illustratively include respective fans or impellers 6E, 6F which operate in conjunction with the related heat exchanger 5E, 5F. In addition, zone F includes a flow responsive switch 14F while corresponding zone C does not. The outlet side of the control arrangement in zone F is connected to the return header 13.
The valve 1A in master control zone A is controlled by the thermostat 8A, these elements being serially connected to power terminals P P The solenoid of valve 1D in master control zone D is controlled by a thermostat, 8D, which connects the solenoid to the power terminals P and P when the thermostatic switch is closed.
The thermostat 8A illustratively includes a mode selector switch 8A for effecting both heating and cooling operations.
Control over the three-way valve 4B in zone B is effected with a circuit embodied as the serial combination of flow responsive switch 14B, the valve solenoid,
and thermostatic control 7B. The thermostat 7B includes in series, a manual mode switch 26B and thermostatic contacts B. The circuit of zone B is energized from the power terminals P P thereof which may be connected via a local outlet in zone B to P and P or, to any other locally available power source. Where reduced potentials are appropriate, the terminals P P may be connected to the power terminals by way of a transformer. In practice zone B and one or more of the other by-pass zones may include a plurality of exchange units 5B with respective solenoid valves 4B, jointly controlled by the thermostat 7B.
Zone C is similar to zone B except for the omission of a flow responsive switch. Preferably, the electrical control components in each zone have ratings enabling them to be operated from the power source in the zone either directly or via a transformer. In this way the inherent feature of the invention of achieving control by local means is put to best advantage.
The valve 4E of zone E has its solenoid controlled from a circuit energized from power terminals P and P This circuit, starting at P includes the serial combination of flow responsive switch 14E, manual cut-off 26E, thermostat 7E, thermostatic contacts 25E, the solenoid of valve 4E, and the return to power terminal P The valve 4F in zone F is controlled by a similar circuit.
The fan unit 6B in zone E is controlled from power terminals P and P by way of a circuit which, starting at P includes the flow responsive switch 14E, manual cut-out 26E, thermostat 7E, thermostatic contacts 27E,
the motor of fan 6E and the return to P The fan unit in zone F is controlled by a similar circuit.
The foregoing and other arrangements according to the invention, may be initially designed as such or may be effected by modification of conventional temperature control systems.
In the illustrated embodiment certain control factors obtain for heating functions. At the time when either zone A or zone D requires heat, the associated two-way valve 1A or 1D is opened to provide circulation through the entire corresponding circuit 12M or l2N.
To achieve this action and assuming the mode switch 8, is in the illustrated heating mode position, the master control zone thermostats 8A, 8D each close when the respective zone temperature t or t is equal to or less than the corresponding desired or set temperature T or T each opens when the zone temperature t, or L, is above the set temperature T, or T by an amount Ar representing the switching range. A range of 2 F is illustrative.
With switches 8A or 8D closed, as when the corresponding zone temperature is less than the set temperature, the respective two-way valve solenoid is actuated to open the valve 1A or 1D. (At the same time, an appropriate control action may occur at heating unit 9 as required).
Thermostats 8A and 8D are seen to each control circulation through its respective branch system l2N and 12M via control over the respective valve IA, ID. Thus, an above-temperature condition in zone A results in the cut-off of flow through zones B and C as well. A similar relation obtains with regard to zones E and F which are controlled in this respect by zone D.
In the illustrated embodiment it is preferred that those zones be selected for master zones which have the greatest anticipated rate of temperature loss. These zones are then instrumented as shown in A and D. If zone B rather than zone A qualified as a master zone, then the valve and thermostatic systems in these two zones ,would be reversed from that illustrated. Preferably, the heating capacity in each of the master control zones A and D is less than that of zones B, C, E and F. To facilitate the establishment of this condition, the manually adjustable by- pass valves 2A and 2D are provided in zones A and D so that relatively less heating capacity for zones A and D may be achieved by bypassing an appropriate amount of heating medium around or past heat exchangers 5A and 5D respectively. Balanced operation of the system is aided by this condition.
