US3688126A - Sound-operated, yes-no responsive switch - Google Patents

Sound-operated, yes-no responsive switch Download PDF

Info

Publication number
US3688126A
US3688126A US3688126DA US3688126A US 3688126 A US3688126 A US 3688126A US 3688126D A US3688126D A US 3688126DA US 3688126 A US3688126 A US 3688126A
Authority
US
United States
Prior art keywords
decision
output
yes
spoken
time period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Paul R Klein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3688126A publication Critical patent/US3688126A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L25/00Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
    • G10L25/78Detection of presence or absence of voice signals

Definitions

  • the present invention relates to a sound-operated, decision responsive switch and, more particularly, to a switch which may be placed in either of two positions in response to a voiced decision in the form of the words yeS, 110.77
  • the first category includes devices which are sensitive to and are operated by any audible sound, preferably the sound of the human voice.
  • Other devices, within the same category, attempt to distinguish between the human voice and other sounds, such as background noise, data signals, etc. 'Iypieal of such devices are those disclosed in U.S. Pat. No. 3,270,216 to Dersch, U.S. Pat. No. 3,286,031 to Geddes, U.S. Pat.
  • the second category includes systems which differentiate between different voiced words.
  • U.S. Pat. No. 2,575,910 to Mathes discloses a voice-operated signalling system which is responsive to vocal command words and which may be employed in an automatic telephone exchange as a substitute for the present standard equipment which responds to the pulses generated by a finger dial.
  • a voice-operated signalling system which is responsive to vocal command words and which may be employed in an automatic telephone exchange as a substitute for the present standard equipment which responds to the pulses generated by a finger dial.
  • such a system purportedly distinguishes between many words independently of the phonetic characteristics of the individual speaker.
  • a sound-operated, decision responsive switch and, more particularly, a switch which may be placed in either of two positions in response to a voiced decision in the form of the words yes or no.
  • a switch overcomes the problems inherent in the first category of known devices which are simply sensitive to audible signals and are incapable of differentiating between different voiced words.
  • the present switch while not having the ability to differentiate between many words, as in the second category of prior art devices discussed previously, eliminates the complexity and expense of such prior art devices and substitutes therefor a simple, inexpensive, uncomplex device having many practical uses.
  • the present switch is activated by a spoken decision of predetermined minimum magnitude and senses the frequency distribution of the spoken decision. If the frequency distribution of the spoken decision indicates the presence of sibilant noise, as strongly present in the voiced word yes, the switch generates a first output. If the frequency distribution of the spoken decision indicates the absence of sibilant noise, as is the case with the word no, the switch generates a second output.
  • FIG. 1 is a block diagram of the present invention
  • FIG. 2 is a block diagram of a preferred physical em bodiment of sound-operated, yes-no responsive switch constructed in accordance with the teachings of the present invention.
  • FIG. 3 is a block diagram showing the details of a portion of the embodiment of FIG. 2 and a possible modification thereof.
  • switch 10 operates on the known fact that the voiced word yes contains sibilant noise, present in all words containing the letter s, which results in an abundance of frequency components at the high end of the audio spectrum.
  • the voiced word no contains no sibilant noise and no frequency components at the high end of the frequency spectrum.
  • switch 10 includes a microphone 11 which responds to the voiced word and applies a corresponding electrical signal to an amplifier 12.
  • Amplifier 12 operates as a threshold device so that switch 10 is only responsive to voiced decisions of predetermined minimum magnitude.
  • the output of amplifier 12 is applied to a frequency analyzer 13.
  • Frequency analyzer 13 may be any one of many known devices for sensing the frequency distribution of the decision. If the decision contains only frequency components at the low end of the audio spectrum, a signal is applied over a line 14 to activate a no output device 15 which generates a no indicative signal on a line 16. On the other hand, if the spoken decision, as sensed by frequency analyzer 13, contains frequency components at the high end of the audio spectrum, indicative of the presence of sibilant noise, a signal is applied over a line 17 to activate a yes output device 18 which generates a yes indicative signal on a line 19.
  • switch 10 is capable of being placed in either of two conditions in response to a voiced decision in the form of the words yes or no. Simply by speaking one of these two words, switch 10 generates an output either on line 16 or line 19. After the appropriate output is generated, reset can be provided by any of several methods. For example, the response itself can be used to cause reset after performing a desired function. Alternatively, an external device, such as a computer, upon receiving the decision, can cause the reset. Of course, the reset can be generated manually. In either event, the output of switch 10 indicates whether the voiced decision was yeS,7
  • the output of amplifier 12 is applied to a frequency to pulse rate converter 20.
  • Frequency to pulse rate converter 20 may be any one of many well-known devices for generating a uniform pulse of charge each time the output of amplifier 12 goes through zero amplitude.
  • the output of converter 20 is a train of pulses whose rate is proportional to the frequencies present in the original voiced decision.
  • a possible embodiment for frequency to pulse rate converter 20 is shown in FIG. 3. More specifically, the output of amplifier 12 may be applied to the input of a Schmitt trigger 21, a known device which changes state every time the input signal crosses a predeter mined amplitude.
  • Schmitt trigger 21 may be applied to a differentiator 22 which produces a sharp pulse for every state change of Schmitt trigger 21. Since such sharp pulses are not suitable for the remainder of the circuit, they may be applied to a monostable multivibrator 23 which will then generate a train of uniform pulses, one pulse for each zero crossing of the original signal.
  • the pulse train at the output of converter 20 may then be applied to a yes" integrator 30 and a no integrator 31.
  • Integrators 30 and 31 are conventional integration circuits, essentially RC devices, whose time constants and impedances are predetermined, but different.
  • the outputs of integrators 30 and 31 are applied to first inputs of a yes flipflop 32 and a no flip-flop 33, respectively.
  • Flip-flops 32 and 33 may be conventional two state, J -K flip-flops, having I and K inputs and complementary outputs, the outputs of integrators 30 and 31 being applied to the J inputs of flip-flops 32 and 33, respectively.
  • Such yes and no outputs on lines 19 and 16, respectively, may be used to drive any additional equipment as may be desired and as briefly discussed previously.
  • a reset pulse may be applied to each of the K input terminals of flip-flops 32 and 33 from any of the sources discussed previously with respect to FIG. 1. As soon as flip-flops 32 and 33 are reset, switch is ready for the next spoken decision.
  • the output of converter 20 may be applied to a single integrator 50 whose output would then be applied to both of flip-flops 32 and 33.
  • flipflops 32 and 33 would be adjusted to have different triggering levels, flip-flop 33 triggering at a lower charge level than flip-flop 32.
  • a simple, inexpensive uncomplicated device capable of many uses, which may be placed in either of two positions in response to a voiced decision in the form of the words yes" or no.
  • a switch may be used in protection systems for the aged or infirined, in burglar protection systems, in complex laboratory or industrial installations, as a substitute for binary hand switches on scientific instruments, in an educational system, and in many other areas.
  • the present system may also be used in combination with other known devices of the type previously described which will distinguish between voiced signals in the audio spectrum and other audio signals such as noise, data, etc.
  • a sound-operated, decision responsive switch comprising, in combination:
  • a switch according to claim 1 wherein said means for converting said spoken decision into a signal comprises:
  • a switch according to claim 1 wherein said selecting means comprises:
  • first output means being operative to generate a no output when said integration means reaches a first change level during said predetermined time
  • P second output means being operative to generate yes" output when said integration means reaches a second, higher charge level during said predetermined time period; and means for inhibiting said no output in the presence of said yes output.
  • said second output means which is further operative to generate a notyes output when said integration means fails to reach said second charge level during said predetermined time period; and an AND gate responsive to said no output and said not-yes output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

