US3691551A - System for generating tracing signals for displaying or recording characters - Google Patents
System for generating tracing signals for displaying or recording characters Download PDFInfo
- Publication number
- US3691551A US3691551A US32539A US3691551DA US3691551A US 3691551 A US3691551 A US 3691551A US 32539 A US32539 A US 32539A US 3691551D A US3691551D A US 3691551DA US 3691551 A US3691551 A US 3691551A
- Authority
- US
- United States
- Prior art keywords
- counter
- counters
- strokes
- character
- stroke
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G1/00—Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data
- G09G1/06—Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data using single beam tubes, e.g. three-dimensional or perspective representation, rotation or translation of display pattern, hidden lines, shadows
- G09G1/08—Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data using single beam tubes, e.g. three-dimensional or perspective representation, rotation or translation of display pattern, hidden lines, shadows the beam directly tracing characters, the information to be displayed controlling the deflection and the intensity as a function of time in two spatial co-ordinates, e.g. according to a cartesian co-ordinate system
- G09G1/10—Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data using single beam tubes, e.g. three-dimensional or perspective representation, rotation or translation of display pattern, hidden lines, shadows the beam directly tracing characters, the information to be displayed controlling the deflection and the intensity as a function of time in two spatial co-ordinates, e.g. according to a cartesian co-ordinate system the deflection signals being produced by essentially digital means, e.g. incrementally
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
- Y10T428/24471—Crackled, crazed or slit
Definitions
- ABSTRACT In a display or recording device such as cathode ray tube or ink jet recording apparatus, the characters or indicia to be displayed or recorded are resolved into a plurality of strokes representative of X and Y components of the X-Y coordinate system to electrically store them in a memory. Then, the memory is interrogated to read out the information stored therein, and in accordance with the read-out information, control signals are generated to control the horizontal and vertical deflection electrodes to synthesize one stroke with another stroke for display or record of the characters or indicia. The strokes are classified into linear segments and are segments.
- the are segments which represent the curved portions of the characters are quantized into a plurality of steps and are formed by one of eight quadrant strokes by employing X and Y up-down counters. After the counters are set to an initial value representing the starting point of the arc segment, the X and Y counters are incremented in a plurality of steps each having values of 0,1, or 2 in either the up or down direction.
- the present invention relates generally to a character synthesizing system and more particularly to apparatus for generating tracing signals for displaying or recording characters or indicia.
- the character recording and display devices are widely used as output equipment for providing the processed information in a form which can be readily and visually intelligible to a human being.
- the present invention may be advantageously applied to an ink jet recording device or a display device utilizing a CRT for electronically recording or displaying the characters or indicia (hereinafter referred to as character exclusively) upon a recording or display medium.
- a character is generally resolved into X and Y components and the sweep signals representative of the X and Y components are applied to the horizontal and vertical deflecting electrodes for recording or displaying the characters.
- the characters are synthesized by the combinations of the linear segments when the character synthesizer is controlled digitally so that there is a defect that the synthesized character does not look natural, that is the character has edge ruggedness.
- Another object of the present invention is to provide a process and apparatus for generating the tracing signals for recording or displaying the characters having curved or arcuate portions two-dimensionally by use of memory means simple in construction.
- Another object of the present invention is to provide a process and apparatus for generating tracing signals of the type in which the characters having curved or arcuate portions are resolved into X and Y components which in turn are divided into a plurality of strokes each of which is further quantized into a plurality of steps and which has memory means for storing therein the informations representative of the reference positions or initial values of the characters to be synthesized the information representative of the increase or decrease of one stoke relative to the preceding stroke, and the information representative of the increment or decrement in the quantized steps of one stroke.
- Another object of the present invention is to provide a character synthesizing or tracing signal generating apparatus including memory means, X and Y up-down counter means operable in response to the informations representative of the increment or decrement and the information representative of a value of increment or decrement in a unit stroke, the X- and Y-counter means being set to the initial values in response to the information read out from the memory means and digital-to-analog converter means for converting the outputs from the counter means into the analog signals to be applied to the horizontal and vertical deflecting electrodes.
- Another object of the present invention is to provide an improved tracing or display signal generating process and apparatus for resolving a two-dimensional character having curved or arcuate portions into the X and Y components of the X-Y coordinate system, quantizing each of said components into one or more unit steps, storing the information each representative of an initial value of an quantized component and the information representative of the increase or decrease of an quantized step relative to the preceding step and the information representative of a magnitude of the increment or decrement in each step, reading out the content of the memory in response to the display instruction and generating the output signals for synthesizing a two-dimensional character having a curved or arcuate portion in response to the read-out signal.
