US3687668A - Palladium images by hydrogen reduction - Google Patents

Palladium images by hydrogen reduction Download PDF

Info

Publication number
US3687668A
US3687668A US78946A US3687668DA US3687668A US 3687668 A US3687668 A US 3687668A US 78946 A US78946 A US 78946A US 3687668D A US3687668D A US 3687668DA US 3687668 A US3687668 A US 3687668A
Authority
US
United States
Prior art keywords
palladium
images
metal
titanium dioxide
nickel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US78946A
Other languages
English (en)
Inventor
Michael F Sullivan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eastman Kodak Co
Original Assignee
Eastman Kodak Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eastman Kodak Co filed Critical Eastman Kodak Co
Application granted granted Critical
Publication of US3687668A publication Critical patent/US3687668A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/58Processes for obtaining metallic images by vapour deposition or physical development
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/705Compositions containing chalcogenides, metals or alloys thereof, as photosensitive substances, e.g. photodope systems

Definitions

  • This invention relates to a process for the physical development of photographic images on a radiation-sensitive element, comprising a radiation-sensitive, non-silver, metal salt or oxide, and in one aspect, to a method for the deposition of palladium metal on a titanium dioxide photosensitive element.
  • This invention further relates to a method for the deposition of stable nickel images on a titanium dioxide photosensitive element which has been treated to produce an initial visible image of palladium metal.
  • Stable metal-hypophosphite physical developers are well established and have found particular utility in photographic systems wherein palladium nuclei are photolytically generated.
  • attempts to catalytically decompose such developers with photolytically or otherwise produced silver nuclei have thus far been unsuccessful.
  • the primary obstacle appears to be the relative ineffectiveness of silver as a catalyst for decomposition of such stable metal-hypophosphite physical developers.
  • Methods are known for recording an image pattern wherein the image-producing agent forms the image solely on contact with activated portions of a copy medium.
  • a titanium dioxide layer is employed which may be exposed and treated with silver nitrate to form a visible image.
  • the present invention relates to a means for producing a visible palladium image upon a photosensitive element, in such a manner as to avoid non-selective metal deposition, and affording the stability and cost advantages of non-silver physical developers.
  • Still a further object of this invention is to form palladium photographic images on a titanium dioxide lightsensitive element, and to form these images in such a way as to render them catalytically active, at room temperature, with respect to stable physical developer baths containing hypophosphite as the reducing agent.
  • the photosensitive non-silver metal salts and oxides employed in this invention include such materials as titanium dioxide, zinc oxide, lead chromate, lead molybdate, lead oxide, copper oxide, and mixtures thereof.
  • the preferred materials are titanium dioxide and Zinc oxide.
  • Suitable photosensitive elements may comprise a dispersion of photosensitive material such as titanium dioxide, in a hydrophilic binder such as gelatin, or a hydrophobic binder such as polyvinylacetate.
  • photosensitive elements may be employed which have been prepared by the vacuum deposition of the appropriate photosensitive material, or, by the oxidation of metal containing surfaces such as of titanium metal or of organic titanium compounds.
  • One class of photosensitive elements of this invention comprise a support having coated thereupon a binderfree light-sensitive layer comprising titanium dioxide.
  • the light-sensitive titanium dioxide layers which are employed in the practice of the invention described herein may be thin, abrasion resistant layers of titanium dioxide, deposited, without a binder, upon a support material by vacuum deposition techniques.
  • the coating operation may be accomplished by wellknown vacuum deposition techniques, such as those described for vacuum depositing silver halide as in US. Pat. 1,970,496.
  • the support material is placed within a scalable enclosure along with titanium dioxide.
  • metallic titanium can be used as a source of titanium dioxide by introducing oxygen into the vacuum system. The enclosure is sealed, the pressure reduced, and the temperature elevated, which combination of conditions produces the sublimation of titanium dioxide micro-crystals upon such support material.
  • An alternative process for the preparation of titanium dioxide photosensitive materials comprises depositing upon a suitable support, by vacuum deposition, a titanium metal film.