An additional preferred condition in the illustrated system relates to the thermostatic elements 7B, 7C, 7E and 7F. For present purposes only the heating function contacts 25B, 25C, 25E and 25F thereof will be considered. These contacts are designed to open and close when the respective ambient temperature rises above and falls below a switching temperature T which is equal to the set temperature T T etc., plus A t,, where A t is approximately equal to At the mechanical operating differential range of the thermostats in the master control zones. Assuming this range to be 2 F and further assuming the desired temperature T in zone B to be F, then switch contacts 25B will close when the zone B temperature, t exceeds 72 F and will open when t, falls below 72 F. Thus the switches in the range. Furthermore, the thermostatic contacts 25B,
25C, 25E and 25F are reverse acting relative to the master zone thermostats; the former close in the case of excess temperature while the master zone contacts of thermostats 8A and 8D open.
Zones B, E and F also include flow responsive switches 14B, 14E and 14F, respectively, in their control circuits. Hence, when valve 1A in zone A is closed, circulation through level N ceases whereupon the electrical control circuit in zone B is disabled because of the opening of 14B. Closing of valve 1D produces a corresponding effect in zones E and F. Where convenient, e.g., where additional extensive wiring is not necessary, the flow responsive switch, e.g., 14B, may be used to cut off power, not only in the zone where it is installed, but in all other connected by-pass zones, e.g., zone C, as well.
Exemplary control operations in zone B involve the closure of contacts 25B when the temperature in zone B rises above the switching temperature T,,. If the manual switch 26B is in the H-position, and assuming flow through lines ab so that switch 14B is closed, then the closure of contacts 25B will cause actuation of the solenoid valve 4B whereupon the heating medium is by-passed around exchanger 5B through shunt 20B to terminate the heating operation in zone B.
Assuming that the temperature in zone B falls below the switching value T then contacts 25B open whereupon the solenoid is deenergized and valve 4B is returned to the position in which exchanger 5B is supplied with hot water provided zone A control system makes it available. Proper adjustment insures this availability. Heating is thereupon resumed. Similar control functions characterize zones C, E and F. In zones E and F the above action is supplemented by the operation of fan units 6E and 6F. For example, when the temperature in zone E becomes excessive, the contacts 25E close while the complementary contacts 27E open. The closing of 25E provides by-pass while the opening of 27E deactivates the respective fan unit 6E. When the temperature falls below the switching value, contacts 25E open to deenergize valve 4E; hot water is thus fed to heat exchanger 5E. At the same time contacts 27E close whereby the fan 6E is energized to circulate air through the now-heating exchanger 5E.
An exemplary overall system heating operation may be described under the initial assumption that temperature in each zone is falling. When the temperature in zone A falls below the set point, T the heating mode contacts of thermostat 8A close whereupon valve 1A is opened; medium flow in level N commences. Thus, heating of zone A commences to reverse the previously assumed falling temperature condition. If it is assumed that the temperature in zone B has fallen below that value of ambient which causes switching of thermostate 7B, then the contacts 25B thereof will be open when heating of zone A commences. The by-pass value 48 will thus be deenergized and the hot water now flowing due to the action in zone A will also flow through heat exchanger 58 in zone B and cause the temperature in zone B to rise as well. A similaraction prevails with respect to zone C if the temperature therein has fallen below the switching temperature of thermostat 7C. If the temperature in either or both of zone B and C is above the respective switching temperature then the flow in that zone resulting from the control action in A, will be by-passed.