- the present invention provides apparatus for synthesizing a character comprising resolving a character into X andY components of the X-Y coordinate system, each of said X and Y components being composed of a plurality of unit strokes each having a predetermined unit length and making the increment or decrement of each of said components not equal,
- the characters may be smoothly traced or synthesized under the control of the tracing or display signals.
- the present invention provides apparatus for synthesizing the characters by resolving a character into X and Y components of the X-Y coordinate system, each of said X and Y components being composed of a plurality of unit strokes each having a predetermined unit length, storing information as to said unit strokes of said X and Y components into a memory and reading out from said memory the stored information for synthesizing the character. Strokes representative of an arc portion are divided divided into a plurality of steps.
- the apparatus includes means for reading from the memory the information representative of a reference position as an initial value into X and Y up-down counter means, setting said counter means to said initial value prior to the operation thereof, reading out from the memory means the information designating either of two patterns of the arc portions, simultaneously reading out from the memory means an information designating either of two operation modes in each step, and synthesizing the stroke of the arc portion with the other strokes, thereby generating the signals for synthesizing each of the characters. Therefore, the character synthesizing or tracing signals may be continuously generated.
- the apparatus of the present invention employs X and Y up-down counters each having up, down, and no-counting operation modes.
- Clock pulses of predetermined repetition rate are generated and connected to the counters to be counted.
- the digital outputs of the counters are converted by digital-toanalog converters to analog signals which are applied to the X and Y deflection means of the apparatus.
- Memory means is provided to store, as to each of the characters to be composed by a plurality of strokes each composed of a plurality of steps, the strokes including at least one quadrant stroke, information to be supplied to the counters for controlling the initial setting of the counters and for selecting one of the operation modes of the counters during a time period of each stroke.
- the memory means is connected to the counters for controlling the counters in accordance with the information supplied from the memory means, and means responsive to the information corresponding to the quadrant strokes generates control signals to shift the contents of the counters by predetermined values every step during the time period of the quadrant stroke.
- Access means in the form of a shift register supplies information to the counters every time period of each stroke, and means for selecting one of the characters to be composed is connected to the memory means.
- the clock pulses are connected to a ring counter for generating sequentially phase-shifted pulses during the time period of the quadrant stroke, the number of which is equal to the steps constituting the quadrant stroke, and the means responsive to the information corresponding to the quadrant strokes is connected to the sequentially phase-shifted pulses to produce the control signals supplied to the counters.
- the memory means is a matrix having two sets of control terminals one of which is connected to the selecting means and the other of which is connected to the access means.
- FIGS. 1A, 1B and 1C are diagrams for explanation of synthesizing a character only by a combination of linear segments in accordance with the process proposed by the same inventor;
- FIG. 2 shows a character having a curved or arcuate portions to be synthesized in accordance with the present invention
- FIG. 3 is for explanation of various types of arcs used in the present invention.
- FIG. 4 shows the numerals synthesized by the combinations of the linear and are segments in accordance with the present invention
- FIG. 5 is for explanation of the steps of programming the x-y coordinates of the dot patterns representative of the arcs used in synthesizing the numerals shown in FIG. 4;
- FIG. 6 is a block diagram of one embodiment of character synthesizing apparatus in accordance with the present invention.
- FIG. 7 is a circuit diagram of one embodiment of a memory identified by 600 in FIG. 6;
- FIG. 8 is a circuit diagram of a selection circuit identified by 603 in FIG. 6;
- FIG. 9 is a circuit diagram of a DA converter and a reversible counter identified by 605 and 607 respectively in FIG. 6;
- FIGS. l0a-h show the relationship of various signals used in the instant embodiment of the invention.
- tracing signal is a control signal for sweeping the electron beams or controlling ink jet to be ejected from a writting head for recording or display.
- FIG. 1A illustrates one example of the character synthesized only by the linear segments and FIGS. 18 and 1C illustrate how the horizontal and vertical deflection potentials are quantized in order to synthesize the character illustrated in FIG. 1A.
- the horizontal deflection potential V): is quantized into three discrete levels while the vertical deflection potential Vy is quantized into five discrete levels.