A switch which may be placed in either of two positions in response to a voiced decision in the form of the two words ''''yes'''' or ''''no.'''' The switch is activated by a spoken decision of predetermined minimum magnitude and senses the frequency distribution of the spoken decision. If the frequency distribution of the spoken decision indicates the presence of sibilant noise, as strongly present in the word ''''yes,'''' the switch is placed in one position. If the frequency distribution of the spoken decision indicates the absence of sibilant noise, as is the case with the word ''''no,'''' the switch is placed in the other position.

Description

United States Patent Klein Aug. 29, 1972 [54] SOUND-OPERATED, YES-NO RESPONSIVE SWITCH Primary Examiner-H. 0. Jones Assistant Examiner-William J. Smith [72] Inventor Z AttorneyPhilip M. Hinderstein [22] Filed: Jan. 29, 1971 [57] ABSTRACT [21] Appl. No.: 110,966 A switch which may be placed in either of two positions in response to a voiced decision in the form of the two words yes or no. The switch is activated [52] US. Cl. ..307/l16, 179/1 SA, 1733/1/22 by a Spoken decision of predetermined minimum g [51] Int Cl Holh 35/24 nitude and senses the frequency distribution of the [58] Fie'ld S SA 1 V0 spoken decision. If the frequency distribution of the 307/1 i 11 spoken decision indicates the presence of sibilant noise, as strongly present in the word yes, the switch is placed in one position. If the frequency dis- [56] Referenm Clted tribution of the spoken decision indicates the absence UNITED STATES PATENTS of sibilant noise, as is the case with the word no," the 3 5 59 5/1969 Kusch SA switch 18 placed in the other-positron. 3,215,821 11/1965 Stenby ..340/ 148 X 6 Claims, 3 Drawings /0 32 /z jg yes a ikiaz/a vcy W756i??? ruf za war as M/CRdP/ldA/i 441p; #75
41/25! R472 9 34 n/a CONVERTER 4 0 H n 4 35 wire/um? fi'L/P-fl 0/ 855:7
PATENTEU M1829 m2 ATTORNEYS SOUND-OPERATED, YES-NO RESPONSIVE SWITCH BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sound-operated, decision responsive switch and, more particularly, to a switch which may be placed in either of two positions in response to a voiced decision in the form of the words yeS, 110.77
2. Description of the Prior Art Voice or sound operated devices have been developed for various purposes. All known prior devices, however, may be broadly divided into two categories. The first category includes devices which are sensitive to and are operated by any audible sound, preferably the sound of the human voice. For example, U.S. Pat. Nos. 2,957,957 and 3,247,339 to Johnson and Miller, respectively, disclose sound-operated switches which are sensitive to particular frequencies within the audio spectrum. Other devices, within the same category, attempt to distinguish between the human voice and other sounds, such as background noise, data signals, etc. 'Iypieal of such devices are those disclosed in U.S. Pat. No. 3,270,216 to Dersch, U.S. Pat. No. 3,286,031 to Geddes, U.S. Pat. No. 3,321,581 to Zryd et al., and U.S. Pat. No. 3,448,215 to Engel. All of these devices simply detect the presence of a voiced sound, as contrasted to sound in general, and perform some operation in the presence of such sound. In this category, no attempt is made to differentiate between difierent voiced words.
The second category includes systems which differentiate between different voiced words. For example, U.S. Pat. No. 2,575,910 to Mathes discloses a voice-operated signalling system which is responsive to vocal command words and which may be employed in an automatic telephone exchange as a substitute for the present standard equipment which responds to the pulses generated by a finger dial. In other words, such a system purportedly distinguishes between many words independently of the phonetic characteristics of the individual speaker.
With the advent of the computer, many sophisticated attempts have been made to develop systems capable of recognizing human speech. A review of some modern systems is contained in an article entitled Voice Recognition and Response Systems by Cay Weitzman found on Pages 165 through 170 of the December, 1969 issue of Datamation. As can be seen from Mr. Weitzmans article, existing systems are not only extremely complex, but extremely expensive. In addition, Mr. Weitzman points out that computer systems that can identify words in continuous speech of an unknown speaker are beyond the current state of the art in speech recognition and that only limited speech recognition systems have been developed and then only on an experimental basis.
It is therefore apparent that there are no simple, inexpensive, available voice or sound operated devices which are capable, even on a limited scale, of differentiating between different voiced words. More specifically, there are no available voice-operated devices which are capable of responding to a voiced decision, in the form of the words yes or the word no" and operating upon such decision, in spite of the vast number of uses for such a device. For example, by means of a two track tape recorder and a mini-computer, it would be possible to carry out oral conversations with a machine. The first track would be used for messages to the human, and the second track would have markers used for addressing the messages, where the next message to the human would depend upon his previous answer to a yes-no question. One use of such a system would be in a protection system for the aged or infirmed where questions such as Do you need help? or Shall I call a doctor? could be addressed to the human and the response would be dictated by whether the answer was yes or no. Another use would be in a burgler protection system where the human, upon new and unexpected entrance into a dwelling, could identify himself through answers to coded questions. Again, the device would expedite the setting up of complicated laboratory or industrial equipment by relatively untrained personnel by the question and answer technique. Similarly the device serves as an aid in complex laboratory and industrial tasks where a human operator is heavily involved with manual tasks. Again, the device, with the aid of the two track tape mentioned earlier, dispenses with the often costly and confusing array of switches which must be set in many scientific instruments. Another obvious use would be in an educational system where automation is becoming a common practice. More specifically, a student who is being fed individual instructional materials in recorded form could periodically be asked whether he or she understands the lesson up to that point. If the answer is yes, the lesson would proceed. If the answer is no, the machine would automatically backtrack by a predetermined amount.
