US3688126A - Sound-operated, yes-no responsive switch - Google Patents
Sound-operated, yes-no responsive switch Download PDFInfo
- Publication number
- US3688126A US3688126A US3688126DA US3688126A US 3688126 A US3688126 A US 3688126A US 3688126D A US3688126D A US 3688126DA US 3688126 A US3688126 A US 3688126A
- Authority
- US
- United States
- Prior art keywords
- decision
- output
- yes
- spoken
- time period
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 230000010354 integration Effects 0.000 claims description 13
- 230000002401 inhibitory effect Effects 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 3
- 230000004044 response Effects 0.000 abstract description 10
- 238000001228 spectrum Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 2
- 235000014748 Amaranthus tricolor Nutrition 0.000 description 1
- 244000024893 Amaranthus tricolor Species 0.000 description 1
- 235000010725 Vigna aconitifolia Nutrition 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 230000001755 vocal effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/78—Detection of presence or absence of voice signals
Definitions
- the present invention relates to a sound-operated, decision responsive switch and, more particularly, to a switch which may be placed in either of two positions in response to a voiced decision in the form of the words yeS, 110.77
- the first category includes devices which are sensitive to and are operated by any audible sound, preferably the sound of the human voice.
- Other devices, within the same category, attempt to distinguish between the human voice and other sounds, such as background noise, data signals, etc. 'Iypieal of such devices are those disclosed in U.S. Pat. No. 3,270,216 to Dersch, U.S. Pat. No. 3,286,031 to Geddes, U.S. Pat.
- the second category includes systems which differentiate between different voiced words.
- U.S. Pat. No. 2,575,910 to Mathes discloses a voice-operated signalling system which is responsive to vocal command words and which may be employed in an automatic telephone exchange as a substitute for the present standard equipment which responds to the pulses generated by a finger dial.
- a voice-operated signalling system which is responsive to vocal command words and which may be employed in an automatic telephone exchange as a substitute for the present standard equipment which responds to the pulses generated by a finger dial.
- such a system purportedly distinguishes between many words independently of the phonetic characteristics of the individual speaker.
- a sound-operated, decision responsive switch and, more particularly, a switch which may be placed in either of two positions in response to a voiced decision in the form of the words yes or no.
- a switch overcomes the problems inherent in the first category of known devices which are simply sensitive to audible signals and are incapable of differentiating between different voiced words.
- the present switch while not having the ability to differentiate between many words, as in the second category of prior art devices discussed previously, eliminates the complexity and expense of such prior art devices and substitutes therefor a simple, inexpensive, uncomplex device having many practical uses.
- the present switch is activated by a spoken decision of predetermined minimum magnitude and senses the frequency distribution of the spoken decision. If the frequency distribution of the spoken decision indicates the presence of sibilant noise, as strongly present in the voiced word yes, the switch generates a first output. If the frequency distribution of the spoken decision indicates the absence of sibilant noise, as is the case with the word no, the switch generates a second output.
- FIG. 1 is a block diagram of the present invention
- FIG. 2 is a block diagram of a preferred physical em bodiment of sound-operated, yes-no responsive switch constructed in accordance with the teachings of the present invention.
- FIG. 3 is a block diagram showing the details of a portion of the embodiment of FIG. 2 and a possible modification thereof.
- switch 10 operates on the known fact that the voiced word yes contains sibilant noise, present in all words containing the letter s, which results in an abundance of frequency components at the high end of the audio spectrum.
- the voiced word no contains no sibilant noise and no frequency components at the high end of the frequency spectrum.
- switch 10 includes a microphone 11 which responds to the voiced word and applies a corresponding electrical signal to an amplifier 12.
- Amplifier 12 operates as a threshold device so that switch 10 is only responsive to voiced decisions of predetermined minimum magnitude.
- the output of amplifier 12 is applied to a frequency analyzer 13.
- Frequency analyzer 13 may be any one of many known devices for sensing the frequency distribution of the decision. If the decision contains only frequency components at the low end of the audio spectrum, a signal is applied over a line 14 to activate a no output device 15 which generates a no indicative signal on a line 16. On the other hand, if the spoken decision, as sensed by frequency analyzer 13, contains frequency components at the high end of the audio spectrum, indicative of the presence of sibilant noise, a signal is applied over a line 17 to activate a yes output device 18 which generates a yes indicative signal on a line 19.
- switch 10 is capable of being placed in either of two conditions in response to a voiced decision in the form of the words yes or no. Simply by speaking one of these two words, switch 10 generates an output either on line 16 or line 19. After the appropriate output is generated, reset can be provided by any of several methods. For example, the response itself can be used to cause reset after performing a desired function. Alternatively, an external device, such as a computer, upon receiving the decision, can cause the reset. Of course, the reset can be generated manually. In either event, the output of switch 10 indicates whether the voiced decision was yeS,7
- the output of amplifier 12 is applied to a frequency to pulse rate converter 20.
- Frequency to pulse rate converter 20 may be any one of many well-known devices for generating a uniform pulse of charge each time the output of amplifier 12 goes through zero amplitude.
- the output of converter 20 is a train of pulses whose rate is proportional to the frequencies present in the original voiced decision.