- These deflection potentials are applied to the horizontal and vertical deflecting electrodes of a cathode ray tube or an ink jet writing head for recording or display.
- the process and device based upon the principle described above are disclosed in applicants copending U.S. Pat. Application Ser. No. 882057, filed Dec. 4, 1969, and the present invention will be described in conjunction with the above-mentioned process and device.
- FIG. 2 illustrate one example of the character synthesized in accordance with the present invention and it is readily noted that the character looks more natural.
- the process and apparatus for synthesizing such character will be described in more detail hereinafter. First, the principle upon with is based the present invention will be discussed with the aid of the X-Y coordinate system.
- FIG. 3 illustrates types of arc segments used for synthesizing the character in accordance with the present invention.
- arcs or quadrants starting from a starting point P0 which is determined by the initial horizontal and vertical deflection potentials. They are the arc R and R starting from the point P0 and terminating at the point Pa; R and R starting from point P0 and terminating at the point Pb; R and R starting from the point P0 and terminating at the point Po; and R and R starting from the point P0 and terminating at the point Pd.
- the character which is synthesized by a combination of these are segments and linear segments looks more natural than that synthesized only by the linear segments.
- FIG. 4 illustrates the numerals synthesized by the various combinations of the arc and linear segments in accordance with the present invention and a reference or starting point at which the synthesize of a character is started is designated by a symbol 0. It will be readily understood that a combination of the arc and linear segments for synthesizing a character will be determined by a character synthesizing matrix.
- the are seg ments R -R used in synthesizing the numerals in FIG. 4 correspond to those illustrated in FIG. 3.
- each linear segment may be composed of a plurality of dots whose positions are functions of time and that for this purpose the horizontal and vertical deflection potentials being applied to the X and Y deflection electrodes may be controlled by the digital character generators under the control of the UP and DOWN instructions of the digital counters thereof.
- Each of the arc segments is also composed of a plurality of dots in accordance with the present invention.
- FIG. 5 illustrates a dot pattern for synthesizing the arc segments represented in the X-Y coordinate system.
- each arc segment is composed of eight dots which can represent the arc segment precisely and economically, but it will be understood that the number of dots composing an arc segment is not limited to eight.
- a circle may be stroked or drawn first by drawing the arc segment r from the starting point P0, drawing the arc segment R continuously from the terminating point P, and drawing the arc segments R and R in a similar manner.
- the dots are determined so as to draw the arc segment.
- the reference or initial point P be already determined by X and Y deflection potential levels and the arc segment r be drawn.
- the X deflection level remains unchanged while the Y deflection level is raised by two levels so that the point Do is displaced to P
- the X deflection level is raised by one level while the Y deflection level is raised by two steps so that the point P is displaced to the point P
- the X deflection level is raised by one level while the Y deflection level is raised by two levels so that the point P is displaced to the point P
- the points are displaced from P to P from P to P from P to I and finally from P to P
- the arc segment R is traced.
- all of the arc segments from R, to R may b drawn as shown in Table 1.
- Table 1 may be retabulated as shown in Table 2.
- D means that X or Y deflection potential levels are decreased or down continuously and sequentially.
- each counter is a binary counter having a few bits, but it should be noted that it is capable of counting up and down not only by one step but also by two steps depending upon the instruction signals. By use of these counters of the type described, the control is much facilitated.
- These counters are similar in construction and are identified by 605 and 606 in the block diagram of FIG. 6.
- the counter When the input signals are applied to both of the terminals U and I, the counter counts up by one; when the input signals are applied to the terminals U and II, the counter counts up by two; when the signals are applied to the terminals D and I, the counter counts down by one; and when the signals are applied to the terminals D and II, the counter counts down by two.
- Preset signals are applied to PS terminals of each counter.
- the counters 605 and 606 are connected to digital-to-analog converters D-A in order to convert the digital outputs derived from the counters 605 and 606 into the corresponding potential levels, thereby controlling the deflection potentials applied to the horizontal and vertical deflection electrodes 609 and 610 respectively.
- FIG. 6 shows the block diagram of the overall device of the present invention.
- a pulse generator 601 generates the pulses having different phases (1:1 and (#2 as shown in FIG. 10 (a).
- a ring counter 602 is driven so as to generate the output pulses as shown in FIG. 10 (b) (d).
- the pulses S1 shown in FIG. 10 (b) are applied to a shift register 604 so that it generates the output pulses as shown in FIG. 10 (e) (g).