In spite of all of these obvious uses for a soundoperated, decision responsive device, as well as a large number of additional uses, no such device is presently available.
SUMMARY OF THE INVENTION In accordance with the present invention, there is provided a sound-operated, decision responsive switch and, more particularly, a switch which may be placed in either of two positions in response to a voiced decision in the form of the words yes or no. Such a switch overcomes the problems inherent in the first category of known devices which are simply sensitive to audible signals and are incapable of differentiating between different voiced words. The present switch, while not having the ability to differentiate between many words, as in the second category of prior art devices discussed previously, eliminates the complexity and expense of such prior art devices and substitutes therefor a simple, inexpensive, uncomplex device having many practical uses.
Briefly, the present switch is activated by a spoken decision of predetermined minimum magnitude and senses the frequency distribution of the spoken decision. If the frequency distribution of the spoken decision indicates the presence of sibilant noise, as strongly present in the voiced word yes, the switch generates a first output. If the frequency distribution of the spoken decision indicates the absence of sibilant noise, as is the case with the word no, the switch generates a second output.
It is therefore an object of the present invention to provide a sound-operated, decision responsive switch.
It is a further object of the present invention to provide a sound operated, yes-no responsive switch.
It is a still further object of the present invention to provide a switch which may be placed in either of two positions in response to avoiced decision in the form of the words yes or no.
It is another object of the present invention to provide a sound-operated, yes-no responsive switch which is activated by a spoken decision of predetermined minimum magnitude and which senses the frequency distribution of the spoken decision to determine the presence or absence of sibilant noise, a yes being indicated where sibilant noise is present and a no being indicated where sibilant noise is absent.
Still other objects, features and attendant advantages of the present invention will become apparent to those skilled in the art of a reading of the following detailed description of the preferred embodiment constructed in accordance therewith, taken in conjunction with the accompanying drawings wherein like numerals designate like parts in the several figures and wherein:
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of the present invention;
FIG. 2 is a block diagram of a preferred physical em bodiment of sound-operated, yes-no responsive switch constructed in accordance with the teachings of the present invention; and
FIG. 3 is a block diagram showing the details of a portion of the embodiment of FIG. 2 and a possible modification thereof.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings and, more particularly, to FIG. 1 thereof, there is shown, in block diagram form, the basic elements of a sound operated, yesno responsive switch, generally designated 10. Switch operates on the known fact that the voiced word yes contains sibilant noise, present in all words containing the letter s, which results in an abundance of frequency components at the high end of the audio spectrum. On the other hand, the voiced word no contains no sibilant noise and no frequency components at the high end of the frequency spectrum. Accordingly, switch 10 includes a microphone 11 which responds to the voiced word and applies a corresponding electrical signal to an amplifier 12. Amplifier 12 operates as a threshold device so that switch 10 is only responsive to voiced decisions of predetermined minimum magnitude. The output of amplifier 12 is applied to a frequency analyzer 13. Frequency analyzer 13 may be any one of many known devices for sensing the frequency distribution of the decision. If the decision contains only frequency components at the low end of the audio spectrum, a signal is applied over a line 14 to activate a no output device 15 which generates a no indicative signal on a line 16. On the other hand, if the spoken decision, as sensed by frequency analyzer 13, contains frequency components at the high end of the audio spectrum, indicative of the presence of sibilant noise, a signal is applied over a line 17 to activate a yes output device 18 which generates a yes indicative signal on a line 19.
It is therefore seen that switch 10 is capable of being placed in either of two conditions in response to a voiced decision in the form of the words yes or no. Simply by speaking one of these two words, switch 10 generates an output either on line 16 or line 19. After the appropriate output is generated, reset can be provided by any of several methods. For example, the response itself can be used to cause reset after performing a desired function. Alternatively, an external device, such as a computer, upon receiving the decision, can cause the reset. Of course, the reset can be generated manually. In either event, the output of switch 10 indicates whether the voiced decision was yeS,7
Referring now to FIG. 2, there is shown a preferred physical embodiment of sound-operated, yes-no responsive switch 10. In FIG. 2, the output of amplifier 12 is applied to a frequency to pulse rate converter 20. Frequency to pulse rate converter 20 may be any one of many well-known devices for generating a uniform pulse of charge each time the output of amplifier 12 goes through zero amplitude. Thus, the output of converter 20 is a train of pulses whose rate is proportional to the frequencies present in the original voiced decision. A possible embodiment for frequency to pulse rate converter 20 is shown in FIG. 3. More specifically, the output of amplifier 12 may be applied to the input of a Schmitt trigger 21, a known device which changes state every time the input signal crosses a predeter mined amplitude. The output of Schmitt trigger 21 may be applied to a differentiator 22 which produces a sharp pulse for every state change of Schmitt trigger 21. Since such sharp pulses are not suitable for the remainder of the circuit, they may be applied to a monostable multivibrator 23 which will then generate a train of uniform pulses, one pulse for each zero crossing of the original signal.