  • the titanium bearing film is heated to a temperature of from about 400 C. to about 900 C. for a suitable period of time; generally between one half hour and ten hours.
  • Materials containing chemically bound titanium which are suitable for forming radiation-sensitive titanium dioxide coatings include organic titanates such as hydrolyzable aliphatic esters of titanic acid, and the polymers formed by hydrolysis thereof. These materials include water-sensitive tetra-alkyl esters such as the tetraisopropyl-, tetra-butyl-, tetra-stearyh, and tetrakis-(2-et-hylhexyl)- titanates. These esters when applied to :a moist substrate or when present on a substrate in the presence of atmospheric moisture, are readily hydrolyzed to form polymers on the substrates. 1
  • the organic titanium compounds mentioned are conveniently applied to a substrate in the form of thin films, if liquid or a solution, suitably by dipping, spraying, painting, or the like.
  • the compounds are soluble in organic solvents including alcohols such as isopropanol, hydrocarbons such as hexane, heptane and benzene, and halogenated solvents such as trichloroethylene or carbon tetrachloride.
  • organic solvents including alcohols such as isopropanol, hydrocarbons such as hexane, heptane and benzene, and halogenated solvents such as trichloroethylene or carbon tetrachloride.
  • Still another alternative method for the preparation of titanium dioxide, zinc oxide, copper oxide, lead oxide, lead chromate or lead molybdate light-sensitive elements is to disperse the photosensitive material in a suitable binder, and apply it to a substrate by typical solvent evaporation techniques.
  • Suitable colloids may be employed, either alone or in combination, as vehicles and binding agents.
  • Suitable hydrophilic materials include both naturally-occurring substances such as proteins, for example, gelatin, gelatin derivatives, cellulose derivatives, polysaccharides such as dextran, gum arabic and the like; and synthetic polymeric substances such as water soluble polyvinyl compounds like poly(vinylpyrrolidone), acrylamide polymers and the like.
  • Suitable hydrophobic binders include polyvinylacetate, polyvinylbutyral, and the like.
  • the titanium dioxide coatings may be protected with a thin transparent film to prevent damage to the titanium dioxide.
  • Conventional plastic materials such as polyacrylates, can be used to provide such a coating, but should remain permeable to the solutions which are used for physical development of the image in the underlying titanium dioxide film. Gelatin is particularly suited for such a purpose.
  • no protective film would be required for a titanium dioxide photosensitive layer prepared by the method disclosed in copending application Ser. No. 636,016 of Kenrrard et al., filed May 4, 1967, now Pat. No. 3,547,635.
  • the coating method taught therein, and briefly described above, produces extremely thin adherent and abrasion resistant layers of vacuum deposited titanium dioxide.
  • the described photographic layers and other layers of a photographic element employed in the practice of this invention can also contain, alone or in combination with hydrophilic water permeable colloids, other synthetic polymeric compounds such as dispersed vinyl compounds, such as latex form, and particularly those which increase the dimensional stability of the photographic materials.
  • Suitable synthetic polymers include those described for example in Nottorf US. Pat. 3,142,568, issued July 28, 1964; White US. Pat. 3,193,386, issued July 6, 1965; Houck et al. US. Pat. 3,062,674, issued Nov. 6, 1962; Houck et al. US. Pat. 3,220,844, issued Nov. 30, 1965; Ream et al. US. Pat. 3,287,289, issued Nov. 22, 1966; and Dykstra U.S.
  • Typical supports include cellulose nitrate film, cellulose ester film, poly (vinyl acetal) film, polystyrene film, poly(ethylene terephthalate) film, polycarbonate film and related films or resinous materials, as well as glass, paper, metal, and the like.
  • a flexible support is employed, especially a paper support, which can be partially acetylated or coated with baryta and/ or an alpha-olefin polymer, particularly a polymer of an alpha-olefin containing 2 to 1-0 carbon atoms such as polyethylene, polypropylene, ethylene-butene copolymers and the like.
  • any of the above methods may be employed in preparing the radiation-sensitive element which is to be treated according to the method of this invention.
  • such elements have been exposed and treated with silver nitrate to form a visible image.