- the pulses S1 S7 are applied to a selection circuit 603 so that one-step-count or two-stepcount instruction signals are applied to the terminals l or II of the counters 605 and 606 depending upon the instruction representative of Pattern A or Pattern B derived from a programmed memory 600.
- the memory 600 comprising diodes or transistors (See FIG. 7) presets the reversible counters 605 and 606 when the timing pulse t, is derived from the shift register 604 and when the input signal as shown in FIG. 10 (h) is applied to one of the recording or display terminals 0 n.
- the reversible counters 605 and 606 are operated as described hereinabove so that the outputs of the counters are converted by D-A converters 607 and 608 and the corresponding deflection potentials are applied to the horizontal and vertical deflection electrodes 609 and 610.
- FIG. 7 is a detailed circuit diagram of the memory 600 to which are connected the exterior or peripheral circuits 603, 605 and 606.
- the memory 600 is shown as being programmed for synthesizing the numeral 5 shown in FIG. 2.
- I and I are inverters; 01 through 06, OR gates; Do through D8 diodes; and R through R,, resistors. They are wired as shown.
- the selection circuit shown in FIG. 8 comprises AND gates AND-l through AND-8 and OR gates OR-l through OR-8 and controls the counters 605 and 606 in shifting the contents thereof.
- 602 is a ring counter for generating 7-step sequential time control signals. When the arc segment of Pattern A is selected, the shift-steps of the X and Y deflection potential levels are determined based upon First Pattern in Table 3.
- the signal passes through the OR-l, AND-1, and OR-S so that Y-counter is shifted by two steps and simultaneously the signal passes through OR3, AND-6 and OR-8 so that X-counter is shifted by one step.
- the signal is applied through OR-l so that Y-counter is shifted by two steps while the signal is simultaneously applied through OR-l so that X-counter is shifted by one step.
- the signal is applied through OR-l so that the Y-counter is shifted by two steps while the signal is simultaneously applied through OR-2 so that X-counter is shifted by two steps.
- S-V the signal passes through OR-2 and CR4.
- the signal is applied through OR-2, AND4 and OR-6 so that X-counter is shifted by two steps. Simultaneously, the signal is applied through OR-4, AND-7 and OR-7 so hat the Y- counter is shifted by one step.
- the signals passes through OR-2 and CR4 so that the X-counter is shifted by two steps while the Y-counter is shifted by one step.
- the signal is applied through OR-2, AND-4 and OR-6 so that only the X-counter is shifted by two steps.
- FIG. 9 is a circuit diagram of the reversible counter 605 and the DA converter 607.
- FF-l to FF-n are J.K. flip-flops
- AU-l to AU-n are AND gates which are selectively opened in response to UP instructions
- AD-l to AD-n are AND gates which are selectively opened in response to DOWN instructions
- Oi-l, Oi-2 and Oi-3 are input OR gates
- Al is an input AND gate.
- the mode of operation of the reversible counter is as follows:
- AND gate A1 is opened so that the input signal l is applied to the input terminals J and K of the flipflop FF-l.
- the flip-flop FF-l reads in response to the clock pulses 41, and generates the output in responseto the clock pulses hdand then reverse into the state of l and 0.
- AND gate AU-l is opened so that the signal l is applied to the input terminals J and K of the flip-flop F F-Z.
- the flip-flop FF-2 In response to the clock pulses the flip-flop FF-2 are reversed into the state of 0 l and 0 0. The outputs from the flip-flops FF-l and FF-2 are applied to that no input is applied to the flip-flop FF-Z, that is the flip-flop FF-Z remains unchanged. From the foregoing, it will be seen that the reversible counter can accomplish not only one-step UP and DOWN but also twostep UP and DOWN and is very effective for carrying out the present invention.
- the reversible counter 606 has the same construction and function as the counter
- the outputs from the reversible counter 605 are applied to the stages of the D- A converter 607 which is composed of a ladder circuit of the type well known in the art so that a detailed description will not be made.
- the output from the terminal X-out of the DA converter 607 is applied to the horizontal deflection electrode 609.
- the output of the reversible counter 606 is applied to the D-A converter 608 and the output of the D-A converter 608 is applied from the terminal Y-out to the vertical deflection electrode 610.
- the signal is applied from the shift register 604 to the output terminal t, the signal is derived from the junction Po between the diode D0 and the resistor R0 at the crosspoint'of the wire extending from the terminal5 with the wire extending from the terminal t,.
