US3690850A - Zirconium alloy tube with zirconium hydride inclusions - Google Patents

Zirconium alloy tube with zirconium hydride inclusions Download PDF

Info

Publication number
US3690850A
US3690850A US817600*A US3690850DA US3690850A US 3690850 A US3690850 A US 3690850A US 3690850D A US3690850D A US 3690850DA US 3690850 A US3690850 A US 3690850A
Authority
US
United States
Prior art keywords
tube
zirconium
blank
inclusions
rolls
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US817600*A
Inventor
John Olof Edstrom
Sven Eric Innerman
Bengt Henrik Berg
Brian Edward Mills
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Santrade Ltd
Original Assignee
Sandvik AB
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from SE1668/66A external-priority patent/SE321199B/xx
Application filed by Sandvik AB filed Critical Sandvik AB
Application granted granted Critical
Publication of US3690850A publication Critical patent/US3690850A/en
Assigned to SANTRADE LTD., A CORP. OF SWITZERLAND reassignment SANTRADE LTD., A CORP. OF SWITZERLAND ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: SANDVIK AKTIEBOLAG, A CORP. OF SWEDEN
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B21/00Pilgrim-step tube-rolling, i.e. pilger mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S72/00Metal deforming
    • Y10S72/70Deforming specified alloys or uncommon metal or bimetallic work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12465All metal or with adjacent metals having magnetic properties, or preformed fiber orientation coordinate with shape