Referring now again to FIG. 2, the pulse train at the output of converter 20 may then be applied to a yes" integrator 30 and a no integrator 31. Integrators 30 and 31 are conventional integration circuits, essentially RC devices, whose time constants and impedances are predetermined, but different. The outputs of integrators 30 and 31 are applied to first inputs of a yes flipflop 32 and a no flip-flop 33, respectively. Flip- flops 32 and 33 may be conventional two state, J -K flip-flops, having I and K inputs and complementary outputs, the outputs of integrators 30 and 31 being applied to the J inputs of flip- flops 32 and 33, respectively. With such connection, if the spoken decision is no, enough pulses are integrated by no integrator 31 to cause no flip-flop 33 to be set and to apply a true output on output line 35. Such output, indicating the presence of a no, is applied to a first input of an AND gate 40. In the case of a no spoken decision, yes integrator 30 would not build up sufficient charge to fire yes flipflop 32. As a result, yes flip-flop 32 would apply a true output on its complementary output line 34, which line is applied to the other input of AND gate 40. The result is an output from AND gate 40 on line 16 indicating that the spoken decision was a no.
On the other hand, if a yes decision is received by microphone 11, yes integrator 30, as well as no integrator 31, will receive sufficient charge to fire flip flops 32 and 33, respectively. In this case, a false output appears on complementary output line 34 0 yes flipflop 32 inhibiting the output of AND gate 40 on line 16. Simultaneously, yes flip-flop 32 provides a true output on output line 19 indicating that the spoken decision was a yes.
Such yes and no outputs on lines 19 and 16, respectively, may be used to drive any additional equipment as may be desired and as briefly discussed previously. After a decision is reached, a reset pulse may be applied to each of the K input terminals of flip- flops 32 and 33 from any of the sources discussed previously with respect to FIG. 1. As soon as flip- flops 32 and 33 are reset, switch is ready for the next spoken decision.
Referring again to FIG. 3, there is shown one possible modification to the embodiment of FIG. 2. More specifically, the output of converter 20 may be applied to a single integrator 50 whose output would then be applied to both of flip- flops 32 and 33. In this case, flipflops 32 and 33 would be adjusted to have different triggering levels, flip-flop 33 triggering at a lower charge level than flip-flop 32.
Accordingly, it is seen that in accordance with the present invention, there is provided a simple, inexpensive uncomplicated device, capable of many uses, which may be placed in either of two positions in response to a voiced decision in the form of the words yes" or no. Such a switch may be used in protection systems for the aged or infirined, in burglar protection systems, in complex laboratory or industrial installations, as a substitute for binary hand switches on scientific instruments, in an educational system, and in many other areas. The present system may also be used in combination with other known devices of the type previously described which will distinguish between voiced signals in the audio spectrum and other audio signals such as noise, data, etc.
While the invention has been described with respect to the preferred physical embodiment constructed in accordance therewith, it will be apparent to those skilled in the art that various modifications and improvements may be made without departing from the scope and spirit of the invention. Accordingly, it is to be understood that the invention is not to be limited by the'specific illustrative embodiments, but only by the scope of the appended claims.
I claim:
1. A sound-operated, decision responsive switch comprising, in combination:
means for sensing a spoken decision in the form of the words yes and no predetermined minimum magnitude;
means for converting said spoken decision into a signal indicative of the frequency distribution thereof; integration means for integrating said signal over a predetermined time period, said time period being 5 long enough to encompass the entire spoken decision, the charge developed by said integration means after said predetermined time period being directly proportional to the frequency distribution of said entire spoken decision; and 10 integration means for selecting one of two corresponding outputs depending upon whether said charge exceeds or is less than a predetermined level at the end of said time period. 2. A switch according to claim 1 wherein said means for converting said spoken decision into a signal comprises:
means for converting said spoken decision into a train of pulses whose rate is proportional to the frequencies present in said voiced decision. 3. A switch according to claim 1 wherein said selecting means comprises:
first output means being operative to generate a no output when said integration means reaches a first change level during said predetermined time P second output means being operative to generate yes" output when said integration means reaches a second, higher charge level during said predetermined time period; and means for inhibiting said no output in the presence of said yes output. 4. A switch according to claim 3 wherein said inhibiting means comprises:
said second output means which is further operative to generate a notyes output when said integration means fails to reach said second charge level during said predetermined time period; and an AND gate responsive to said no output and said not-yes output. 5. A switch according to claim 3 wherein said converting means comprises:
a Schmitt trigger responsive to said spoken decision; means for differentiating the output of said Schmitt trigger; and monostable multivibrator means responsive to said differentiating means for generating uniform pulses. 6. A switch according to claim 3 wherein said first and second output means comprises first and second bistable flip-flops.
means responsive to said charge developed by said i