Since the relative heating capacity of zones B and C is, by manual adjustment of valve 2A and by appropriate selection of master zones as noted above, made greater than zone A, then the temperatures in these zones will rise at a rate faster than that rate prevailing at zone A. When zone B and zone C temperatures reach the respective switching temperatures, the associated thermostatic contacts 258 and 25C will close. When this occurs, the associated by-pass valve 4B and 4C is energized thus providing the By-pass action and terminating the heating condition in the respective zone. At a later time the temperature in master control zone A rises by the amount Ar illustratively 2 F, above the setpoint of zone A. At this time the contacts in thermostat 8A open and valve 1A is thus deenergized and closed. Circulation thus ceases not only through zone A but through zones B and C as well; it is assumed that temperature will drop in all zones under these conditions. When the temperature in zones B and C drops below the switching value the respective by-pass valve is deenergized and the as sociated heat exchanger is thus placed in readiness to receive hot water as soon as the temperature in zone A drops to the point where the heating-circulating action is once again initiated. However, the switching temperature in zones B and C is set, illustratively 2 F, or slightly more, above the desired temperature T T etc., for these zones so that a drop below the switching temperature should not become excessive unless there is a much greater rate of temperature loss in these zones than in zone A. As noted hereinbefore this condition is avoided by proper selection of the master zone.
Operating characteristics under other conditions may be readily determined from the foregoing. Under some conditions the attainment of the required tem perature within a particular by-passcontrol zone B or C may require more than one heating cycle. Ultimately however, the desired temperature setting will be ob tained. This time, in any event, will be shorter than would otherwise be required; this improvement results in part from the action of valve2A in overbalancing the heating capacities of zones B and C relative to the heating capacity of zone A.
The characteristics described with respect to zones A,B and C in level N also apply to zones D, E and F in level M.
It should be understood that in some applications, all of the radiators in a particular zone need not be controlled as described above and in a well balanced installation within a large building only a fraction of the radiators in large open areas may need the by-pass arrangement. It should also be understood that the illustrated control elements including valves and switches may be reversed or otherwise modified as is well known in the art, provided additional complementary reversals are made so that the net control effect remains unchanged.
COOLING The application of the system to cooling functions follows generally the organization and procedures heretofore described. To illustrate the cooling mode, FIG. 1 includes schematic representations of a coolant source and control system 9C which, with the aid of valve 30 in line 12 and valve 31 in line 13, may be substituted in the system for the heating unit 9. The cooling unit 9C includes the required pump, control arrangements and the like (not shown). To simplify the illustration only level N is shown equipped for cooling, it being assumed that circulation through level M as well as the control circuits thereof, are cut-ofi during these operations. Switch 8D may include a section for disabling operations in zone D while 26E and 26F perform like functions in zones E and F.
In the cooling mode, the mode selector 8A in zone A is switched to the C-position whereupon those con tacts of thermostat 8A are activated which are complementary to the heating contacts. A temperature above the set value T by some increment At e.g., 2 F, causes these contacts to close; they open when zone A temperature falls below T,,,.
The mode selectors 26B and 26C in zones B and C respectively, are also set to their C-positions whereby thermostatic contacts 28B and 28C assume control. Each of these contacts opens when the switch temperature exceeds the set value and closes when the switch temperature falls below the set value. Preferably, and in analogy to the heating mode, the switching value is set equal to the desired value plus an increment which equals or exceeds the range of thermostatic element 8A in zone A.
Assuming an ambient temperature initially less than the set temperatures, say 70 F in A,B and C, then valve 1A is deenergized and therefore closed; there is no coolant circulation and by-pass valves 43 and 4C are in the by-pass position. Zones B and C remain bypassed until the respective ambient temperature exceeds the set value, T T which is illustratively 70. When this occurs, the related contacts 28B, 28C open and the associated by-pass valve 48, 4C is transferred out of the by-pass position to allow cooling to commence. As ambient temperature in zone A increases to a point exceeding the upper switching temperature, e.g., 72, the controlling contacts of thermostat 8A close thereby opening valve 1A and initiating a cooling action in unit 9C. Circulation and cooling of zone A thus commences. Cooling in zones B and C thus commences as well. With respect to zone A, the cooling of zone B and C is preferably rapid; as the temperatures of these zones drop below the set value, the by-pass condition is reestablished through the closure of contacts 28B, 28C.
When zone A has cooled below the set temperature T then the active contacts thereof open; valve 1A is deenergized and circulation and cooling cease in zones A, B and C.