- a possible embodiment for frequency to pulse rate converter 20 is shown in FIG. 3. More specifically, the output of amplifier 12 may be applied to the input of a Schmitt trigger 21, a known device which changes state every time the input signal crosses a predeter mined amplitude.
- Schmitt trigger 21 may be applied to a differentiator 22 which produces a sharp pulse for every state change of Schmitt trigger 21. Since such sharp pulses are not suitable for the remainder of the circuit, they may be applied to a monostable multivibrator 23 which will then generate a train of uniform pulses, one pulse for each zero crossing of the original signal.
- the pulse train at the output of converter 20 may then be applied to a yes" integrator 30 and a no integrator 31.
- Integrators 30 and 31 are conventional integration circuits, essentially RC devices, whose time constants and impedances are predetermined, but different.
- the outputs of integrators 30 and 31 are applied to first inputs of a yes flipflop 32 and a no flip-flop 33, respectively.
- Flip-flops 32 and 33 may be conventional two state, J -K flip-flops, having I and K inputs and complementary outputs, the outputs of integrators 30 and 31 being applied to the J inputs of flip-flops 32 and 33, respectively.
- Such yes and no outputs on lines 19 and 16, respectively, may be used to drive any additional equipment as may be desired and as briefly discussed previously.
- a reset pulse may be applied to each of the K input terminals of flip-flops 32 and 33 from any of the sources discussed previously with respect to FIG. 1. As soon as flip-flops 32 and 33 are reset, switch is ready for the next spoken decision.
- the output of converter 20 may be applied to a single integrator 50 whose output would then be applied to both of flip-flops 32 and 33.
- flipflops 32 and 33 would be adjusted to have different triggering levels, flip-flop 33 triggering at a lower charge level than flip-flop 32.
- a simple, inexpensive uncomplicated device capable of many uses, which may be placed in either of two positions in response to a voiced decision in the form of the words yes" or no.
- a switch may be used in protection systems for the aged or infirined, in burglar protection systems, in complex laboratory or industrial installations, as a substitute for binary hand switches on scientific instruments, in an educational system, and in many other areas.
- the present system may also be used in combination with other known devices of the type previously described which will distinguish between voiced signals in the audio spectrum and other audio signals such as noise, data, etc.
- a sound-operated, decision responsive switch comprising, in combination:
- a switch according to claim 1 wherein said means for converting said spoken decision into a signal comprises:
- a switch according to claim 1 wherein said selecting means comprises:
- first output means being operative to generate a no output when said integration means reaches a first change level during said predetermined time
- P second output means being operative to generate yes" output when said integration means reaches a second, higher charge level during said predetermined time period; and means for inhibiting said no output in the presence of said yes output.
- said second output means which is further operative to generate a notyes output when said integration means fails to reach said second charge level during said predetermined time period; and an AND gate responsive to said no output and said not-yes output.
Landscapes
- Engineering & Computer Science (AREA)
- Computational Linguistics (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Human Computer Interaction (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
Abstract
A switch which may be placed in either of two positions in response to a voiced decision in the form of the two words ''''yes'''' or ''''no.'''' The switch is activated by a spoken decision of predetermined minimum magnitude and senses the frequency distribution of the spoken decision. If the frequency distribution of the spoken decision indicates the presence of sibilant noise, as strongly present in the word ''''yes,'''' the switch is placed in one position. If the frequency distribution of the spoken decision indicates the absence of sibilant noise, as is the case with the word ''''no,'''' the switch is placed in the other position.
Description
United States Patent Klein Aug. 29, 1972 [54] SOUND-OPERATED, YES-NO RESPONSIVE SWITCH Primary Examiner-H. 0. Jones Assistant Examiner-William J. Smith [72] Inventor Z AttorneyPhilip M. Hinderstein [22] Filed: Jan. 29, 1971 [57] ABSTRACT [21] Appl. No.: 110,966 A switch which may be placed in either of two positions in response to a voiced decision in the form of the two words yes or no. The switch is activated [52] US. Cl. ..307/l16, 179/1 SA, 1733/1/22 by a Spoken decision of predetermined minimum g [51] Int Cl Holh 35/24 nitude and senses the frequency distribution of the [58] Fie'ld S SA 1 V0 spoken decision. If the frequency distribution of the 307/1 i 11 spoken decision indicates the presence of sibilant noise, as strongly present in the word yes, the switch is placed in one position. If the frequency dis- [56] Referenm Clted tribution of the spoken decision indicates the absence UNITED STATES PATENTS of sibilant noise, as is the case with the word no," the 3 5 59 5/1969 Kusch SA switch 18 placed in the other-positron. 3,215,821 11/1965 Stenby ..340/ 148 X 6 Claims, 3 Drawings /0 32 /z jg yes a ikiaz/a vcy W756i??? ruf za war as M/CRdP/ldA/i 441p; #75
41/25! R472 9 34 n/a CONVERTER 4 0 H n 4 35 wire/um? fi'L/P-fl 0/ 855:7
PATENTEU M1829 m2 ATTORNEYS SOUND-OPERATED, YES-NO RESPONSIVE SWITCH BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a sound-operated, decision responsive switch and, more particularly, to a switch which may be placed in either of two positions in response to a voiced decision in the form of the words yeS, 110.77
2. Description of the Prior Art Voice or sound operated devices have been developed for various purposes. All known prior devices, however, may be broadly divided into two categories. The first category includes devices which are sensitive to and are operated by any audible sound, preferably the sound of the human voice. For example, U.S. Pat. Nos. 2,957,957 and 3,247,339 to Johnson and Miller, respectively, disclose sound-operated switches which are sensitive to particular frequencies within the audio spectrum. Other devices, within the same category, attempt to distinguish between the human voice and other sounds, such as background noise, data signals, etc. 'Iypieal of such devices are those disclosed in U.S. Pat. No. 3,270,216 to Dersch, U.S. Pat. No. 3,286,031 to Geddes, U.S. Pat. No. 3,321,581 to Zryd et al., and U.S. Pat. No. 3,448,215 to Engel. All of these devices simply detect the presence of a voiced sound, as contrasted to sound in general, and perform some operation in the presence of such sound. In this category, no attempt is made to differentiate between difierent voiced words.