Definitions

  • This invention relates to the production of tubes of zirconium and zirconium-base alloys.
  • the invention is applicable to zirconium and to zircalloy alloys which consist of zirconium with additions of, for example, one or more of the following: tin, iron, nickel, chromium, and columbium.
  • Such alloys may also contain minor quantities .of other elements, such as molybdenum or copper.
  • Tubes of zirconium and zirconium-base alloys are used, for example, in the nuclear industry. Often during manufacture, such tubes are subjected to an autoclave treatment to create a protective layer of oxide. During that treatment or during use, hydrogen may be absorbed into the metal in sufiicient quantity to cause precipitation of hydrides to form inclusions in the form of platelets throughout the metal. It is known that the manner or type of the cold working can determine the direction of the orientation of the platelets which form later. The direction of the orientation is of substantial importance during use of the tubes. 'If the orientation is radial, that is, from the outside surface toward the inside surface, there is a tendency for radial cracks to form which may result in leakage through the tube wall.
  • orientation is parallel to the inner and outer tube surfaces, the problem of such cracks and resulting leakage is minimized or rendered negligible.
  • orientation is perpendicular to the general lines of the compression forces to which the metal has been subjected, and is parallel to the prior tensile forces,
  • tubes of zirconium and zirconium-base alloys are cold-worked to predetermined dimensions by a carefully controlled reduc- 3,690,850 Patented Sept. 12, 1972 tion in the wall thickness. This reduction insures a satisfactory orientation of hydride inclusions which appear later in the material.
  • tubes having a wall thickness greater than that desired in the finished tubes are cold worked upon a pilger mill which is unique in its construction and mode of operation. That pilger mill and its mode of cold working various metals is disclosed in another application which will be co-pending with this present application and which is related to Swedish patent application No. 1,668/66, filed Feb. 10, 1966.
  • FIG. 1 is a vertical section of a pilger mill illustrating one embodiment of the invention
  • FIG. 2 is an enlarged view of the mill rolls shown at the left in FIG. 1;
  • FIG. 3 is a plan view of the tube working groove on the face of one of the rolls of 'FIG. 2;
  • FIG. 4 is a sectional view upon a somewhat larger scale and showing the roll grooves on the line 4-4 of FIG. 2;
  • FIG. 5 is an enlarged view with the lower portion in section of the chuck of FIG. 1 which holds the workpiece;
  • FIG. 6 is a diagram illustrating the critical relationship which is involved in cold-working the tubes in accordance with the present invention.
  • FIG. 7 is a longitudinal sectional view of a zirconium alloy pipe formed in accordance with the present invention and showing the hydride inclusions formed therein;
  • FIG. 8 is a sectional view taken on line 88 of FIG. 7.
  • a pilger mill having a mill stand 10 with a pair of rolls 11 and 12 mounted respectively upon shafts 13 and 14.
  • Rolls 11 and 12 have grooves 15 and 16, respectively, for rolling tubular blanks, illustratively 18 and 18a, mounted upon a mandrel 17.
  • the mill stand is stationary, and while each blank is being cold-worked, it is moved back and forth between the rolls with a generally progressive movement of the blank from right to left. That is, each movement of the blank to the left is more advanced than the prior movement to the left.
  • the rolls rotate at the same speed in opposite directions, as shown by arrows, so that they move together toward the right within the zone at 33 where they engage the tube.
  • each of the grooves 15 and 16 in the rolls is substantially semi-cylindrical (see FIG. 4) in cross-section throughout, but of varying widths or diameters, as illustrated in FIG. 3. That is, each of the grooves has a tapered reducing portion 30 Within which the tube is worked or reduced, a finishing portion 31 which is of the diameter of the finished tube, and a relief portion 32 which is of a uniform diameter which is slightly greater than that of the tubular blank prior to the cold-working operation.
  • the leading end of the tapered reducing portion 30 extends from the trailing end of the relief portion and is of the same diameter, and the finishing portion extends from the trailing end of the tapered reducing portion and is of the same diameter.
  • the grooves on the rolls lie mirrot-symmetrical (FIGS. 1 and 2) with respect to the point of tangency at zone 33 between the rolls.
  • the tubular blank which is being reduced is supported and moved back and forth by an assembly upon a carriage 50 which is slidably supported upon a base 51, and which is moved along the base by the rotation of a screw shaft 52.
  • a cam drum 53 is rotatably mounted in carriage 50 and has a cam groove 54 which is a continuous or loop groove, the portion on the far side of the drum being identical with that shown on the near side.
  • Extending through a slot in the top of the casing of carriage 50 is a cam follower 59 which is rigidly mounted in a chuck holder 63 of a chuck assembly 57.
  • Rotatably mounted in chuck holder 63 is a chuck 62 which is adapted to clamp rigidly a tubular blank 18a and the mandrel 17.
  • Drum 53 is rotated synchronously with rolls 11 and 12 by a drive assembly extending from the mill stand and represented by a gear 56, a mating gear and a spline shaft 55.
  • This drive provides the continuous back and forth movement of the tubular blanks and it also drives the carriage 50 by screw shaft 52 progressively toward the mill stand from a position to the right of that shown so that the tubular blanks are fed a distance at least as great as their original length.
  • Each rotation of drum 53 moves the chuck assembly through a back and forth oscillation in which the blanks are mandrel 17 are first moved axially to the left through an advance stroke from somewhat the position shown in FIG. 1 to that of FIG. 2.
  • the assembly is then moved back through a return stroke during which a blank is worked. That is, the blank reducing and finishing take place only during the return stroke, the advance stroke being only to position a blank for the working.
  • the synchronized rotation of rolls 11 and 12 and drum 53 causes the blank to be engaged by the tapered reducing portions 30 (FIG. 3) of the rolls at the start of the return stroke. At that time the blank is moving to the right from the position of FIG. 2. The tubular blank is then engaged by the finishing portions 31 of the grooves during the remainder of the return stroke toward the right. The relief portions 32 of the grooves then move past the blank during the entire advance stroke to the position of FIG. 2.
  • the rate of movement of the chuck holder is determined by the shape of groove 54 in drum 53. However, at the beginning of the return stroke, the blank is accelerated to the speed of the rolls at the mean radii of the groove portions 30 and 31.
  • carriage 50 is moved at a slow constant rate toward the mill stand by screw shaft 52 which is driven by a gear assembly not shown.
  • This causes the above-mentioned progressive movement of the tubular blanks toward the left during each back and forth movement of the blanks.
  • the leading ends of the tapered reducing portions 30 of the grooves approach a blank, there is an advanced portion of the unworked blank within the working zone 33 (FIG. 2). That advanced portion of the tubular blank is engaged and compressed against the mandrel by the action of the tapered portions of the grooves, and a bulge or wave of metal is produced at the left of line 44 in FIG. 2.
  • the relationships and synchronous movements are such that the mandrel and the blank are then moving to the right at substantially the speed of the groove portions 30 of the rolls.
  • the bulge or wave of metal is rolled relatively toward the left on the mandrel, thus to reduce the wall thickness and to produce a correspondingly increased length of the blank or tube.
  • a tapered portion of the tubular blank remains between the original tube blank portion and the fully-reduced tube portion, although in effect a portion of the tubular blank at the working zone 33 is reduced from its original size to substantially its final size in one step with axial flow of the metal, i.e., the metal flows parallel to the cylindrical surfaces of the tube.
  • the tubular blank continues its return movement, the bulge or wave of metal being flattened out by the finishing portions 31 of the grooves.
  • the entire reducing and finishing operation is carried on while the cam follower 59 is moving in a portion of groove 54 having a constant or approximately constant pitch.
  • the blank moves at the rate of the rolls at the mean radii of the groove portions 30 and 31 so that there is a pure rolling action.
  • each of the grooves and 4 16 has its side edges beveled at 34 so that the cavity formed by the mating grooves has two diametrically-spaced deviations from the true circular cross-section shape.
  • the initial action of grooves 15 and 16 is to produce protrusions on the opposite sides of the tubular blank having the configuration of the beveled edge surfaces of its grooves.
  • chuck 62 and the tubular blank are turned (see arrow 60) through an arc of the order of slightly less than This turning movement is produced by a ratchet assembly (not shown) which is enclosed within carriage 50 and is driven from spline shaft 51.
  • the ratchet assembly turns a spline shaft 61 upon which there is slidingly mounted a gear which meshes with a gear in the chuck holder 63 through which the turning movement is transmitted to the chuck.
  • step-by-step turning movement As a result of this step-by-step turning movement, the protrusions which start to form on the tubular blank during one cycle are turned prior to the next cycle toward the bottoms of the respective grooves 15 and 16 and the metal forming the protrusions is worked and caused to flow so that a true cylindrical form is produced.