The switching value of thermostats 7B and 7C is in the cooling mode substantially equal to the respective set value. As noted hereinbefore, it is preferred that the thermostatic control elements 73, 7C, 7E and 7F be more sensitive than those in the associated master control zones A and D. For achieving the requisite sensitivity in heating and/or cooling operations, suitable thermostatic elements may be employed. An illustrative control arrangement is shown in FIG. 2.
As seen in FIG. 2 a snap acting thermostatic element B1 includes a switching arm Kl adapted in one position to close a pair of fixed contacts C1, C2 by way of a bridge G1 on an insulated portion of the arm. In this same position of K,, which represents the low temperature condition, a contact C, is connected to the element arm and thus to a terminal T,. This circuit is insu. lated from the circuit involving contacts C, and C,. In its other or high temperature position, switch arm K, provides a connection between a contact C, and the terminal T,.
In thermal relationship with element B, is a pair of heaters H, and H these heaters being energized under certain conditions from power source terminals P,,, P, as described more fully hereinafter.
In circuit connection with the thermostatic switch is a mode selector switch S, including ganged sections S and S,,,. The switch has three positions, C, OFF, and H, applicable to the cooling, shut down and heating modes, respectively.
The operation of the thermostatic control will be described in relation to its control over the by-pass valve V, having a solenoid L,. The valve is connected to the input of exchanger E, and to shunt pipe 101 to provide the by-pass control functions hereinbefore described. Cooling and heating media are selectively applied to the inlet of V, via pipe 100 while the outlet from the exchanger is by way of a pipe 102. The valve may be adapted for manual adjustment in addition to solenoid control. With the aid of a suitable indicator such as lamp Q1 connected across the solenoid to indicate system cycling, the valve may be initially manually adjusted to establish system balance.
The circuit connections in the above-described arrangement are as follows.
Heater H is connected between power terminal P and thermostatic contact C Heater H, is connected between power terminal P and the C-contact of switch section S,,. Terminal P is also connected to thermostatic contact C,. Solenoid L, is connected between power terminal P, and terminal T, of the element B,. The arms of switch sections 5,, and S,,, are connected together and to power terminal P The C-contact of S,, is connected to thermostatic contact C, on B, while contact C, thereof is connected to contact H on S,,,.
Heating operation involves the setting of mode selector S, to the H-position. It is initially assumed that the ambient temperature is below the set value T,, illustratively in which case thermostatic switch arm K, is in the position shown. Under these conditions heater H, is energized by way of the circuit which is connected from terminal P through H through C, and C, to terminal P Each heater is preferably designed to elevate the thermostatic temperature t above ambient temperature 1,, by an amount At, which is approximately equal to the operating range or sensitivity of the thermostatic element B,. For illustration, this increment will be assumed to be 2 F. l-Ience, each heater raises the thermostat temperature by 2 above ambient, for a total of 4. The thermostatic element is designed such that a thermostat temperature T,,, which is 4 above the set point, illustratively 74, causes the arm K, to switch to the high temperature position (to the left in FIG. 2) while a thermostat temperature T which is 2 above the set point, illustratively 72, causes the arm K, to switch to the low temperature or illustrated position.
With the ambient temperature at or below the 70 set point then the thermostat temperature will be at or below 72 and the switch will be in the position shown with heater H, energized. When the ambient temperature rises to 2 above the set point, i.e., to 72 then the thermostat temperature will exceed the set point by 4, i.e., will be greater then 74. This is the upper switching temperature. Hence, arm K, will switch to the high temperature position. When this occurs contacts C, and C, are disconnected and the circuit to heater H, is opened; while the contact C, is engaged and circuit to the solenoid L, of valve V, is closed. This closed circuit may be traced from terminal P through the solenoid to terminal T, and thence through the thermal element to contact C,; from C, the circuit connection is to contact H of S,,, and thence to power terminal P Hence, when the ambient temperature is 72 (and thermostat temperature 74), valve V, is energized to cause bypass action. With the heater H, deenergized, the thermostat temperature drops and approaches ambient temperature.