The second category includes systems which differentiate between different voiced words. For example, U.S. Pat. No. 2,575,910 to Mathes discloses a voice-operated signalling system which is responsive to vocal command words and which may be employed in an automatic telephone exchange as a substitute for the present standard equipment which responds to the pulses generated by a finger dial. In other words, such a system purportedly distinguishes between many words independently of the phonetic characteristics of the individual speaker.
With the advent of the computer, many sophisticated attempts have been made to develop systems capable of recognizing human speech. A review of some modern systems is contained in an article entitled Voice Recognition and Response Systems by Cay Weitzman found on Pages 165 through 170 of the December, 1969 issue of Datamation. As can be seen from Mr. Weitzmans article, existing systems are not only extremely complex, but extremely expensive. In addition, Mr. Weitzman points out that computer systems that can identify words in continuous speech of an unknown speaker are beyond the current state of the art in speech recognition and that only limited speech recognition systems have been developed and then only on an experimental basis.
It is therefore apparent that there are no simple, inexpensive, available voice or sound operated devices which are capable, even on a limited scale, of differentiating between different voiced words. More specifically, there are no available voice-operated devices which are capable of responding to a voiced decision, in the form of the words yes or the word no" and operating upon such decision, in spite of the vast number of uses for such a device. For example, by means of a two track tape recorder and a mini-computer, it would be possible to carry out oral conversations with a machine. The first track would be used for messages to the human, and the second track would have markers used for addressing the messages, where the next message to the human would depend upon his previous answer to a yes-no question. One use of such a system would be in a protection system for the aged or infirmed where questions such as Do you need help? or Shall I call a doctor? could be addressed to the human and the response would be dictated by whether the answer was yes or no. Another use would be in a burgler protection system where the human, upon new and unexpected entrance into a dwelling, could identify himself through answers to coded questions. Again, the device would expedite the setting up of complicated laboratory or industrial equipment by relatively untrained personnel by the question and answer technique. Similarly the device serves as an aid in complex laboratory and industrial tasks where a human operator is heavily involved with manual tasks. Again, the device, with the aid of the two track tape mentioned earlier, dispenses with the often costly and confusing array of switches which must be set in many scientific instruments. Another obvious use would be in an educational system where automation is becoming a common practice. More specifically, a student who is being fed individual instructional materials in recorded form could periodically be asked whether he or she understands the lesson up to that point. If the answer is yes, the lesson would proceed. If the answer is no, the machine would automatically backtrack by a predetermined amount.
In spite of all of these obvious uses for a soundoperated, decision responsive device, as well as a large number of additional uses, no such device is presently available.
SUMMARY OF THE INVENTION In accordance with the present invention, there is provided a sound-operated, decision responsive switch and, more particularly, a switch which may be placed in either of two positions in response to a voiced decision in the form of the words yes or no. Such a switch overcomes the problems inherent in the first category of known devices which are simply sensitive to audible signals and are incapable of differentiating between different voiced words. The present switch, while not having the ability to differentiate between many words, as in the second category of prior art devices discussed previously, eliminates the complexity and expense of such prior art devices and substitutes therefor a simple, inexpensive, uncomplex device having many practical uses.
Briefly, the present switch is activated by a spoken decision of predetermined minimum magnitude and senses the frequency distribution of the spoken decision. If the frequency distribution of the spoken decision indicates the presence of sibilant noise, as strongly present in the voiced word yes, the switch generates a first output. If the frequency distribution of the spoken decision indicates the absence of sibilant noise, as is the case with the word no, the switch generates a second output.
It is therefore an object of the present invention to provide a sound-operated, decision responsive switch.
It is a further object of the present invention to provide a sound operated, yes-no responsive switch.
It is a still further object of the present invention to provide a switch which may be placed in either of two positions in response to avoiced decision in the form of the words yes or no.
It is another object of the present invention to provide a sound-operated, yes-no responsive switch which is activated by a spoken decision of predetermined minimum magnitude and which senses the frequency distribution of the spoken decision to determine the presence or absence of sibilant noise, a yes being indicated where sibilant noise is present and a no being indicated where sibilant noise is absent.