  • the means for making an initial visible image avoids the expense and various disadvantages of a silver nitrate system.
  • visible palladium images are formed by treating an imagewise exposed element with palladium ions, thereby forming an imagewise distribution of palladium nuclei, and subsequently forming palladium metal on such imagewise formed palladium nuclei by re duction with hydrogen.
  • Palladium ions can be provided by contacting the imagewise exposed elements with a solution, e.g. an aqueous solution, of a palladium halide or other salt such as, for example, palladium chloride or potassium tetrachloropalladite.
  • additional metal may be further deposited on these images by the use of stable physical developers.
  • Visible palladium metal is selectively formed only in exposed areas upon treatment of the nucleated sample with hydrogen.
  • areas of exposure a low density image of palladium metal is obtained very rapidly when hydrogen is brought into contact with the palladium nuclei.
  • This low density image may then be intensified to the desired level by physical development in a conventional nickel physical developer.
  • Other conventional plating baths may also be employed, such as electroless palladium copper, or cobalt. It is noted, however, that no irnagewise physical development of the nickel, etc., is observed on a palladium nucleated sample without visible palladium image formation caused by hydrogen reduction.
  • Hydrogen may be provided, for example, by contacting the imagewise exposed element with a stream of hydrogen gas.
  • the exposed element may be placed in a closed chamber in a hydrogen rich atmosphere, at a temperature between about 0 C. and about 25 C., at a pressure of from about one half to about two atmospheres.
  • the time necessary for the formation of palladium metal may vary from a few seconds to several minutes, depending upon such factors as pressure, temperature, and image density.
  • the physical developer which is used in the practice of this invention may comprise an aqueous bath in which is dissolved a salt of a heavy metal, a complexing agent for the metal ions in said bath, and a reducing agent.
  • the physical developer bath is catalyzed by palladium metal sites.
  • the heavy metal deposited from the bath must itself be autocatalytic; that is, it must act as a catalyst for further deposition of metal from the developer. This is necessary in order that deposition and development will continue after the palladium metal sites are enveloped with heavy metal.
  • suitable heavy metals can be selected from Group VII metals such as nickel, cobalt, iron, palladium and platinum, Group VI-B metals such as chromium and Group I-B metals such as copper, silver and gold. Almost any heavy metal salt which is a source of the desired heavy metal ions can be employed.
  • Suitable heavy metal salts useful in the invention include heavy metal halides such as cobaltous bromide, cobaltous chloride, cobaltous iodide, ferrous bromide, ferrous chloride, chromium bromide, chromium chloride, chromium iodide, copper chloride, nickel chloride, nickel bromide, nickel iodide, gold chloride, palladium chloride and platinum chloride, heavy metal sulfates such as nickel sulfate, ferrous sulfate, cobaltous sulfate, chromium sulfate, copper sulfate, palladium sulfate and platinum sulfate, heavy metal nitrates such as nickel nitrate, ferrous nitrate, cobaltous nitrate, chromlium nitrate and copper nitrate, and heavy metal salts of organic acids such as ferrous acetate, cobaltous acetate, chrom
  • Baths can be formulated based on a single heavy metal or based on mixtures of heavy metals. When more than one heavy metal is employed in the bath, the image which is deposited will generally be an alloy of the two metals.
  • Physical developers based on noble metals such as silver, gold, and platinum are relatively unstable and cannot be stored for long periods of time. However, such physical developers are operative in the processes of this invention and can be employed if the developer bath is prepared shortly before use.
  • the complexing agent employed in the physical developer bath should tie up the metal ions so that they show a lessened tendency to be reduced spontaneously. However, the complexing agent should not bind the metal ions so tightly that they will be unable to be reduced and deposited on the image sites in the presence of the catalyst.
  • Suitable complexing agents include ammonium salts such as ammonium chloride, organic acids such as aspartic acid, malic acid, citric acid, glycolic acid, salts of organic acids such as sodium citrate, potassium citrate, sodium glycolate, potassium glycolate, sodium succinate, potassium succinate, potassium sodium tartrate, etc.
  • a single complexing agent can be used or a combination of more than one complexing agent can be incorporated in the physical developer bath.