  • Each of the step-by-step turning movement is sufiiciently less than 90 to avoid a pattern of the formation of the protrusions in axially aligned zones, and to insure that each portion of the tube is cold worked and finished uniformly.
  • Chuck assembly 57 is constructed to permit relative movement between chuck 62 and chuck holder 63 so that the chuck may turn about its axis as discussed above, and it may also move axially to the right with respect to the chuck holder.
  • chuck holder 63 has a sleeve extension 64, at the end of of which there is a flange 65 which snugly engages the inner surface of the shell of chuck 62.
  • the shell of chuck 62 has a removable flange 66 which overlies flange 65 and snugly engages the outer surface of the sleeve extension 64 of the chuck holder.
  • Chuck 62 has a plurality of cavities within which the same number of springs 67 are respectively positioned, and each spring has an aligning pin 67a which is mounted on flange 65.
  • Springs 67 are under compression so that they push at the right against flange 65 and at the left against the chuck wall so as to resiliently urge the chuck to the left.
  • Two ring gaskets 68 and 69 assist in insuring dampened and smooth axial movement of the chuck with respect to the chuck holder.
  • a vent opening 70 is provided for the passage of air to and from the space between flanges 65 and 66.
  • the resilient mounting for the chuck permits the axial movement of mandrel 17 and the tubular blanks with respect to the chuck holder.
  • the rolls exert substantial pressures upon the tubular blank axially to the right.
  • Springs 67 are sufficiently strong to hold the tubular blanks in the proper operating relationship. However, the springs permit relative movement whenever the axial forces exerted upon the tubular blank by the rolls exceed a predetermined value.
  • This resilient mounting permits rolling tubular blanks having different diameters and different rates of reduction than would be possible theoretically for a particular configuration of groove 54 on a drum 53.
  • the reducing portion 30 of the groove in each of the rolls should have a relatively long taper.
  • the widest portion of groove 40 is inclined at an angle of the order of 5 to 8 from the pitch circle, and the invention contemplates that this should be within the range of 4 to
  • the term pitch circle means a circle concentric with the roll at the middle of the groove, and tangent to the similar circle of the other roll.
  • the angle between the mandrel surface and the axis of the outer surface of the tube corresponds to the taper of the roll groove.
  • the diameter of the reducing portion 30 of the groove is somewhat greater than that of the original tubular blank.
  • the reducing portion 30 of the groove is in accordance with the following formula:
  • the radial extent of the various portions of each of the grooves in rolls and 16 is as follows: the reducing portion 30 extends 60; the finishing portion 31 extends 40; and, the relief portion 32 extends 260.
  • the extent or relative length of each of the portions of the grooves varies with dilferent operating conditions, such as the size and wall thickness and the characteristics of the metal. In general the portions 30 and 31 do not extend more than 180, and preferably extend between 100 and 150.
  • the finishing portion 31 of each of the grooves has suific'ient length to perform its finishing operation during each cycle upon a length of the tube which is several times the length of the finished tube which is produced by a single metal-working cycle.
  • the length of the tubular blank which is fed to the zone 33 is reduced by the reducing portion 30 of the grooves so that the tube fits the mandrel snugly.
  • portion of the tube is subjected to repeated finishing operations by the finishing portions 31 of the grooves, and the internal diameter of the tube is increased so that the tube is readily removed from the mandrel,
  • Mandrel 17 is of sutficient length to retain two of the blanks. Hence, as shown in FIGS. 1 and 2, the trailing end of one tubular blank 18 is finished simultaneously with the starting of the cold-working of the next tubular blank. In that way, the ends of the tubular blanks are finished without scrap losses.
  • the diameter of mandrel 17 is substantially that of the internal diameter of the tubular blanks.
  • the reduction in wall thickness constitutes substantially the entire cold-working.
  • the wall thickness of the tubular blanks is of the order of .2 to .25 of the external diameter, and the external diameter is less than the order of 50 mm.
  • a tubular blank of the dimensions 34 x 7 mm. (external diameter of 34 mm. and a wall thickness of 7 mm.) was rolled to the dimensions of 19 x 1.5 mm. in one instance, and to 19 x .75 mm. in another instance.
  • the diameter of rolls 11 and 12 is of the order of 500 mm. or less, for example, 150 to 350 mm.
  • the rate of feed in the above example for each rolling or cold-working cycle was of the order of .5 to 4.5 mm., preferably 1 mm. to 2 mm.
  • the pilger mill shown in the drawings and the process described may be used to cold-work tubular blanks of various metals, such as carbon steel, low-alloyed steel, high-alloyed steel and other metals.
  • the invention of the present application is set forth in relation to zirconium and zirconiumbase alloys.
  • tubes of zirconium and zirconium-base alloys have been produced and used in where F(t) is the change in the wall thickness of the tubular blank,
  • F(D) is the change in the mean diameter of the tubular blank
  • D is the mean diameter of the original tubular blank
  • D is the mean diameter of the tubular blank after rolling.
  • the Q factor also may be defined as the ratio between the percentage of change in the wall thickness and the percentage of change in the mean diameter of the tube. It is understood that each of the percentages is calculated by dividing the change in the dimension by the original dimension.
  • tubes of zirconium and zirconium-base alloys have been produced by reducing the tubular blanks as described above, so as to maintain a Q factor of the order of 1.0 or more, and preferably greater than 2, provided there is a reduction in the crosssectional area of the metal of not less than 50% and commercially of the range of 75% to 95% often to Under some circumstances, the rolling may be performed in more than one step.
  • the tubes may be subjected to additional working or other processing without departing from the scope of the invention.
  • FIG. 6 of the drawings shows various Q factors With the reduction rate R being the percentage in the reduction of the cross-sectional area of the metal.
  • the orientation angle of the hydride inclusions with respect to the radius of the tube represents the vertical axis of the diagram. It is recognized that the percentage reduction must be something less than The curves show that a high Q factor gives excellent results, but that a low Q factor produces unsatisfactory orientation of the inclusions.
  • a zircaloy tubular blank was cold-worked, which was originally 24.5 x 4.25 mm. After rolling the tubular blank was 16 x .76 mm. Hence, the mean diameter was changed from 20.25 mm. to 15.24 mm., with a reduction in the cross-section area of the metal of 86%.
  • the Q factor is calculated to be 3.3.
  • a tube having an external diameter of 19.05 mm. and a wall thickness of 2.78 mm. was reduced to an external diameter of 13.91 mm. and a wall thickness of .68 mm.
  • the Q factor was 4 and the cross-sectional area was reduced 80%.
  • the internal diameter of the tube was reduced so as to fit the mandrel snugly, the snug fit being apparent at 4.52 mm. fromthe adjacent end of the unworked portion of the tubular blank.
  • the reducing grooves were 40 mm. in length, and the finishing grooves were 220 mm. in length. The finishing operations occurred 40 to 50 times upon each portion of the tube before that portion passed beyond the finishing zone.
  • FIG. 8 illustrates a sectional view of a completed tubular blank or pipe 18 formed in accordance with the present invention by the apparatus described above.
  • the tubes are subjected to an autoclave treatment to create a protective layer of oxide or when used, for example, in a nuclear power industry, the pipe absorbs hydrogen into the metal in sufficient quantities to cause formation of zirconium hydride inclusions in the form of platelets throughout the pipe.
  • the zirconium hydride inclusions 80 or platelets are oriented substantially parallel to the inner and outer surfaces 82 and 84 respectively of the pipeline and extend substantially parallel to the longitudinal axis of the tube. As a result of this orientation of the inclusions the problem of cracks and resulting leakage which is prevalent in previously proposed zirconium and zirconium base alloyed pipes is minimized or rendered negligible.
  • a longitudinally extending tube having inner and outer surfaces extending parallel to the longitudinal axis of the tube, said tube consisting essentially of zirconium and zirconium hydride inclusions in the zirconium, said inclusions being oriented substantially parallel to said inner and outer surfaces and being substantially parallel to the longitudinal axis of the tube whereby cracking and resulting leaking of the tube are rendered negligible.
  • a longitudinally extending tube having inner and outer surfaces extending parallel to the longitudinal axis of the tube, said tube consisting essentially of a zirconium alloy wherein the alloying element is selected from the group consisting of tin, iron, nickel, chromium, and columbium, and zirconium hydride platelets in the zirconium alloy oriented substantially parallel to said inner and outer surfaces of the tube and oriented substantially parallel to the longitudinal axis of the tube, whereby cracking and resulting leaking of the tube are rendered negligible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)