Still other objects, features and attendant advantages of the present invention will become apparent to those skilled in the art of a reading of the following detailed description of the preferred embodiment constructed in accordance therewith, taken in conjunction with the accompanying drawings wherein like numerals designate like parts in the several figures and wherein:
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram of the present invention;
FIG. 2 is a block diagram of a preferred physical em bodiment of sound-operated, yes-no responsive switch constructed in accordance with the teachings of the present invention; and
FIG. 3 is a block diagram showing the details of a portion of the embodiment of FIG. 2 and a possible modification thereof.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring now to the drawings and, more particularly, to FIG. 1 thereof, there is shown, in block diagram form, the basic elements of a sound operated, yesno responsive switch, generally designated 10. Switch operates on the known fact that the voiced word yes contains sibilant noise, present in all words containing the letter s, which results in an abundance of frequency components at the high end of the audio spectrum. On the other hand, the voiced word no contains no sibilant noise and no frequency components at the high end of the frequency spectrum. Accordingly, switch 10 includes a microphone 11 which responds to the voiced word and applies a corresponding electrical signal to an amplifier 12. Amplifier 12 operates as a threshold device so that switch 10 is only responsive to voiced decisions of predetermined minimum magnitude. The output of amplifier 12 is applied to a frequency analyzer 13. Frequency analyzer 13 may be any one of many known devices for sensing the frequency distribution of the decision. If the decision contains only frequency components at the low end of the audio spectrum, a signal is applied over a line 14 to activate a no output device 15 which generates a no indicative signal on a line 16. On the other hand, if the spoken decision, as sensed by frequency analyzer 13, contains frequency components at the high end of the audio spectrum, indicative of the presence of sibilant noise, a signal is applied over a line 17 to activate a yes output device 18 which generates a yes indicative signal on a line 19.
It is therefore seen that switch 10 is capable of being placed in either of two conditions in response to a voiced decision in the form of the words yes or no. Simply by speaking one of these two words, switch 10 generates an output either on line 16 or line 19. After the appropriate output is generated, reset can be provided by any of several methods. For example, the response itself can be used to cause reset after performing a desired function. Alternatively, an external device, such as a computer, upon receiving the decision, can cause the reset. Of course, the reset can be generated manually. In either event, the output of switch 10 indicates whether the voiced decision was yeS,7
Referring now to FIG. 2, there is shown a preferred physical embodiment of sound-operated, yes-no responsive switch 10. In FIG. 2, the output of amplifier 12 is applied to a frequency to pulse rate converter 20. Frequency to pulse rate converter 20 may be any one of many well-known devices for generating a uniform pulse of charge each time the output of amplifier 12 goes through zero amplitude. Thus, the output of converter 20 is a train of pulses whose rate is proportional to the frequencies present in the original voiced decision. A possible embodiment for frequency to pulse rate converter 20 is shown in FIG. 3. More specifically, the output of amplifier 12 may be applied to the input of a Schmitt trigger 21, a known device which changes state every time the input signal crosses a predeter mined amplitude. The output of Schmitt trigger 21 may be applied to a differentiator 22 which produces a sharp pulse for every state change of Schmitt trigger 21. Since such sharp pulses are not suitable for the remainder of the circuit, they may be applied to a monostable multivibrator 23 which will then generate a train of uniform pulses, one pulse for each zero crossing of the original signal.
Referring now again to FIG. 2, the pulse train at the output of converter 20 may then be applied to a yes" integrator 30 and a no integrator 31. Integrators 30 and 31 are conventional integration circuits, essentially RC devices, whose time constants and impedances are predetermined, but different. The outputs of integrators 30 and 31 are applied to first inputs of a yes flipflop 32 and a no flip-flop 33, respectively. Flip- flops 32 and 33 may be conventional two state, J -K flip-flops, having I and K inputs and complementary outputs, the outputs of integrators 30 and 31 being applied to the J inputs of flip- flops 32 and 33, respectively. With such connection, if the spoken decision is no, enough pulses are integrated by no integrator 31 to cause no flip-flop 33 to be set and to apply a true output on output line 35. Such output, indicating the presence of a no, is applied to a first input of an AND gate 40. In the case of a no spoken decision, yes integrator 30 would not build up sufficient charge to fire yes flipflop 32. As a result, yes flip-flop 32 would apply a true output on its complementary output line 34, which line is applied to the other input of AND gate 40. The result is an output from AND gate 40 on line 16 indicating that the spoken decision was a no.
On the other hand, if a yes decision is received by microphone 11, yes integrator 30, as well as no integrator 31, will receive sufficient charge to fire flip flops 32 and 33, respectively. In this case, a false output appears on complementary output line 34 0 yes flipflop 32 inhibiting the output of AND gate 40 on line 16. Simultaneously, yes flip-flop 32 provides a true output on output line 19 indicating that the spoken decision was a yes.
Such yes and no outputs on lines 19 and 16, respectively, may be used to drive any additional equipment as may be desired and as briefly discussed previously. After a decision is reached, a reset pulse may be applied to each of the K input terminals of flip- flops 32 and 33 from any of the sources discussed previously with respect to FIG. 1. As soon as flip- flops 32 and 33 are reset, switch is ready for the next spoken decision.