When the room temperature falls below 72 F switch arm K, will switch back to the illustrated low temperature position since the thermostat temperature is now the same as ambient, and, as previously noted, switching to the low temperature position occurs at a thermostat temperature below 72. When this occurs valve V, is deenergized to terminate the by-pass action. At the same time, energization of heater H, is renewed.
It may be seen from the foregoing that the switching action essentially occurs about a point, e.g., 72 F ambient.
For the cooling mode, switch S, is set to the C-position. At this time heater H, is connected between the power terminals as may be seen by tracing the path from terminal P through H,, through the C-contact and arm of S,,,, and thence to power terminal P Hence, this heater is continuously energized in the cooling mode independent of the switching actions of element 8,.
When the ambient temperature is greater than the desired temperature, e.g., 70, then the thermostat temperature is higher than 72. Assuming these conditions for a sufficient length of time, the arm K, is in the high temperature position. When the ambient temperature drops below the set value 70 the thermostat temperature drops below 72 and arm K, switches to the low temperature position. When this occurs solenoid L, is actuated from terminal P through the solenoid, through terminal T, and contact C to the C-contact of S,,,. From that point connection is made via the arm of S, to power terminal P The by-pass operation is thus initiated. At the same time, heater H, is energized from terminal P through the heater and via contacts C, and C, to terminal P In view of this action the thermostat temperature will rise 4 above ambient temperature. Hence, when the ambient temperature rises above the set value of 70, the thermostat temperature will exceed 74 and the thermostat switch arm K, will be transferred to the high temperature position. Valve V, is thereby deenergized, the by-pass operation terminated and cooling initiated. At the same time heater H, is deenergized. 1
It may be seen that in the cooling mode switching occurs about the set temperature point of ambient. On the other hand, switching during heating occurs about the upper limit which is 7 2 ambient in the example.
Another embodiment of a thermostatic control element suitable for use according to the invention is illustrated in FIG. 2A. The control system therein illustrated differs from the arrangement 0F FIG. 2 in the following respects. The circuit of heater H,, instead of being completed through the contacts C, and C, of FIG. 2, is controlled by a pair of relays K, and K,
Relay K, has its field connected between the C contact of S, and contact C, of thermostatic element 8,. Relay K is connected between the H contact of S,,, and contact C, of B,. One of the normally open contacts of K, is connected to contact C of S,,,. The other contact is connected along with one of the normally closed contacts of K,, to one side of heater H,. The other side of this heater is connected to power terminal P, The other normally closed contact of relay K, is connected to contact H of S,,. The switch is shown inits low temperature position.
With the mode selector in the H [heating] position, and in the illustrated low temperature condition, heater H, is energized via the normally closed contacts of K, and contact H of 8,, so that it is connected between terminals P, and P,. K, is deenergized since C, is open. Heater H, is deenergized because C of 8,, is not in the circuit. When element B, transfers to the high temperature position, relay K, is connected in series with solenoid L, across the power terminals P and P The actuation of K, causes the normally closed contacts thereof to open whereby the circuit of heater H, is opened.
In the cooling mode the switch S, is set to the C position. Heater H, is thereby energized. With the thermostatic element B, in the low temperature condition, relay K, is energized via the C contact of S,,,, the C contact of B,, and the solenoid L,. With the K, thus energized, heater H, is connected across the power source terminals via the now-closed contacts of K, and contact C of S,,,. When B, is transferred to the high temperature condition, K, is deenergized thus deenergizing H,.
It may be seen that the overall operation of the arrangement of FIG. 2A is similar to that of FIG. 2.
A solenoid actuated valve suitable for use according to the invention is illustrated in FIG. 3 and comprises a valve body 30 having an inlet connector 31 threaded into the valve interior in one side thereof, a by-pass connector 32 threaded into the interior in another side thereof, and an outlet connector 33 similarly threaded in a third side. Connectors 32 and 33 include integral valve seat sections 32a and 33a, respectively.