Abstract

A COLD-WORKED TUBE OF ZICONIUM OR ZICONIUM ALLOY IN WHICH ZICONIUM HYDRIDE INCLUSIONS FORMED IN THE METAL ARE ORIENTED TO LIE GENERALLY PARALLEL TO THE INNER AND OUTER SURFACES OF THE TUBE, RATHER THAN RADIALLY OF THE TUBE;

WHEREBY CRACKING AND RESULTING LEAKING OF THE TUBE ARE RENDERED NEGLIGIBLE.

Description

Sept. 12, 1972 EDSTRQM ETAL 3,690,850
ZIRCONIUM ALLOY TUBE WITH ZIRCONIUM HYDRIDE INCLUSIONS Original Filed May 25; 1966 s Sheets-Sheet 1 INVENTORS. JOHN OLOF EDSTROM SVEN ERIC INNERMAN BENGT HENRIK BERG BRIAN EDWARD MILLS RNE Y5.
Sept. 12, 1972 3,690,850
ZIRCONIUM ALLOY TUBE WITH ZIRCONIUM HYDRIDE INCLUSIONS J. o. EDSTROM ET AL Original Filed May 25, 1966 3 Sheets-Sheet 2 p 1972 J. o. EDSTROM ETAI- 3,690,850
ZIRCONIUM ALLOY TUBE WITH ZIRCONIUM HYDRIDE INCLUSIONS Original Filed May 25, 1966 s Sheets-Shed :5
Fig.5
INVENTORS JOHN OLOF EDSTROM SVEN ERIC INNERMAN BENGT HENRIK BERG BRIAN EDWARD MILLS M, MM
RNEYS United States Patent Ofiice Int. ci. B22f /00 US. Cl. 29-183 4 Claims ABSTRACT OF THE DISCLOSURE A cold-worked tube of zirconium or zirconium alloy in which zirconium hydride inclusions formed in the metal are oriented to lie generally parallel to the inner and outer surfaces of the tube, rather than radially of the tube; whereby cracking and resulting leaking of the tube are rendered negligible.
This application is a division of application Ser. No. 552,766, filed May 25, 1966, now US. Pat. No. 3,487,- 675.
This invention relates to the production of tubes of zirconium and zirconium-base alloys. Particularly, the invention is applicable to zirconium and to zircalloy alloys which consist of zirconium with additions of, for example, one or more of the following: tin, iron, nickel, chromium, and columbium. Such alloys may also contain minor quantities .of other elements, such as molybdenum or copper.
Tubes of zirconium and zirconium-base alloys are used, for example, in the nuclear industry. Often during manufacture, such tubes are subjected to an autoclave treatment to create a protective layer of oxide. During that treatment or during use, hydrogen may be absorbed into the metal in sufiicient quantity to cause precipitation of hydrides to form inclusions in the form of platelets throughout the metal. It is known that the manner or type of the cold working can determine the direction of the orientation of the platelets which form later. The direction of the orientation is of substantial importance during use of the tubes. 'If the orientation is radial, that is, from the outside surface toward the inside surface, there is a tendency for radial cracks to form which may result in leakage through the tube wall. If the orientation is parallel to the inner and outer tube surfaces, the problem of such cracks and resulting leakage is minimized or rendered negligible. In general, the orientation is perpendicular to the general lines of the compression forces to which the metal has been subjected, and is parallel to the prior tensile forces,
It is an object of the present invention to produce tubes of zirconium and zirconium-base alloys wherein there is cold working which is such that any hydride inclusions which form are not oriented radially with respect to the axis of the tubes. It is a further object to provide for cold Working zirconium and zirconium-base alloy in such a way as to insure that such hydride inclusions are oriented somewhat parallel to the tube surfaces. It is a further object to provide tubes of the above type which are superior to the prior similar tubes. It is a further object to provide for the above with apparatus which is efiicient and dependable in use, and which is relatively simple in construction. These and other objects will be in part obvious and in part pointed out below.
In accordance with the present invention, tubes of zirconium and zirconium-base alloys are cold-worked to predetermined dimensions by a carefully controlled reduc- 3,690,850 Patented Sept. 12, 1972 tion in the wall thickness. This reduction insures a satisfactory orientation of hydride inclusions which appear later in the material.
-In carrying out the invention, tubes having a wall thickness greater than that desired in the finished tubes are cold worked upon a pilger mill which is unique in its construction and mode of operation. That pilger mill and its mode of cold working various metals is disclosed in another application which will be co-pending with this present application and which is related to Swedish patent application No. 1,668/66, filed Feb. 10, 1966.
In the drawings:
FIG. 1 is a vertical section of a pilger mill illustrating one embodiment of the invention;
FIG. 2 is an enlarged view of the mill rolls shown at the left in FIG. 1;
FIG. 3 is a plan view of the tube working groove on the face of one of the rolls of 'FIG. 2;
FIG. 4 is a sectional view upon a somewhat larger scale and showing the roll grooves on the line 4-4 of FIG. 2;
FIG. 5 is an enlarged view with the lower portion in section of the chuck of FIG. 1 which holds the workpiece; and,
FIG. 6 is a diagram illustrating the critical relationship which is involved in cold-working the tubes in accordance with the present invention;
FIG. 7 is a longitudinal sectional view of a zirconium alloy pipe formed in accordance with the present invention and showing the hydride inclusions formed therein; and
FIG. 8 is a sectional view taken on line 88 of FIG. 7.
Referring to FIG. 1 of the drawings, a pilger mill is shown having a mill stand 10 with a pair of rolls 11 and 12 mounted respectively upon shafts 13 and 14. Rolls 11 and 12 have grooves 15 and 16, respectively, for rolling tubular blanks, illustratively 18 and 18a, mounted upon a mandrel 17. The mill stand is stationary, and while each blank is being cold-worked, it is moved back and forth between the rolls with a generally progressive movement of the blank from right to left. That is, each movement of the blank to the left is more advanced than the prior movement to the left. The rolls rotate at the same speed in opposite directions, as shown by arrows, so that they move together toward the right within the zone at 33 where they engage the tube. Each of the grooves 15 and 16 in the rolls is substantially semi-cylindrical (see FIG. 4) in cross-section throughout, but of varying widths or diameters, as illustrated in FIG. 3. That is, each of the grooves has a tapered reducing portion 30 Within which the tube is worked or reduced, a finishing portion 31 which is of the diameter of the finished tube, and a relief portion 32 which is of a uniform diameter which is slightly greater than that of the tubular blank prior to the cold-working operation. The leading end of the tapered reducing portion 30 extends from the trailing end of the relief portion and is of the same diameter, and the finishing portion extends from the trailing end of the tapered reducing portion and is of the same diameter. The grooves on the rolls lie mirrot-symmetrical (FIGS. 1 and 2) with respect to the point of tangency at zone 33 between the rolls.