Referring again to FIG. 3, there is shown one possible modification to the embodiment of FIG. 2. More specifically, the output of converter 20 may be applied to a single integrator 50 whose output would then be applied to both of flip- flops 32 and 33. In this case, flipflops 32 and 33 would be adjusted to have different triggering levels, flip-flop 33 triggering at a lower charge level than flip-flop 32.
Accordingly, it is seen that in accordance with the present invention, there is provided a simple, inexpensive uncomplicated device, capable of many uses, which may be placed in either of two positions in response to a voiced decision in the form of the words yes" or no. Such a switch may be used in protection systems for the aged or infirined, in burglar protection systems, in complex laboratory or industrial installations, as a substitute for binary hand switches on scientific instruments, in an educational system, and in many other areas. The present system may also be used in combination with other known devices of the type previously described which will distinguish between voiced signals in the audio spectrum and other audio signals such as noise, data, etc.
While the invention has been described with respect to the preferred physical embodiment constructed in accordance therewith, it will be apparent to those skilled in the art that various modifications and improvements may be made without departing from the scope and spirit of the invention. Accordingly, it is to be understood that the invention is not to be limited by the'specific illustrative embodiments, but only by the scope of the appended claims.
I claim:
1. A sound-operated, decision responsive switch comprising, in combination:
means for sensing a spoken decision in the form of the words yes and no predetermined minimum magnitude;
means for converting said spoken decision into a signal indicative of the frequency distribution thereof; integration means for integrating said signal over a predetermined time period, said time period being 5 long enough to encompass the entire spoken decision, the charge developed by said integration means after said predetermined time period being directly proportional to the frequency distribution of said entire spoken decision; and 10 integration means for selecting one of two corresponding outputs depending upon whether said charge exceeds or is less than a predetermined level at the end of said time period. 2. A switch according to claim 1 wherein said means for converting said spoken decision into a signal comprises:
means for converting said spoken decision into a train of pulses whose rate is proportional to the frequencies present in said voiced decision. 3. A switch according to claim 1 wherein said selecting means comprises:
first output means being operative to generate a no output when said integration means reaches a first change level during said predetermined time P second output means being operative to generate yes" output when said integration means reaches a second, higher charge level during said predetermined time period; and means for inhibiting said no output in the presence of said yes output. 4. A switch according to claim 3 wherein said inhibiting means comprises:
said second output means which is further operative to generate a notyes output when said integration means fails to reach said second charge level during said predetermined time period; and an AND gate responsive to said no output and said not-yes output. 5. A switch according to claim 3 wherein said converting means comprises:
a Schmitt trigger responsive to said spoken decision; means for differentiating the output of said Schmitt trigger; and monostable multivibrator means responsive to said differentiating means for generating uniform pulses. 6. A switch according to claim 3 wherein said first and second output means comprises first and second bistable flip-flops.
means responsive to said charge developed by said i
Claims (6)
1. A sound-operated, decision responsive switch comprising, in combination: means for sensing a spoken decision in the form of the words ''''yes'''' and ''''no'''' predetermined minimum magnitude; means for converting said spoken decision into a signal indicative of the frequency distribution thereof; integration means for integrating said signal over a predetermined time period, said time period being long enough to encompass the entire spoken decision, the charge developed by said integration means after said predetermined time period being directly proportional to the frequency distribution of said entire spoken decision; and means responsive to said charge developed by said integration means for selecting one of two corresponding outputs depending upon whether said charge exceeds or is less than a predetermined level at the end of said time period.
2. A switch according to claim 1 wherein said means for converting said spoken decision into a signal comprises: means for converting said spoken decision into a train of pulses whose rate is proportional to the frequencies present in said voiced decision.
3. A switch according to claim 1 wherein said selecting means comprises: first output means being operative to generate a ''''no'''' output when said integration means reaches a first change level during said predetermined time period; second output means being operative to generate ''''yes'''' output when said integration means reaches a second, higher charge level during said predetermined time period; and means for inhibiting said ''''no'''' output in the presence of said ''''yes'''' output.
4. A switch according to claim 3 wherein said inhibiting means comprises: said second output means which is further operative to generate a ''''not-yes'''' output when said integration means fails to reach said second charge level during said predetermined time period; and an AND gate responsive to said ''''no'''' output and said ''''not-yes'''' output.
5. A switch according to claim 3 wherein said converting means comprises: a Schmitt trigger responsive to said spoken decision; means for differentiating the output of said Schmitt trigger; and monostable multivibrator means responsive to said differentiating means for generating uniform pulses.