- the signal is applied to the terminal INH of the reversible counter 605 through the OR gate 0, and the inverter I,. Therefore the operation of the'counter 605 is inhibited.
- the signal is applied to the preset terminal 4 of the reversible counter 606 so that it is set to 28.
- the signal is also applied to the INH terminal through the OR gate 0,, and the inverter I so that the reversible counter 606 will not initiate to count even when the clock pulses are applied thereto as is the case of the reversible counter 605.
- the signal applied to the terminal I When the signal applied to the terminal I, is ceased while the signal is applied to the terminal 1 the signal is derived from the junction P, between the diode D, and the resistor R, at the second crosspoint and is applied to the DOWN terminal D of the reversible counter 605 so that the counter 60S functions as a DOWN counter. Therefore, 7 counts are subtracted during the T period and the counter is finally set to 7.
- the signal from the junction P is also applied to the INH gate of the reversible counter 606 so that its content remains unchanged.
- the output pulses from the shift register are applied to the terminals t t and so on sequentially so that both of the reversiblecounters 605 and 606 are operated in accordance with the content of the programmed memory.
- the outputs from the counters 605 and 606 are converted into the horizontal and vertical deflection potentials by the D-A converters, which are applied to the horizontal and vertical deflection electrodes 609 and 610 respectively thereby synthesizing the character for recording or display.
- the mode of operation is described in detail in the copending U.S. Pat. Application Ser. No. 882057.
- the present invention will be described in detail from the sixth step when the signal is applied to the terminal from the shift register.
- the signal Upon application of the signal to the terminal t the signal is derived from the junction P between the diode D and the resistor R and is applied through the OR gate to the UP terminal U of the reversible counter 605. The signal is also applied to the DOWN terminal D of the reversible counter 606 through the OR gate 0
- the signal representative of Pattern B are segment is applied to the terminal B of the selection circuit 603 from the memory 600. Referring to FIG. 8, when Pattern B is specified, the counter 605 operates as an UP counter and the counter 606 operates as a DOWN counter. Thus, arc segment R, as shown in FIG. 5 is traced. More specifically, the reversible counter 605 as shown in FIG.
- the reversible counter 606 which has been set to 14 in the preceding stroke 5(5), does not operate in response to the first clock pulse because no input appears on the terminal [NH and the AND gate Ai is inhibited. Since the terminal I is then specified in the second and third clock pulses, the counter 606 counts up one by one. Thereafter, the counter 606 counts up two by two in response to the fourth, fifth, sixth and seventh clock pulses, since the terminal ll is specified, that is, the signal is applied to the terminal ll.
- the reversible counter 606 is set to 24 14 These signals are applied to the D-A converters 607 and 608 so that the horizontal and vertical deflection potentials are generated and applied to the deflection electrodes 609 and 610, whereby the arc segment R shown in FIG. 3 may be traced for recording or display.
- ln character synthesizing apparatus including a clock pulse generator supplying pulses of a predetermined rate, X and Y up-down counters coupled to said clock pulse generator for counting only said clock pulses, means for selectively causing said counters to count up or count down by discrete increments or decrements, or not count, in accordance with portions of a character to be depicted in straight line form, X and Y digital-to-analog converts to convert the outputs of said counters to analog signals, and X-Y tracing means driven by said analog signals, the improvement for providing curved character strokes comprising:
- said means for modifying the operation of said at least one counter includes means for progressively modifying the operation of the counter during successive segments of a stroke for producing a curve composed of said segments, whereby strokes of any desired configuration may be formed without modifying the clock pulse rate to said counters.
- said means for modifying the operation of said at least one counter includes means for simultaneously activating a group of counting elements in said at least one counter such that each element in said group changes state upon the receipt of a clock pulse, and means for summing the outputs of the elements in said group for increasing the number represented by the output of said at least one counter in proportion to the number of said elements activated.