During operation, the tubular blank which is being reduced is supported and moved back and forth by an assembly upon a carriage 50 which is slidably supported upon a base 51, and which is moved along the base by the rotation of a screw shaft 52. A cam drum 53 is rotatably mounted in carriage 50 and has a cam groove 54 which is a continuous or loop groove, the portion on the far side of the drum being identical with that shown on the near side. Extending through a slot in the top of the casing of carriage 50 is a cam follower 59 which is rigidly mounted in a chuck holder 63 of a chuck assembly 57. Rotatably mounted in chuck holder 63 is a chuck 62 which is adapted to clamp rigidly a tubular blank 18a and the mandrel 17.
Drum 53 is rotated synchronously with rolls 11 and 12 by a drive assembly extending from the mill stand and represented by a gear 56, a mating gear and a spline shaft 55. This drive provides the continuous back and forth movement of the tubular blanks and it also drives the carriage 50 by screw shaft 52 progressively toward the mill stand from a position to the right of that shown so that the tubular blanks are fed a distance at least as great as their original length.
Each rotation of drum 53 moves the chuck assembly through a back and forth oscillation in which the blanks are mandrel 17 are first moved axially to the left through an advance stroke from somewhat the position shown in FIG. 1 to that of FIG. 2. The assembly is then moved back through a return stroke during which a blank is worked. That is, the blank reducing and finishing take place only during the return stroke, the advance stroke being only to position a blank for the working.
The synchronized rotation of rolls 11 and 12 and drum 53 causes the blank to be engaged by the tapered reducing portions 30 (FIG. 3) of the rolls at the start of the return stroke. At that time the blank is moving to the right from the position of FIG. 2. The tubular blank is then engaged by the finishing portions 31 of the grooves during the remainder of the return stroke toward the right. The relief portions 32 of the grooves then move past the blank during the entire advance stroke to the position of FIG. 2. In general, the rate of movement of the chuck holder is determined by the shape of groove 54 in drum 53. However, at the beginning of the return stroke, the blank is accelerated to the speed of the rolls at the mean radii of the groove portions 30 and 31. When the blank has been gripped or clamped by the rolls there is no relative axial movement between the interengaged surfaces of the blank and the rolls. Hence, in fact, the rolls control the movement of the blank and the shape of groove 54 is such as to correspond with that rate of blank movement.
As indicated above, simultaneously with this oscillating movement of the tubular blanks, carriage 50 is moved at a slow constant rate toward the mill stand by screw shaft 52 which is driven by a gear assembly not shown. This causes the above-mentioned progressive movement of the tubular blanks toward the left during each back and forth movement of the blanks. Hence, when the leading ends of the tapered reducing portions 30 of the grooves approach a blank, there is an advanced portion of the unworked blank within the working zone 33 (FIG. 2). That advanced portion of the tubular blank is engaged and compressed against the mandrel by the action of the tapered portions of the grooves, and a bulge or wave of metal is produced at the left of line 44 in FIG. 2. The relationships and synchronous movements are such that the mandrel and the blank are then moving to the right at substantially the speed of the groove portions 30 of the rolls. Hence, the bulge or wave of metal is rolled relatively toward the left on the mandrel, thus to reduce the wall thickness and to produce a correspondingly increased length of the blank or tube. A tapered portion of the tubular blank remains between the original tube blank portion and the fully-reduced tube portion, although in effect a portion of the tubular blank at the working zone 33 is reduced from its original size to substantially its final size in one step with axial flow of the metal, i.e., the metal flows parallel to the cylindrical surfaces of the tube. The tubular blank continues its return movement, the bulge or wave of metal being flattened out by the finishing portions 31 of the grooves. The entire reducing and finishing operation is carried on while the cam follower 59 is moving in a portion of groove 54 having a constant or approximately constant pitch. Hence, the blank moves at the rate of the rolls at the mean radii of the groove portions 30 and 31 so that there is a pure rolling action.
Referring now to FIG. 4, each of the grooves and 4 16 has its side edges beveled at 34 so that the cavity formed by the mating grooves has two diametrically-spaced deviations from the true circular cross-section shape. Hence, the initial action of grooves 15 and 16 is to produce protrusions on the opposite sides of the tubular blank having the configuration of the beveled edge surfaces of its grooves. Between each two successive periods or cycles when the tubular blank is being reduced by the rolls, chuck 62 and the tubular blank are turned (see arrow 60) through an arc of the order of slightly less than This turning movement is produced by a ratchet assembly (not shown) which is enclosed within carriage 50 and is driven from spline shaft 51. The ratchet assembly turns a spline shaft 61 upon which there is slidingly mounted a gear which meshes with a gear in the chuck holder 63 through which the turning movement is transmitted to the chuck.
As a result of this step-by-step turning movement, the protrusions which start to form on the tubular blank during one cycle are turned prior to the next cycle toward the bottoms of the respective grooves 15 and 16 and the metal forming the protrusions is worked and caused to flow so that a true cylindrical form is produced. Each of the step-by-step turning movement is sufiiciently less than 90 to avoid a pattern of the formation of the protrusions in axially aligned zones, and to insure that each portion of the tube is cold worked and finished uniformly.