6. A switch according to claim 3 wherein said first and second output means comprises first and second bistable flip-flops.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11096671A | 1971-01-29 | 1971-01-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3688126A true US3688126A (en) | 1972-08-29 |
Family
ID=22335893
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US3688126D Expired - Lifetime US3688126A (en) | 1971-01-29 | 1971-01-29 | Sound-operated, yes-no responsive switch |
Country Status (1)
Country | Link |
---|---|
US (1) | US3688126A (en) |
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3809067A (en) * | 1972-06-07 | 1974-05-07 | Borg Warner | Modulation responsive anti-evasion system for breath testers |
US3855574A (en) * | 1973-06-25 | 1974-12-17 | Vox Ind Inc | Voice operated alarm system |
US3855418A (en) * | 1972-12-01 | 1974-12-17 | F Fuller | Method and apparatus for phonation analysis leading to valid truth/lie decisions by vibratto component assessment |
US3865986A (en) * | 1973-10-03 | 1975-02-11 | Tad Avanti | Voice operated electric circuit |
US3873772A (en) * | 1971-01-07 | 1975-03-25 | Compur Werk Gmbh & Co | Speech controlled switching arrangement |
US3875336A (en) * | 1974-01-24 | 1975-04-01 | Us Navy | Periodic signal detector |
US3949366A (en) * | 1974-02-22 | 1976-04-06 | Frank Spillar | Remote control system for electrical power outlet |
US4241286A (en) * | 1979-01-04 | 1980-12-23 | Mack Gordon | Welding helmet lens assembly |
EP0048852A2 (en) * | 1980-09-30 | 1982-04-07 | Firma Carl Zeiss | Foot switch desk |
US4357488A (en) * | 1980-01-04 | 1982-11-02 | California R & D Center | Voice discriminating system |
WO1984001072A1 (en) * | 1982-08-27 | 1984-03-15 | Kempner M A Inc | Automatic audience survey system |
US4462080A (en) * | 1981-11-27 | 1984-07-24 | Kearney & Trecker Corporation | Voice actuated machine control |
EP0429924A2 (en) * | 1989-11-30 | 1991-06-05 | Yozan Inc. | Acoustic recognition method |
US5553120A (en) * | 1985-07-10 | 1996-09-03 | Katz; Ronald A. | Telephonic-interface game control system |
US5561707A (en) * | 1985-07-10 | 1996-10-01 | Ronald A. Katz Technology Licensing L.P. | Telephonic-interface statistical analysis system |
US5684863A (en) * | 1985-07-10 | 1997-11-04 | Ronald A. Katz, Technology Lic. L.P. | Telephonic-interface statistical analysis system |
US5787156A (en) * | 1985-07-10 | 1998-07-28 | Ronald A. Katz Technology Licensing, Lp | Telephonic-interface lottery system |
US5793846A (en) * | 1985-07-10 | 1998-08-11 | Ronald A. Katz Technology Licensing, Lp | Telephonic-interface game control system |
US5917893A (en) * | 1985-07-10 | 1999-06-29 | Ronald A. Katz Technology Licensing, L.P. | Multiple format telephonic interface control system |
US6016344A (en) * | 1985-07-10 | 2000-01-18 | Katz; Ronald A. | Telephonic-interface statistical analysis system |
US6044135A (en) * | 1985-07-10 | 2000-03-28 | Ronald A. Katz Technology Licensing, L.P. | Telephone-interface lottery system |
US6292675B1 (en) * | 1997-10-21 | 2001-09-18 | Byard G. Nilsson | Wireless mobile telephone system with voice-dialing telephone instruments and DTMF capability |
US6405029B1 (en) | 1997-06-19 | 2002-06-11 | Byard G. Nilsson | Wireless prepaid telephone system with dispensable instruments |
US6434223B2 (en) | 1985-07-10 | 2002-08-13 | Ronald A. Katz Technology Licensing, L.P. | Telephone interface call processing system with call selectivity |
US6449346B1 (en) | 1985-07-10 | 2002-09-10 | Ronald A. Katz Technology Licensing, L.P. | Telephone-television interface statistical analysis system |
US6473610B1 (en) | 1997-06-19 | 2002-10-29 | Byard G. Nilsson | Wireless prepaid telephone system with dispensable instruments |
US6570967B2 (en) | 1985-07-10 | 2003-05-27 | Ronald A. Katz Technology Licensing, L.P. | Voice-data telephonic interface control system |
US6584327B1 (en) | 1997-06-19 | 2003-06-24 | Byard G. Nilsson | Mobile telephone instruments and wireless telecommunications system |
US6678360B1 (en) | 1985-07-10 | 2004-01-13 | Ronald A. Katz Technology Licensing, L.P. | Telephonic-interface statistical analysis system |
US6751482B1 (en) | 1997-06-19 | 2004-06-15 | Byard G. Nilsson | Wireless mobile telephone system with alternative power instruments and DTMF Capability |
US6754481B1 (en) | 1997-06-19 | 2004-06-22 | Byard G. Nilsson | Wireless prepaid telephone system with extended capability |
US20050009443A1 (en) * | 2003-05-20 | 2005-01-13 | Martin Raymond J. | Supra-voice sound-responsive toy |
US6862463B1 (en) | 1997-06-19 | 2005-03-01 | Byard G. Nilsson | Wireless telephone system with information service |