Claims (6)

1. A sound-operated, decision responsive switch comprising, in combination: means for sensing a spoken decision in the form of the words ''''yes'''' and ''''no'''' predetermined minimum magnitude; means for converting said spoken decision into a signal indicative of the frequency distribution thereof; integration means for integrating said signal over a predetermined time period, said time period being long enough to encompass the entire spoken decision, the charge developed by said integration means after said predetermined time period being directly proportional to the frequency distribution of said entire spoken decision; and means responsive to said charge developed by said integration means for selecting one of two corresponding outputs depending upon whether said charge exceeds or is less than a predetermined level at the end of said time period.
2. A switch according to claim 1 wherein said means for converting said spoken decision into a signal comprises: means for converting said spoken decision into a train of pulses whose rate is proportional to the frequencies present in said voiced decision.
3. A switch according to claim 1 wherein said selecting means comprises: first output means being operative to generate a ''''no'''' output when said integration means reaches a first change level during said predetermined time period; second output means being operative to generate ''''yes'''' output when said integration means reaches a second, higher charge level during said predetermined time period; and means for inhibiting said ''''no'''' output in the presence of said ''''yes'''' output.
4. A switch according to claim 3 wherein said inhibiting means comprises: said second output means which is further operative to generate a ''''not-yes'''' output when said integration means fails to reach said second charge level during said predetermined time period; and an AND gate responsive to said ''''no'''' output and said ''''not-yes'''' output.
5. A switch according to claim 3 wherein said converting means comprises: a Schmitt trigger responsive to said spoken decision; means for differentiating the output of said Schmitt trigger; and monostable multivibrator means responsive to said differentiating means for generating uniform pulses.
6. A switch according to claim 3 wherein said first and second output means comprises first and second bistable flip-flops.
US3688126D 1971-01-29 1971-01-29 Sound-operated, yes-no responsive switch Expired - Lifetime US3688126A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11096671A 1971-01-29 1971-01-29