With the cooperating roll grooves and the synchronized movements discussed above, there is no sharp break in the tube surfaces which would cause flaws in the finished product. The rounded surfaces 34 and the turning movement avoid the tendency for the metal at the sides to be formed into fins. The pressure which cause the flow of the metal are uniform and equally distributed.
Chuck assembly 57 is constructed to permit relative movement between chuck 62 and chuck holder 63 so that the chuck may turn about its axis as discussed above, and it may also move axially to the right with respect to the chuck holder. To permit the axial movement (FIG. 5), chuck holder 63 has a sleeve extension 64, at the end of of which there is a flange 65 which snugly engages the inner surface of the shell of chuck 62. The shell of chuck 62 has a removable flange 66 which overlies flange 65 and snugly engages the outer surface of the sleeve extension 64 of the chuck holder. Chuck 62 has a plurality of cavities within which the same number of springs 67 are respectively positioned, and each spring has an aligning pin 67a which is mounted on flange 65. Springs 67 are under compression so that they push at the right against flange 65 and at the left against the chuck wall so as to resiliently urge the chuck to the left. Two ring gaskets 68 and 69 assist in insuring dampened and smooth axial movement of the chuck with respect to the chuck holder. A vent opening 70 is provided for the passage of air to and from the space between flanges 65 and 66.
The resilient mounting for the chuck permits the axial movement of mandrel 17 and the tubular blanks with respect to the chuck holder. Referring to FIG. 2, when a tubular blank is being reduced by the action of the rolls, the rolls exert substantial pressures upon the tubular blank axially to the right. Springs 67 are sufficiently strong to hold the tubular blanks in the proper operating relationship. However, the springs permit relative movement whenever the axial forces exerted upon the tubular blank by the rolls exceed a predetermined value. This resilient mounting permits rolling tubular blanks having different diameters and different rates of reduction than would be possible theoretically for a particular configuration of groove 54 on a drum 53.
In order to obtain the relatively high reduction in the tube wall thickness in one step, as is contemplated with the invention, the reducing portion 30 of the groove in each of the rolls should have a relatively long taper. Illustratively, the widest portion of groove 40 is inclined at an angle of the order of 5 to 8 from the pitch circle, and the invention contemplates that this should be within the range of 4 to The term pitch circle," as here used, means a circle concentric with the roll at the middle of the groove, and tangent to the similar circle of the other roll. As the mandrel is cylindrical, the angle between the mandrel surface and the axis of the outer surface of the tube corresponds to the taper of the roll groove. At its leading or larger end the diameter of the reducing portion 30 of the groove is somewhat greater than that of the original tubular blank. The reducing portion 30 of the groove is in accordance with the following formula:
in which In this embodiment the radial extent of the various portions of each of the grooves in rolls and 16 is as follows: the reducing portion 30 extends 60; the finishing portion 31 extends 40; and, the relief portion 32 extends 260. The extent or relative length of each of the portions of the grooves varies with dilferent operating conditions, such as the size and wall thickness and the characteristics of the metal. In general the portions 30 and 31 do not extend more than 180, and preferably extend between 100 and 150. The finishing portion 31 of each of the grooves has suific'ient length to perform its finishing operation during each cycle upon a length of the tube which is several times the length of the finished tube which is produced by a single metal-working cycle. Hence, during each cycle, the length of the tubular blank which is fed to the zone 33 is reduced by the reducing portion 30 of the grooves so that the tube fits the mandrel snugly. During subsequent cycles that portion of the tube is subjected to repeated finishing operations by the finishing portions 31 of the grooves, and the internal diameter of the tube is increased so that the tube is readily removed from the mandrel,
Mandrel 17 is of sutficient length to retain two of the blanks. Hence, as shown in FIGS. 1 and 2, the trailing end of one tubular blank 18 is finished simultaneously with the starting of the cold-working of the next tubular blank. In that way, the ends of the tubular blanks are finished without scrap losses.
It has been indicated above that the diameter of mandrel 17 is substantially that of the internal diameter of the tubular blanks. Hence, there can be little or no reduction in the internal diameter of the tube, and the reduction in wall thickness constitutes substantially the entire cold-working. In general, the wall thickness of the tubular blanks is of the order of .2 to .25 of the external diameter, and the external diameter is less than the order of 50 mm. Illustratively, a tubular blank of the dimensions 34 x 7 mm. (external diameter of 34 mm. and a wall thickness of 7 mm.) was rolled to the dimensions of 19 x 1.5 mm. in one instance, and to 19 x .75 mm. in another instance. These represent reductions in the cross-sectional area of the metal of the order of 87% and 93%, respectively. Illustratively, the diameter of rolls 11 and 12 is of the order of 500 mm. or less, for example, 150 to 350 mm. The rate of feed in the above example for each rolling or cold-working cycle was of the order of .5 to 4.5 mm., preferably 1 mm. to 2 mm.
It has been indicated above that the pilger mill shown in the drawings and the process described may be used to cold-work tubular blanks of various metals, such as carbon steel, low-alloyed steel, high-alloyed steel and other metals. However, the invention of the present application is set forth in relation to zirconium and zirconiumbase alloys. As explained above, tubes of zirconium and zirconium-base alloys have been produced and used in where F(t) is the change in the wall thickness of the tubular blank,
t is the original wall thickness,
: is the wall thickness after rolling;
F(D) is the change in the mean diameter of the tubular blank,
D is the mean diameter of the original tubular blank, and
D is the mean diameter of the tubular blank after rolling.