US6993321B1 (en) | 1997-06-19 | 2006-01-31 | Nilsson Byard G | Wireless telephone system with mobile instruments for outgoing calls |
US20140074481A1 (en) * | 2012-09-12 | 2014-03-13 | David Edward Newman | Wave Analysis for Command Identification |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3215821A (en) * | 1959-08-31 | 1965-11-02 | Walter H Stenby | Speech-controlled apparatus and method for operating speech-controlled apparatus |
US3445594A (en) * | 1964-07-29 | 1969-05-20 | Telefunken Patent | Circuit arrangement for recognizing spoken numbers |
-
1971
- 1971-01-29 US US3688126D patent/US3688126A/en not_active Expired - Lifetime
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3215821A (en) * | 1959-08-31 | 1965-11-02 | Walter H Stenby | Speech-controlled apparatus and method for operating speech-controlled apparatus |
US3445594A (en) * | 1964-07-29 | 1969-05-20 | Telefunken Patent | Circuit arrangement for recognizing spoken numbers |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3873772A (en) * | 1971-01-07 | 1975-03-25 | Compur Werk Gmbh & Co | Speech controlled switching arrangement |
US3809067A (en) * | 1972-06-07 | 1974-05-07 | Borg Warner | Modulation responsive anti-evasion system for breath testers |
US3855418A (en) * | 1972-12-01 | 1974-12-17 | F Fuller | Method and apparatus for phonation analysis leading to valid truth/lie decisions by vibratto component assessment |
US3855574A (en) * | 1973-06-25 | 1974-12-17 | Vox Ind Inc | Voice operated alarm system |
US3865986A (en) * | 1973-10-03 | 1975-02-11 | Tad Avanti | Voice operated electric circuit |
US3875336A (en) * | 1974-01-24 | 1975-04-01 | Us Navy | Periodic signal detector |
US3949366A (en) * | 1974-02-22 | 1976-04-06 | Frank Spillar | Remote control system for electrical power outlet |
US4241286A (en) * | 1979-01-04 | 1980-12-23 | Mack Gordon | Welding helmet lens assembly |
US4357488A (en) * | 1980-01-04 | 1982-11-02 | California R & D Center | Voice discriminating system |
EP0048852A2 (en) * | 1980-09-30 | 1982-04-07 | Firma Carl Zeiss | Foot switch desk |
EP0048852A3 (en) * | 1980-09-30 | 1982-12-29 | Firma Carl Zeiss | Foot switch desk |
US4462080A (en) * | 1981-11-27 | 1984-07-24 | Kearney & Trecker Corporation | Voice actuated machine control |
WO1984001072A1 (en) * | 1982-08-27 | 1984-03-15 | Kempner M A Inc | Automatic audience survey system |
US4451700A (en) * | 1982-08-27 | 1984-05-29 | M. A. Kempner, Inc. | Automatic audience survey system |
US6044135A (en) * | 1985-07-10 | 2000-03-28 | Ronald A. Katz Technology Licensing, L.P. | Telephone-interface lottery system |
US6424703B1 (en) | 1985-07-10 | 2002-07-23 | Ronald A. Katz Technology Licensing, L.P. | Telephonic-interface lottery system |
US5553120A (en) * | 1985-07-10 | 1996-09-03 | Katz; Ronald A. | Telephonic-interface game control system |
US5561707A (en) * | 1985-07-10 | 1996-10-01 | Ronald A. Katz Technology Licensing L.P. | Telephonic-interface statistical analysis system |
US5684863A (en) * | 1985-07-10 | 1997-11-04 | Ronald A. Katz, Technology Lic. L.P. | Telephonic-interface statistical analysis system |
US5787156A (en) * | 1985-07-10 | 1998-07-28 | Ronald A. Katz Technology Licensing, Lp | Telephonic-interface lottery system |
US5793846A (en) * | 1985-07-10 | 1998-08-11 | Ronald A. Katz Technology Licensing, Lp | Telephonic-interface game control system |
US5815551A (en) * | 1985-07-10 | 1998-09-29 | Ronald A. Katz Technology Licensing, Lp | Telephonic-interface statistical analysis system |
US5898762A (en) * | 1985-07-10 | 1999-04-27 | Ronald A. Katz Technology Licensing, L.P. | Telephonic-interface statistical analysis system |
US5917893A (en) * | 1985-07-10 | 1999-06-29 | Ronald A. Katz Technology Licensing, L.P. | Multiple format telephonic interface control system |
US6016344A (en) * | 1985-07-10 | 2000-01-18 | Katz; Ronald A. | Telephonic-interface statistical analysis system |
US6035021A (en) * | 1985-07-10 | 2000-03-07 | Katz; Ronald A. | Telephonic-interface statistical analysis system |
US6678360B1 (en) | 1985-07-10 | 2004-01-13 | Ronald A. Katz Technology Licensing, L.P. | Telephonic-interface statistical analysis system |
US6148065A (en) * | 1985-07-10 | 2000-11-14 | Ronald A. Katz Technology Licensing, L.P. | Telephonic-interface statistical analysis system |
US6151387A (en) * | 1985-07-10 | 2000-11-21 | Ronald A. Katz Technology Licensing, L.P. | Telephonic-interface game control system |
US6570967B2 (en) | 1985-07-10 | 2003-05-27 | Ronald A. Katz Technology Licensing, L.P. | Voice-data telephonic interface control system |
US6292547B1 (en) | 1985-07-10 | 2001-09-18 | Ronald A. Katz Technology Licensing, L.P. | Telephonic-interface statistical analysis system |