Valve casing 30 includes a flange section 35 adapted to mate with a flat member 36 forming a support for solenoid means 37 and the case 38 therefor. Member 36 includes assembly holes 36a in alignment with holes 35a in the flange, and is conveniently tapped centrally to threadably receive an annular base 40 on which solenoid 37 is mounted. Through the center of 40 and a packing or seal 40a therein, solenoid core or armature 37a extends, passing into the interior of valve body 30.
The distal end of core piece 370 is pivotally coupled with clearance to a compound valve head 41 having one valve section 41a adapted to control outlet 33, and another generally orthogonal section 41b for closing by-pass 32a. Valve 41 is pivoted to the valve body as by a pin 41c.
The valve is shown approaching the energized position where outlet 33 is closed and 32 opened. When the solenoid is deenergized a spring 45, which coaxially surrounds magnet core 37a or an extension thereof and is compressed between valve 51 and a recess in member 36, urges the valve in the clockwise direction as shown in the figure, causing 32 to close and 33 to open.
For simple two-way action for use as 1A or 1D in FIG. 1,' the outlet 33 may be plugged. For reverse twoway valve operation (valve closed when energized), outlet 32 may be plugged.
It should be understood that the system and components herein described are exemplary only. Modifications will undoubtedly occur to those skilled in the art. For example, the invention may be practiced with temperature control systems wherein two or more heat transfer media are mixed to adjust thermal conditions or wherein basic control involves the imparting of heat to or withdrawal from, the heat transfer medium.
What is claimed is:
l. A short travel flow control valve comprising a valve body having two adjacent angularly displaced outer walls and two controlled ports extending through said angularly displaced outer walls with their flow axes in non-parallel relation, each of said controlled ports having an internal valve seat, a unitary valve closure member pivotally secured to said valve body internally thereof comprising a pair of angularly displaced rigidly interconnected closure sections disposed to seal in cooperation with said valve seats said controlled ports according to the pivotal position of said closure member, said closure sections of said closure member extending with respect to each other at an angular displacement substantially the same as the angular displacement of said controlled ports, said closure sections being formed so that said controlled ports cannot be sealed simultaneously, and a single actuator means operatively coupled to said closure member for independently controlling the entire pivotal movement thereof in both directions.
2. A valve in accordance with claim 1 in which said actuator means is directly connected to said closure member.
3. A valve in accordance with claim 1, said actuator means comprising a connector portion extending in axial alignment with one of said controlled ports, said connector portion being connected to the closure section of said pivotal closure member which controls said axially aligned port on the internal side thereof opposite to the side which faces and engages the valve seat of said port.
4. A valve in accordance with claim 3 further com prising spring means operatively coupled to said closure member for normally biasing said closure member into sealing engagement with the valve seat of one of said controlled ports and out of sealing engagement with the valve seat of the other of said controlled ports, and wherein said actuator means operates against said spring means to open said normally closed port and cloe 'dno all 0 ned o.
5 i/alve iii ac c ror ance wi claim 4, said actuator means further comprising a solenoid.
6. A valve in accordance with claim 5 wherein said spring means normally closes said aligned port.
7. A valve in accordance with claim 6 wherein said closure sections and said controlled ports are substantially orthogonally displaced.
8. A valve in accordance with claim 1 further comprising spring means operatively coupled to said closure member for nonnally biasing said closure member into sealing engagement with the valve seat of one of said controlled ports and out of sealing engagement with the valve seat of the other of said controlled ports, and wherein said actuator means operates against said spring means to open said normally closed port and close said normally opened port.
9. A valve in accordance with claim 8 wherein said actuator means comprises a solenoid.
10. A valve in accordance with claim 1 wherein said closure sections and said controlled ports are substantially orthogonally displaced.