The Q factor also may be defined as the ratio between the percentage of change in the wall thickness and the percentage of change in the mean diameter of the tube. It is understood that each of the percentages is calculated by dividing the change in the dimension by the original dimension. In general very satisfactory tubes of zirconium and zirconium-base alloys have been produced by reducing the tubular blanks as described above, so as to maintain a Q factor of the order of 1.0 or more, and preferably greater than 2, provided there is a reduction in the crosssectional area of the metal of not less than 50% and commercially of the range of 75% to 95% often to Under some circumstances, the rolling may be performed in more than one step. The tubes may be subjected to additional working or other processing without departing from the scope of the invention.
FIG. 6 of the drawings shows various Q factors With the reduction rate R being the percentage in the reduction of the cross-sectional area of the metal. The orientation angle of the hydride inclusions with respect to the radius of the tube represents the vertical axis of the diagram. It is recognized that the percentage reduction must be something less than The curves show that a high Q factor gives excellent results, but that a low Q factor produces unsatisfactory orientation of the inclusions. In one particular mode of practicing the present invention, a zircaloy tubular blank was cold-worked, which was originally 24.5 x 4.25 mm. After rolling the tubular blank was 16 x .76 mm. Hence, the mean diameter was changed from 20.25 mm. to 15.24 mm., with a reduction in the cross-section area of the metal of 86%. In accordance with the formula discussed above, the Q factor is calculated to be 3.3.
In another instance, a tube having an external diameter of 19.05 mm. and a wall thickness of 2.78 mm. was reduced to an external diameter of 13.91 mm. and a wall thickness of .68 mm. During this reduction the Q factor was 4 and the cross-sectional area was reduced 80%. At the start of the working or reducing, the internal diameter of the tube was reduced so as to fit the mandrel snugly, the snug fit being apparent at 4.52 mm. fromthe adjacent end of the unworked portion of the tubular blank. The reducing grooves were 40 mm. in length, and the finishing grooves were 220 mm. in length. The finishing operations occurred 40 to 50 times upon each portion of the tube before that portion passed beyond the finishing zone. During the finishing operations, the metal displaced at the edges of the grooves and tending to form protru- 2. The tube of claim 1 wherein said inclusions are in sions was worked, with the result that the tube diameter was enlarged slightly to cause the completely finished tube to move freely from the mandrel. At all times the roll surfaces contacting the tubes or tubular blanks move toward the chuck. Hence, in FIGS. 1 and 2 tubular blank 18 is urged to the right against the solid support provided by tubular blank 1811 which is clamped in the chuck. Therefore, there is no tendency for the finished tube to be projected from the mandrel by the action of the rolls.
FIG. 8 illustrates a sectional view of a completed tubular blank or pipe 18 formed in accordance with the present invention by the apparatus described above. As mentioned above, during the manufacturing process the tubes are subjected to an autoclave treatment to create a protective layer of oxide or when used, for example, in a nuclear power industry, the pipe absorbs hydrogen into the metal in sufficient quantities to cause formation of zirconium hydride inclusions in the form of platelets throughout the pipe. The zirconium hydride inclusions 80 or platelets are oriented substantially parallel to the inner and outer surfaces 82 and 84 respectively of the pipeline and extend substantially parallel to the longitudinal axis of the tube. As a result of this orientation of the inclusions the problem of cracks and resulting leakage which is prevalent in previously proposed zirconium and zirconium base alloyed pipes is minimized or rendered negligible.
The above description includes explanations of the extremely important improved properties of zirconium and zirconium-base alloy tubes produced in accordance with the present invention. However, it may be that the reasons for all of the desirable results are not fully understood and are not apparent. However, the invention as set forth in the following claims accomplishes the objects set forth above.
What is claimed is:
1. A longitudinally extending tube having inner and outer surfaces extending parallel to the longitudinal axis of the tube, said tube consisting essentially of zirconium and zirconium hydride inclusions in the zirconium, said inclusions being oriented substantially parallel to said inner and outer surfaces and being substantially parallel to the longitudinal axis of the tube whereby cracking and resulting leaking of the tube are rendered negligible.
the form of platelets throughout the tube.
3. A longitudinally extending tube having inner and outer surfaces extending parallel to the longitudinal axis of the tube, said tube consisting essentially of a zirconium alloy wherein the alloying element is selected from the group consisting of tin, iron, nickel, chromium, and columbium, and zirconium hydride platelets in the zirconium alloy oriented substantially parallel to said inner and outer surfaces of the tube and oriented substantially parallel to the longitudinal axis of the tube, whereby cracking and resulting leaking of the tube are rendered negligible.
4. The tube as defined in claim 3 including minor quantities of additional alloying metals selected from the group consisting of molybdenum and copper.
References Cited UNITED STATES PATENTS 2,497,911 2/1950 Reilly et al. 23204 X 3,131,727 5/1964 Powell 138-177 X 3,135,697 6/1964 Simnad et al 23204 X 3,148,055 9/1964 Kass et al. -177 3,294,594 12/1966 B'ertea et a1 75177 X 3,303,025 2/1967 Raine et al. 75-177 OTHER REFERENCES Bibb et al.: Investigations of Binary Zirconium Alloys, AEC Research and Develop. Report KAPL- 2162, Knolls Atomic Power Lab; Nov. 1, 1960 pp. 8, 9, 10.
Langeron et al.: Prep. of Large Zirconium Crystals and Detn. of Orientation of Zirconium hydride ppts, Chem. Abst. vol. 53, Mar. 25, 1959, col. 48526, Science Lib.
Young et al.: Hydrogen Embrittlement in Zirconium, Chem. Abstr., vol. 51, Jan. 25, 1957, column 985i.
WINSTON A. DOUGLAS, Primary Examiner O. F. CRUTCI-IFIELD, Assistant Examiner US. Cl. X.R.
US817600*A 1966-02-01 1969-03-03 Zirconium alloy tube with zirconium hydride inclusions Expired - Lifetime US3690850A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE124266 1966-02-01
SE1668/66A SE321199B (en) 1966-02-10 1966-02-10
US55276666A 1966-05-25 1966-05-25