- each of said characters is generated by a combination of straight and curved strokes, wherein said curved strokes comprise eight arcs each formed by seven sequential steps and wherein the counter operation modifying means increments or decrements the counters for executing a curved stroke in one or a sequence where U means that the X or Y analog signal levels are
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Controls And Circuits For Display Device (AREA)
- Digital Computer Display Output (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP44033587A JPS492779B1 (de) | 1969-05-02 | 1969-05-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3691551A true US3691551A (en) | 1972-09-12 |
Family
ID=12390631
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US32539A Expired - Lifetime US3691551A (en) | 1969-05-02 | 1970-04-28 | System for generating tracing signals for displaying or recording characters |
Country Status (4)
Country | Link |
---|---|
US (1) | US3691551A (de) |
JP (1) | JPS492779B1 (de) |
DE (1) | DE2021373C3 (de) |
GB (1) | GB1294643A (de) |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3786482A (en) * | 1972-03-13 | 1974-01-15 | Lexitron Corp | Apparatus for generating and displaying characters by tracing continuous strokes |
US3805274A (en) * | 1972-03-09 | 1974-04-16 | Casio Computer Co Ltd | Ink jet recording with character distortion compensation |
US3816719A (en) * | 1972-06-23 | 1974-06-11 | Thomson Csf | Electronic devices for the programmed tracing of patterns |
US3877029A (en) * | 1973-03-09 | 1975-04-08 | Magic Dot Inc | Electronic keyboard |
US3911417A (en) * | 1973-04-27 | 1975-10-07 | Univ Illinois | Method and apparatus for plotting line segments and characters on a display device |
US3938130A (en) * | 1972-02-23 | 1976-02-10 | Hughes Aircraft Company | Direction coded digital stroke generator providing a plurality of symbols |
US3972052A (en) * | 1972-10-24 | 1976-07-27 | Oki Electric Industry Company, Ltd. | Compensation apparatus for high speed dot printer |
US4149807A (en) * | 1976-03-04 | 1979-04-17 | Facit Aktiebolag | Method of typewriting or printing |
US4205309A (en) * | 1978-02-21 | 1980-05-27 | Documation Incorporated | Character generator |
US4222108A (en) * | 1978-12-01 | 1980-09-09 | Braaten Norman J | Digitally-programmed arbitrary waveform generator |
US4481605A (en) * | 1982-03-05 | 1984-11-06 | Sperry Corporation | Display vector generator utilizing sine/cosine accumulation |
US4747042A (en) * | 1983-12-20 | 1988-05-24 | Ascii Corporation | Display control system |
US4791595A (en) * | 1986-07-11 | 1988-12-13 | Tektronix, Inc. | Digital vector generation with velocity correction by tabulation of counter control signals |
US5773788A (en) * | 1996-09-03 | 1998-06-30 | Hypertherm, Inc. | Gas mixtures for plasma arc torch cutting and marking systems |
WO2005084949A1 (en) | 2004-03-02 | 2005-09-15 | Beltgroup C.V. | Process to apply digital images in straps, appliance to this application and obtained straps. |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE412206B (sv) * | 1976-12-22 | 1980-02-25 | Sprinter System Ab | Ask |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3090041A (en) * | 1959-11-02 | 1963-05-14 | Link Aviation Inc | Character generation and display |
US3329948A (en) * | 1963-05-03 | 1967-07-04 | Burroughs Corp | Symbol generating apparatus |
US3335416A (en) * | 1963-08-07 | 1967-08-08 | Ferranti Ltd | Character display systems |
US3510865A (en) * | 1969-01-21 | 1970-05-05 | Sylvania Electric Prod | Digital vector generator |
US3540032A (en) * | 1968-01-12 | 1970-11-10 | Ibm | Display system using cathode ray tube deflection yoke non-linearity to obtain curved strokes |
US3587083A (en) * | 1967-09-28 | 1971-06-22 | Xerox Corp | Character generation and display system |
-
1969
- 1969-05-02 JP JP44033587A patent/JPS492779B1/ja active Pending
-
1970
- 1970-04-28 US US32539A patent/US3691551A/en not_active Expired - Lifetime
- 1970-04-30 DE DE2021373A patent/DE2021373C3/de not_active Expired
- 1970-05-04 GB GB21370/70A patent/GB1294643A/en not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3090041A (en) * | 1959-11-02 | 1963-05-14 | Link Aviation Inc | Character generation and display |
US3329948A (en) * | 1963-05-03 | 1967-07-04 | Burroughs Corp | Symbol generating apparatus |
US3335416A (en) * | 1963-08-07 | 1967-08-08 | Ferranti Ltd | Character display systems |