US6349134B1 (en) | 1985-07-10 | 2002-02-19 | Ronald A. Katz Technology Licensing, L.P. | Telephonic-interface statistical analysis system |
US6512415B1 (en) | 1985-07-10 | 2003-01-28 | Ronald A. Katz Technology Licensing Lp. | Telephonic-interface game control system |
US6449346B1 (en) | 1985-07-10 | 2002-09-10 | Ronald A. Katz Technology Licensing, L.P. | Telephone-television interface statistical analysis system |
US6434223B2 (en) | 1985-07-10 | 2002-08-13 | Ronald A. Katz Technology Licensing, L.P. | Telephone interface call processing system with call selectivity |
EP0429924A2 (en) * | 1989-11-30 | 1991-06-05 | Yozan Inc. | Acoustic recognition method |
EP0429924A3 (en) * | 1989-11-30 | 1993-04-07 | Yozan Inc. | Acoustic recognition method |
US6751482B1 (en) | 1997-06-19 | 2004-06-15 | Byard G. Nilsson | Wireless mobile telephone system with alternative power instruments and DTMF Capability |
US6754481B1 (en) | 1997-06-19 | 2004-06-22 | Byard G. Nilsson | Wireless prepaid telephone system with extended capability |
US6580927B1 (en) | 1997-06-19 | 2003-06-17 | Byard G. Nilsson | Wireless mobile telephone system with voice-dialing telephone instruments and DTMF capability |
US6584327B1 (en) | 1997-06-19 | 2003-06-24 | Byard G. Nilsson | Mobile telephone instruments and wireless telecommunications system |
US6647255B1 (en) | 1997-06-19 | 2003-11-11 | Byard G. Nilsson | Wireless telephone system with mobile instruments for outgoing calls |
US6405029B1 (en) | 1997-06-19 | 2002-06-11 | Byard G. Nilsson | Wireless prepaid telephone system with dispensable instruments |
US6473610B1 (en) | 1997-06-19 | 2002-10-29 | Byard G. Nilsson | Wireless prepaid telephone system with dispensable instruments |
US7801515B1 (en) | 1997-06-19 | 2010-09-21 | Nilsson Byard G | Wireless telephone communication for individual callers to contact remote telephone terminals through a public switched telephone network |
US6993321B1 (en) | 1997-06-19 | 2006-01-31 | Nilsson Byard G | Wireless telephone system with mobile instruments for outgoing calls |
US6845234B1 (en) | 1997-06-19 | 2005-01-18 | Byard G. Nilsson | Wireless telephone system with discardable keyless instruments |
US6862463B1 (en) | 1997-06-19 | 2005-03-01 | Byard G. Nilsson | Wireless telephone system with information service |
US6917802B1 (en) | 1997-06-19 | 2005-07-12 | Byard G. Nilsson | Mobile keyless telephone instruments and wireless telecommunications system having voice dialing and voice programming capabilities |
US6292675B1 (en) * | 1997-10-21 | 2001-09-18 | Byard G. Nilsson | Wireless mobile telephone system with voice-dialing telephone instruments and DTMF capability |
US20050009443A1 (en) * | 2003-05-20 | 2005-01-13 | Martin Raymond J. | Supra-voice sound-responsive toy |
US20140074481A1 (en) * | 2012-09-12 | 2014-03-13 | David Edward Newman | Wave Analysis for Command Identification |
US8924209B2 (en) * | 2012-09-12 | 2014-12-30 | Zanavox | Identifying spoken commands by templates of ordered voiced and unvoiced sound intervals |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3688126A (en) | Sound-operated, yes-no responsive switch | |
Warren | Auditory temporal discrimination by trained listeners | |
US4284846A (en) | System and method for sound recognition | |
US4181813A (en) | System and method for speech recognition | |
Liberman et al. | An effect of learning on speech perception: The discrimination of durations of silence with and without phonemic significance | |
US4757541A (en) | Audio visual speech recognition | |
GB1562995A (en) | Arrangement for recognizing sounds | |
NL6502737A (en) | DEVICE FOR ANALYZING WAVE FORMS | |
US3509280A (en) | Adaptive speech pattern recognition system | |
KR840000014A (en) | Language recognition microcomputer | |
US3238303A (en) | Wave analyzing system | |
US3225141A (en) | Sound analyzing system | |
JPS6118199B2 (en) | ||
US3905128A (en) | Teaching system | |
EP0421744A2 (en) | Speech recognition method and apparatus for use therein | |
GB1295446A (en) | ||
Pollack | Intensity discrimination thresholds under several psychophysical procedures | |
GB1399697A (en) | Automated audio interrogating and reporting system | |
Welch | Automatic Speech Recognition? Putting It to Work in Industry | |
US5774862A (en) | Computer communication system | |
Simasathien | Recognition of selected spoken digits | |
Dersch | A decision logic for speech recognition | |
US3557310A (en) | Speech recognizer | |
SU1564679A1 (en) | Device for professional selection of radio telegraph operators | |
JPS57118139A (en) | Car diagnostic device by sound |