Publications (1)

Publication Number Publication Date
US3690850A true US3690850A (en) 1972-09-12

Family

ID=27354266

Family Applications (1)

Application Number Title Priority Date Filing Date
US817600*A Expired - Lifetime US3690850A (en) 1966-02-01 1969-03-03 Zirconium alloy tube with zirconium hydride inclusions

Country Status (1)

Country Link
US (1) US3690850A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2558396A1 (en) * 1984-01-19 1985-07-26 Mo I Stali I Splavov Method for pilger rolling of pipes, rolling mill for its implementation and pipes rolled in accordance with the said method
US4648912A (en) * 1982-01-29 1987-03-10 Westinghouse Electric Corp. High energy beam thermal processing of alpha zirconium alloys and the resulting articles
US4765174A (en) * 1987-02-20 1988-08-23 Westinghouse Electric Corp. Texture enhancement of metallic tubing material having a hexagonal close-packed crystal structure
FR2616690A1 (en) * 1987-06-17 1988-12-23 Westinghouse Electric Corp COLD ROLLING MACHINE WITH PILGRIMS
US20220316041A1 (en) * 2019-12-26 2022-10-06 Joint-Stock Company "Tvel" Manufacturing Method for Tubular Products made of Zirconium-Based Alloy

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4648912A (en) * 1982-01-29 1987-03-10 Westinghouse Electric Corp. High energy beam thermal processing of alpha zirconium alloys and the resulting articles
FR2558396A1 (en) * 1984-01-19 1985-07-26 Mo I Stali I Splavov Method for pilger rolling of pipes, rolling mill for its implementation and pipes rolled in accordance with the said method
US4765174A (en) * 1987-02-20 1988-08-23 Westinghouse Electric Corp. Texture enhancement of metallic tubing material having a hexagonal close-packed crystal structure
DE3805155A1 (en) * 1987-02-20 1988-09-01 Westinghouse Electric Corp METHOD FOR PRODUCING TUBES
DE3805155C2 (en) * 1987-02-20 2001-04-12 Westinghouse Electric Corp Process for the production of pipes
FR2616690A1 (en) * 1987-06-17 1988-12-23 Westinghouse Electric Corp COLD ROLLING MACHINE WITH PILGRIMS
US20220316041A1 (en) * 2019-12-26 2022-10-06 Joint-Stock Company "Tvel" Manufacturing Method for Tubular Products made of Zirconium-Based Alloy

Similar Documents

Publication Publication Date Title
US3487675A (en) Tube forming
US4090386A (en) Method of producing zircaloy tubes
US3690850A (en) Zirconium alloy tube with zirconium hydride inclusions
US4184352A (en) Method for pilger rolling of tubes and mill for effecting same
Rauschnabel et al. Modern applications of radial forging and swaging in the automotive industry
US3451243A (en) Process for forming serrated flanged pipe
US4445354A (en) Procedure and equipment for the manufacture of pipes with external and internal diameters varying in stages
US3813911A (en) Tube rolling mill for producing tubing with various internal configurations
US3416346A (en) Method and apparatus for reducing the wall thickness of metal tubing
Cheadle Fabrication of zirconium alloys into components for nuclear reactors
US2807971A (en) Cold-working process for articles
JP2000263105A (en) Manufacture of iron base dispersion strengthening alloy tube
US3693390A (en) Method and apparatus for the production of elongated conical metallic articles
US3611772A (en) Apparatus for rolling toothed parts
US2458110A (en) Apparatus for producing seamless tubes
US3408844A (en) Apparatus for the production of bent, serpentine-shaped finned pipe registers from cross-rolled finned pipes
JPS60166108A (en) Manufacture of metallic tube with shaped inner face
US3845649A (en) Tube production
US1810886A (en) Method of and apparatus for working metal
JPS6224828A (en) Mandrel for expanding tube
US2371125A (en) Method of making gun barbel
SU831463A1 (en) Method of preparing edges of articles mainly of tubes for welding
US3722247A (en) Corrugation of thin sheet
JPS63129B2 (en)
SU893280A1 (en) Tube production method

Legal Events

Date Code Title Description
AS Assignment

Owner name: SANTRADE LTD., ALPENQUAI 12, CH-6002, LUCERNE, SWI

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:SANDVIK AKTIEBOLAG, A CORP. OF SWEDEN;REEL/FRAME:004085/0132

Effective date: 19820908