Publications (1)

Publication Number Publication Date
US3688126A true US3688126A (en) 1972-08-29

Family

ID=22335893

Family Applications (1)

Application Number Title Priority Date Filing Date
US3688126D Expired - Lifetime US3688126A (en) 1971-01-29 1971-01-29 Sound-operated, yes-no responsive switch

Country Status (1)

Country Link
US (1) US3688126A (en)

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3809067A (en) * 1972-06-07 1974-05-07 Borg Warner Modulation responsive anti-evasion system for breath testers
US3855574A (en) * 1973-06-25 1974-12-17 Vox Ind Inc Voice operated alarm system
US3855418A (en) * 1972-12-01 1974-12-17 F Fuller Method and apparatus for phonation analysis leading to valid truth/lie decisions by vibratto component assessment
US3865986A (en) * 1973-10-03 1975-02-11 Tad Avanti Voice operated electric circuit
US3873772A (en) * 1971-01-07 1975-03-25 Compur Werk Gmbh & Co Speech controlled switching arrangement
US3875336A (en) * 1974-01-24 1975-04-01 Us Navy Periodic signal detector
US3949366A (en) * 1974-02-22 1976-04-06 Frank Spillar Remote control system for electrical power outlet
US4241286A (en) * 1979-01-04 1980-12-23 Mack Gordon Welding helmet lens assembly
EP0048852A2 (en) * 1980-09-30 1982-04-07 Firma Carl Zeiss Foot switch desk
US4357488A (en) * 1980-01-04 1982-11-02 California R & D Center Voice discriminating system
WO1984001072A1 (en) * 1982-08-27 1984-03-15 Kempner M A Inc Automatic audience survey system
US4462080A (en) * 1981-11-27 1984-07-24 Kearney & Trecker Corporation Voice actuated machine control
EP0429924A2 (en) * 1989-11-30 1991-06-05 Yozan Inc. Acoustic recognition method
US5553120A (en) * 1985-07-10 1996-09-03 Katz; Ronald A. Telephonic-interface game control system
US5561707A (en) * 1985-07-10 1996-10-01 Ronald A. Katz Technology Licensing L.P. Telephonic-interface statistical analysis system
US5684863A (en) * 1985-07-10 1997-11-04 Ronald A. Katz, Technology Lic. L.P. Telephonic-interface statistical analysis system
US5787156A (en) * 1985-07-10 1998-07-28 Ronald A. Katz Technology Licensing, Lp Telephonic-interface lottery system
US5793846A (en) * 1985-07-10 1998-08-11 Ronald A. Katz Technology Licensing, Lp Telephonic-interface game control system
US5917893A (en) * 1985-07-10 1999-06-29 Ronald A. Katz Technology Licensing, L.P. Multiple format telephonic interface control system
US6016344A (en) * 1985-07-10 2000-01-18 Katz; Ronald A. Telephonic-interface statistical analysis system
US6044135A (en) * 1985-07-10 2000-03-28 Ronald A. Katz Technology Licensing, L.P. Telephone-interface lottery system
US6292675B1 (en) * 1997-10-21 2001-09-18 Byard G. Nilsson Wireless mobile telephone system with voice-dialing telephone instruments and DTMF capability
US6405029B1 (en) 1997-06-19 2002-06-11 Byard G. Nilsson Wireless prepaid telephone system with dispensable instruments
US6434223B2 (en) 1985-07-10 2002-08-13 Ronald A. Katz Technology Licensing, L.P. Telephone interface call processing system with call selectivity
US6449346B1 (en) 1985-07-10 2002-09-10 Ronald A. Katz Technology Licensing, L.P. Telephone-television interface statistical analysis system
US6473610B1 (en) 1997-06-19 2002-10-29 Byard G. Nilsson Wireless prepaid telephone system with dispensable instruments
US6570967B2 (en) 1985-07-10 2003-05-27 Ronald A. Katz Technology Licensing, L.P. Voice-data telephonic interface control system
US6584327B1 (en) 1997-06-19 2003-06-24 Byard G. Nilsson Mobile telephone instruments and wireless telecommunications system
US6678360B1 (en) 1985-07-10 2004-01-13 Ronald A. Katz Technology Licensing, L.P. Telephonic-interface statistical analysis system
US6751482B1 (en) 1997-06-19 2004-06-15 Byard G. Nilsson Wireless mobile telephone system with alternative power instruments and DTMF Capability
US6754481B1 (en) 1997-06-19 2004-06-22 Byard G. Nilsson Wireless prepaid telephone system with extended capability
US20050009443A1 (en) * 2003-05-20 2005-01-13 Martin Raymond J. Supra-voice sound-responsive toy
US6862463B1 (en) 1997-06-19 2005-03-01 Byard G. Nilsson Wireless telephone system with information service
US6993321B1 (en) 1997-06-19 2006-01-31 Nilsson Byard G Wireless telephone system with mobile instruments for outgoing calls
US20140074481A1 (en) * 2012-09-12 2014-03-13 David Edward Newman Wave Analysis for Command Identification