Claims (10)

1. A short travel flow control valve comprising a valve body having two adjacent angularly displaced outer walls and two controlled ports extending through said angularly displaced outer walls with their flow axes in non-parallel relation, each of said controlled ports having an internal valve seat, a unitary valve closure member pivotally secured to said valve body internally thereof comprising a pair of angularly displaced rigidly interconnected closure sections disposed to seal in cooperation with said valve seats said controlled ports according to the pivotal position of said closure member, said closure sections of said closure member extending with respect to each other at an angular displacement substantially the same as the angular displacement of said controlled ports, said closure sections being formed so that said controlled ports cannot be sealed simultaneously, and a single actuator means operatively coupled to said closure member for independently controlling the entire pivotal movement thereof in both directions.
2. A valve in accordance with claim 1 in which said actuator means is directly connected to said closure member.
3. A valve in accordance with claim 1, said actuator means comprising a connector portion extending in axial alignment with one of said controlled ports, said connector portion being connected to the closure section of said pivotal closure member which controls said axially aligned port on tHe internal side thereof opposite to the side which faces and engages the valve seat of said port.
4. A valve in accordance with claim 3 further comprising spring means operatively coupled to said closure member for normally biasing said closure member into sealing engagement with the valve seat of one of said controlled ports and out of sealing engagement with the valve seat of the other of said controlled ports, and wherein said actuator means operates against said spring means to open said normally closed port and close said normally opened port.
5. A valve in accordance with claim 4, said actuator means further comprising a solenoid.
6. A valve in accordance with claim 5 wherein said spring means normally closes said aligned port.
7. A valve in accordance with claim 6 wherein said closure sections and said controlled ports are substantially orthogonally displaced.
8. A valve in accordance with claim 1 further comprising spring means operatively coupled to said closure member for normally biasing said closure member into sealing engagement with the valve seat of one of said controlled ports and out of sealing engagement with the valve seat of the other of said controlled ports, and wherein said actuator means operates against said spring means to open said normally closed port and close said normally opened port.
9. A valve in accordance with claim 8 wherein said actuator means comprises a solenoid.
10. A valve in accordance with claim 1 wherein said closure sections and said controlled ports are substantially orthogonally displaced.
US133360A 1971-04-12 1971-04-12 Solenoid valve Expired - Lifetime US3692057A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US13336071A 1971-04-12 1971-04-12

Publications (1)

Publication Number Publication Date
US3692057A true US3692057A (en) 1972-09-19

Family

ID=22458237

Family Applications (1)

Application Number Title Priority Date Filing Date
US133360A Expired - Lifetime US3692057A (en) 1971-04-12 1971-04-12 Solenoid valve

Country Status (1)

Country Link
US (1) US3692057A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982562A (en) * 1974-10-04 1976-09-28 Allied Chemical Corporation Pressure control apparatus
FR2550602A1 (en) * 1983-08-12 1985-02-15 Telemecanique Electrique Electrovalve
EP0213648A1 (en) * 1985-07-22 1987-03-11 B.V. Koninklijke Maatschappij "De Schelde" Shutoff device for a pipe
US4794943A (en) * 1988-05-27 1989-01-03 Figgie International Inc. Fluid control valve assembly
EP0745797A1 (en) * 1995-06-01 1996-12-04 Emerson Electric Co. Pivoting valve assembly
US5651400A (en) * 1993-03-09 1997-07-29 Technology Trading B.V. Automatic, virtually leak-free filling system