US3587083A (en) * | 1967-09-28 | 1971-06-22 | Xerox Corp | Character generation and display system |
US3540032A (en) * | 1968-01-12 | 1970-11-10 | Ibm | Display system using cathode ray tube deflection yoke non-linearity to obtain curved strokes |
US3510865A (en) * | 1969-01-21 | 1970-05-05 | Sylvania Electric Prod | Digital vector generator |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3938130A (en) * | 1972-02-23 | 1976-02-10 | Hughes Aircraft Company | Direction coded digital stroke generator providing a plurality of symbols |
US3805274A (en) * | 1972-03-09 | 1974-04-16 | Casio Computer Co Ltd | Ink jet recording with character distortion compensation |
US3786482A (en) * | 1972-03-13 | 1974-01-15 | Lexitron Corp | Apparatus for generating and displaying characters by tracing continuous strokes |
US3816719A (en) * | 1972-06-23 | 1974-06-11 | Thomson Csf | Electronic devices for the programmed tracing of patterns |
US3972052A (en) * | 1972-10-24 | 1976-07-27 | Oki Electric Industry Company, Ltd. | Compensation apparatus for high speed dot printer |
US3877029A (en) * | 1973-03-09 | 1975-04-08 | Magic Dot Inc | Electronic keyboard |
US3911417A (en) * | 1973-04-27 | 1975-10-07 | Univ Illinois | Method and apparatus for plotting line segments and characters on a display device |
US4149807A (en) * | 1976-03-04 | 1979-04-17 | Facit Aktiebolag | Method of typewriting or printing |
US4205309A (en) * | 1978-02-21 | 1980-05-27 | Documation Incorporated | Character generator |
US4222108A (en) * | 1978-12-01 | 1980-09-09 | Braaten Norman J | Digitally-programmed arbitrary waveform generator |
US4481605A (en) * | 1982-03-05 | 1984-11-06 | Sperry Corporation | Display vector generator utilizing sine/cosine accumulation |
US4747042A (en) * | 1983-12-20 | 1988-05-24 | Ascii Corporation | Display control system |
US4791595A (en) * | 1986-07-11 | 1988-12-13 | Tektronix, Inc. | Digital vector generation with velocity correction by tabulation of counter control signals |
US5773788A (en) * | 1996-09-03 | 1998-06-30 | Hypertherm, Inc. | Gas mixtures for plasma arc torch cutting and marking systems |
WO2005084949A1 (en) | 2004-03-02 | 2005-09-15 | Beltgroup C.V. | Process to apply digital images in straps, appliance to this application and obtained straps. |
Also Published As
Publication number | Publication date |
---|---|
DE2021373B2 (de) | 1973-02-15 |
DE2021373A1 (de) | 1970-11-12 |
GB1294643A (en) | 1972-11-01 |
DE2021373C3 (de) | 1975-03-13 |
JPS492779B1 (de) | 1974-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3691551A (en) | System for generating tracing signals for displaying or recording characters | |
US3047851A (en) | Electronic character generating and displaying apparatus | |
US4129859A (en) | Raster scan type CRT display system having an image rolling function | |
US3329948A (en) | Symbol generating apparatus | |
US2766444A (en) | Electronic character displaying apparatus | |
US4129858A (en) | Partitioned display control system | |
US3130397A (en) | Cathode ray tube display system having both specific symbol and generalized data control of the tube display | |
US3984827A (en) | Beam repositioning circuitry for a cathode ray tube calligraphic display system | |
US3775760A (en) | Cathode ray tube stroke writing using digital techniques | |
US3533096A (en) | Character display system | |
US3104387A (en) | Character generation | |
US3329947A (en) | Electronic character generator | |
US3675230A (en) | Apparatus for decoding graphic-display information | |
US3423626A (en) | Character generator | |
US3497613A (en) | Display device with video signals interleaved in segments of a cyclical storage | |
US3696394A (en) | Method and arrangement for generating tracing signals | |
US3609749A (en) | Character display system having negative image cursor | |
US3938130A (en) | Direction coded digital stroke generator providing a plurality of symbols | |
US3471847A (en) | Cathode ray tube digital display system | |
US3725723A (en) | Graphic display system | |
US3786482A (en) | Apparatus for generating and displaying characters by tracing continuous strokes | |
US3311908A (en) | Cathode ray tube display device employing constant velocity beam deflection | |
US3555538A (en) | Display apparatus | |
US3713134A (en) | Digital stroke character generator | |
EP0068013A1 (de) | Verktorgenerator für computergrafiken. |