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215821A (en) * 1959-08-31 1965-11-02 Walter H Stenby Speech-controlled apparatus and method for operating speech-controlled apparatus
US3445594A (en) * 1964-07-29 1969-05-20 Telefunken Patent Circuit arrangement for recognizing spoken numbers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3215821A (en) * 1959-08-31 1965-11-02 Walter H Stenby Speech-controlled apparatus and method for operating speech-controlled apparatus
US3445594A (en) * 1964-07-29 1969-05-20 Telefunken Patent Circuit arrangement for recognizing spoken numbers

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873772A (en) * 1971-01-07 1975-03-25 Compur Werk Gmbh & Co Speech controlled switching arrangement
US3809067A (en) * 1972-06-07 1974-05-07 Borg Warner Modulation responsive anti-evasion system for breath testers
US3855418A (en) * 1972-12-01 1974-12-17 F Fuller Method and apparatus for phonation analysis leading to valid truth/lie decisions by vibratto component assessment
US3855574A (en) * 1973-06-25 1974-12-17 Vox Ind Inc Voice operated alarm system
US3865986A (en) * 1973-10-03 1975-02-11 Tad Avanti Voice operated electric circuit
US3875336A (en) * 1974-01-24 1975-04-01 Us Navy Periodic signal detector
US3949366A (en) * 1974-02-22 1976-04-06 Frank Spillar Remote control system for electrical power outlet
US4241286A (en) * 1979-01-04 1980-12-23 Mack Gordon Welding helmet lens assembly
US4357488A (en) * 1980-01-04 1982-11-02 California R & D Center Voice discriminating system
EP0048852A2 (en) * 1980-09-30 1982-04-07 Firma Carl Zeiss Foot switch desk
EP0048852A3 (en) * 1980-09-30 1982-12-29 Firma Carl Zeiss Foot switch desk
US4462080A (en) * 1981-11-27 1984-07-24 Kearney & Trecker Corporation Voice actuated machine control
WO1984001072A1 (en) * 1982-08-27 1984-03-15 Kempner M A Inc Automatic audience survey system
US4451700A (en) * 1982-08-27 1984-05-29 M. A. Kempner, Inc. Automatic audience survey system
US6044135A (en) * 1985-07-10 2000-03-28 Ronald A. Katz Technology Licensing, L.P. Telephone-interface lottery system
US6424703B1 (en) 1985-07-10 2002-07-23 Ronald A. Katz Technology Licensing, L.P. Telephonic-interface lottery system
US5553120A (en) * 1985-07-10 1996-09-03 Katz; Ronald A. Telephonic-interface game control system
US5561707A (en) * 1985-07-10 1996-10-01 Ronald A. Katz Technology Licensing L.P. Telephonic-interface statistical analysis system
US5684863A (en) * 1985-07-10 1997-11-04 Ronald A. Katz, Technology Lic. L.P. Telephonic-interface statistical analysis system
US5787156A (en) * 1985-07-10 1998-07-28 Ronald A. Katz Technology Licensing, Lp Telephonic-interface lottery system
US5793846A (en) * 1985-07-10 1998-08-11 Ronald A. Katz Technology Licensing, Lp Telephonic-interface game control system
US5815551A (en) * 1985-07-10 1998-09-29 Ronald A. Katz Technology Licensing, Lp Telephonic-interface statistical analysis system
US5898762A (en) * 1985-07-10 1999-04-27 Ronald A. Katz Technology Licensing, L.P. Telephonic-interface statistical analysis system
US5917893A (en) * 1985-07-10 1999-06-29 Ronald A. Katz Technology Licensing, L.P. Multiple format telephonic interface control system
US6016344A (en) * 1985-07-10 2000-01-18 Katz; Ronald A. Telephonic-interface statistical analysis system
US6035021A (en) * 1985-07-10 2000-03-07 Katz; Ronald A. Telephonic-interface statistical analysis system
US6678360B1 (en) 1985-07-10 2004-01-13 Ronald A. Katz Technology Licensing, L.P. Telephonic-interface statistical analysis system
US6148065A (en) * 1985-07-10 2000-11-14 Ronald A. Katz Technology Licensing, L.P. Telephonic-interface statistical analysis system
US6151387A (en) * 1985-07-10 2000-11-21 Ronald A. Katz Technology Licensing, L.P. Telephonic-interface game control system
US6570967B2 (en) 1985-07-10 2003-05-27 Ronald A. Katz Technology Licensing, L.P. Voice-data telephonic interface control system
US6292547B1 (en) 1985-07-10 2001-09-18 Ronald A. Katz Technology Licensing, L.P. Telephonic-interface statistical analysis system
US6349134B1 (en) 1985-07-10 2002-02-19 Ronald A. Katz Technology Licensing, L.P. Telephonic-interface statistical analysis system
US6512415B1 (en) 1985-07-10 2003-01-28 Ronald A. Katz Technology Licensing Lp. Telephonic-interface game control system
US6449346B1 (en) 1985-07-10 2002-09-10 Ronald A. Katz Technology Licensing, L.P. Telephone-television interface statistical analysis system
US6434223B2 (en) 1985-07-10 2002-08-13 Ronald A. Katz Technology Licensing, L.P. Telephone interface call processing system with call selectivity
EP0429924A2 (en) * 1989-11-30 1991-06-05 Yozan Inc. Acoustic recognition method
EP0429924A3 (en) * 1989-11-30 1993-04-07 Yozan Inc. Acoustic recognition method
US6751482B1 (en) 1997-06-19 2004-06-15 Byard G. Nilsson Wireless mobile telephone system with alternative power instruments and DTMF Capability
US6754481B1 (en) 1997-06-19 2004-06-22 Byard G. Nilsson Wireless prepaid telephone system with extended capability
US6580927B1 (en) 1997-06-19 2003-06-17 Byard G. Nilsson Wireless mobile telephone system with voice-dialing telephone instruments and DTMF capability
US6584327B1 (en) 1997-06-19 2003-06-24 Byard G. Nilsson Mobile telephone instruments and wireless telecommunications system
US6647255B1 (en) 1997-06-19 2003-11-11 Byard G. Nilsson Wireless telephone system with mobile instruments for outgoing calls
US6405029B1 (en) 1997-06-19 2002-06-11 Byard G. Nilsson Wireless prepaid telephone system with dispensable instruments
US6473610B1 (en) 1997-06-19 2002-10-29 Byard G. Nilsson Wireless prepaid telephone system with dispensable instruments
US7801515B1 (en) 1997-06-19 2010-09-21 Nilsson Byard G Wireless telephone communication for individual callers to contact remote telephone terminals through a public switched telephone network
US6993321B1 (en) 1997-06-19 2006-01-31 Nilsson Byard G Wireless telephone system with mobile instruments for outgoing calls
US6845234B1 (en) 1997-06-19 2005-01-18 Byard G. Nilsson Wireless telephone system with discardable keyless instruments
US6862463B1 (en) 1997-06-19 2005-03-01 Byard G. Nilsson Wireless telephone system with information service
US6917802B1 (en) 1997-06-19 2005-07-12 Byard G. Nilsson Mobile keyless telephone instruments and wireless telecommunications system having voice dialing and voice programming capabilities
US6292675B1 (en) * 1997-10-21 2001-09-18 Byard G. Nilsson Wireless mobile telephone system with voice-dialing telephone instruments and DTMF capability
US20050009443A1 (en) * 2003-05-20 2005-01-13 Martin Raymond J. Supra-voice sound-responsive toy
US20140074481A1 (en) * 2012-09-12 2014-03-13 David Edward Newman Wave Analysis for Command Identification
US8924209B2 (en) * 2012-09-12 2014-12-30 Zanavox Identifying spoken commands by templates of ordered voiced and unvoiced sound intervals