US5772181A (en) * 1995-06-01 1998-06-30 Emerson Electric Co. Pivoting valve assembly
US6211760B1 (en) 1997-05-12 2001-04-03 Danfoss A/S Solenoid valve
US20200361421A1 (en) * 2019-05-17 2020-11-19 A Raymond Et Cie Vehicle fluid distribution system, associated fluid dispenser and fluid ejection process using such a system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US99727A (en) * 1870-02-08 Improvement in automatic water cut-offs
US498545A (en) * 1893-05-30 Valve foe steam pipes of eail way caes
US2040930A (en) * 1930-12-31 1936-05-19 Foster Whecler Corp Distributing mechanism
US2224508A (en) * 1938-09-30 1940-12-10 Clarence A Burroughs Valve for lawn sprinklers
US2244986A (en) * 1940-02-28 1941-06-10 Phillips B Drane Diverting valve
US2562631A (en) * 1945-12-15 1951-07-31 Nineteen Hundred Corp Diaphragm valve
US2736151A (en) * 1956-02-28 mckenzie
US3244397A (en) * 1963-03-04 1966-04-05 Arthur P Fattor Remote controlled, non-corrosive valves
US3367368A (en) * 1966-05-12 1968-02-06 Gen Electric Outlet valve for dishwasher pump

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US99727A (en) * 1870-02-08 Improvement in automatic water cut-offs
US498545A (en) * 1893-05-30 Valve foe steam pipes of eail way caes
US2736151A (en) * 1956-02-28 mckenzie
US2040930A (en) * 1930-12-31 1936-05-19 Foster Whecler Corp Distributing mechanism
US2224508A (en) * 1938-09-30 1940-12-10 Clarence A Burroughs Valve for lawn sprinklers
US2244986A (en) * 1940-02-28 1941-06-10 Phillips B Drane Diverting valve
US2562631A (en) * 1945-12-15 1951-07-31 Nineteen Hundred Corp Diaphragm valve
US3244397A (en) * 1963-03-04 1966-04-05 Arthur P Fattor Remote controlled, non-corrosive valves
US3367368A (en) * 1966-05-12 1968-02-06 Gen Electric Outlet valve for dishwasher pump

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3982562A (en) * 1974-10-04 1976-09-28 Allied Chemical Corporation Pressure control apparatus
FR2550602A1 (en) * 1983-08-12 1985-02-15 Telemecanique Electrique Electrovalve
EP0213648A1 (en) * 1985-07-22 1987-03-11 B.V. Koninklijke Maatschappij "De Schelde" Shutoff device for a pipe
US4794943A (en) * 1988-05-27 1989-01-03 Figgie International Inc. Fluid control valve assembly
US5651400A (en) * 1993-03-09 1997-07-29 Technology Trading B.V. Automatic, virtually leak-free filling system
EP0745797A1 (en) * 1995-06-01 1996-12-04 Emerson Electric Co. Pivoting valve assembly
US5699995A (en) * 1995-06-01 1997-12-23 Emerson Electric Co. Pivoting valve assembly
US5772181A (en) * 1995-06-01 1998-06-30 Emerson Electric Co. Pivoting valve assembly
US6211760B1 (en) 1997-05-12 2001-04-03 Danfoss A/S Solenoid valve
US20200361421A1 (en) * 2019-05-17 2020-11-19 A Raymond Et Cie Vehicle fluid distribution system, associated fluid dispenser and fluid ejection process using such a system

Similar Documents

Publication Publication Date Title
US3351128A (en) Multi-zone temperature control
US2159284A (en) Domestic heating and hot water supply system
US2121625A (en) Heating and cooling system
US4703795A (en) Control system to delay the operation of a refrigeration heat pump apparatus after the operation of a furnace is terminated
US3692057A (en) Solenoid valve
US3568760A (en) Optimization system
US3303873A (en) Heating and cooling system
US2262194A (en) Temperature control system
US3515345A (en) Multi-zone temperature control
US2182691A (en) Condition control system
US2224629A (en) Air conditioning system
US3191668A (en) Pump control system
US2490932A (en) Control apparatus
US3540525A (en) Pneumatic control apparatus
US2244551A (en) Air conditioning system
US3605781A (en) Pneumatic relay
US2327536A (en) Gas fired air conditioning system
US2344555A (en) Heating and cooling system
US2170402A (en) Automatic temperature control system
US2135294A (en) Summer and winter temperature control
US2495228A (en) Reversible regulating valve system
US3406744A (en) Heating and air-conditioning apparatus
US2560282A (en) Device for automatic regulation of room temperature in buildings
JPS5858572B2 (en) Air conditioning/heating water heater
EP0060011B1 (en) A tap water and central heating control unit