Similar Documents

Publication Publication Date Title
US3688126A (en) Sound-operated, yes-no responsive switch
Warren Auditory temporal discrimination by trained listeners
US4284846A (en) System and method for sound recognition
US4181813A (en) System and method for speech recognition
Liberman et al. An effect of learning on speech perception: The discrimination of durations of silence with and without phonemic significance
US4757541A (en) Audio visual speech recognition
GB1562995A (en) Arrangement for recognizing sounds
NL6502737A (en) DEVICE FOR ANALYZING WAVE FORMS
US3509280A (en) Adaptive speech pattern recognition system
KR840000014A (en) Language recognition microcomputer
US3238303A (en) Wave analyzing system
US3225141A (en) Sound analyzing system
JPS6118199B2 (en)
US3905128A (en) Teaching system
EP0421744A2 (en) Speech recognition method and apparatus for use therein
GB1295446A (en)
Pollack Intensity discrimination thresholds under several psychophysical procedures
GB1399697A (en) Automated audio interrogating and reporting system
Welch Automatic Speech Recognition? Putting It to Work in Industry
US5774862A (en) Computer communication system
Simasathien Recognition of selected spoken digits
Dersch A decision logic for speech recognition
US3557310A (en) Speech recognizer
SU1564679A1 (en) Device for professional selection of radio telegraph operators
JPS57118139A (en) Car diagnostic device by sound