  • the reducing agent can be any compound which provides a ready source of electrons for the reduction of the metal ions and which does not otherwise interfere with development.
  • Suitable reducing agents include hypophosphites such as sodium hypophosphite, manganous hypophosphite, potassium hypophosphite, etc., hydrosulfites such as sodium hydrosulfite, potassium hydrosulfite, calcium hydrosulfite, etc., and the like.
  • the proportions in which the various components of the physical developer are present in the bath can vary over a wide range. Suitable concentrations of metal salt in the developer bath are in the range of from about 0.01 to about 0.5 mole of metal salt per liter of bath. The upper limit of concentration is controlled by the solubility of the particular metal salt employed. Preferably, the bath is between about 0.05 molar and 0.25 molar with respect to metal salt.
  • the relative proportions of metal salt and complexing agent are dependent upon the particular metal salt or salts and the particular complexing agent or agents which are employed. As a general rule suflicient complexing agent should be incorporated to bind the metal ions and lessen the tendency of the metal ions to be reduced prior to use of the developer.
  • the amount of complexing agent present can vary from about 4 moles to about 10 moles of complexing agent per mole of metal salt present.
  • the reducing agent can be present in amounts of from about 0.1 mole to about moles of reducing agent per mole of metal salt present.
  • EXAMPLE 1 Unsensitized titanium dioxide is coated upon a poly- (ethylene terephthalate) film support employing polyvinyl acetate as a binder. The thus prepared element is exposed for 5 seconds at 400 footcandles illumination through a line copy negative using a 500 watt projection lamp. The exposed sample is immersed for nucleaticna, in a 0.1-0.2 percent aqueous solution of K PdCl for 30 seconds, and squeegeed dry. The nucleated sample (containing no visible image) is then placed in a stream of hydrogen gas until the palladium image fully develops, a matter of a few seconds. The desired degree of nickel development is obtained by immersion for an appropriate length of time in a nickel physical developer of the following composition:
  • High quality nickel images are obtained in this fashion, having D equal to 2.88, after 120 seconds of development time. Shorter development times produce lower densities.
  • the visible palladium images formed upon hydrogen reduction of the palladium nucleated sample have D equal to 0.27-0.44. Similar results are obtained using photosensitive elements of zinc oxide, lead oxide, or copper oxide.
  • EXAMPLE 2 Samples of titanium dioxide, as prepared above, are imbibed with a saturated, filtered aqueous solution of PdCl and allowed to dry. Exposure and treatment with hydrogen gas as in Example 1 results in visible palladium images. These images are also subsequently enhanced by nickel physical development as in the preceding example. However, no visible palladium or nickel images form when a similar sample is treated with hydrogen prior to exposure or when the hydrogen reduction is omitted.
  • EXAMPLE 3 A sample of titanium dioxide is prepared, exposed, and nucleated as in Example 1 above, and immersed in the nickel physical developer of Example 1 which has been previously saturated by hydrogen gas. A visible image forms rapidly and is of comparable quality to those obtained in the previous examples.
  • the developer is rendered inactive by degasing with nitrogen. Activity may be regenerated by again saturating the nickel developer bath with hydrogen. No images are obtained if hydrogen gas is not passed through the developer solution, or otherwise brought in contact with the nucleated element, again illustrating the criticality of hydrogen reduction.
  • EXAMPLE Visible palladium images formed by hydrogen reduction as in Example 1 are heated at 100 C. over phosphorous pcntoxide under vacuum for 2 hours in order to remove chemisorbed or adsorbed hydrogen.
  • the palladium images are themselves visually unaifected by this treatment.
  • the results of subsequent development in the nickel developer employed in Example 1 are as follows:
  • a method for the deposition of visible palladium images which comprises imagewise exposing a radiationsensitive element comprising a metal salt or oxide selected from the group consisting of titanium dioxide, zinc oxide, copper oxide, lead oxide, lead chromate, and lead molybdate, to a source of activating radiation, treating said imagewise exposed radiation-sensitive element with palladium ions to imagewise deposit palladium nuclei, and treating said element with hydrogen to form a visible imagewise distribution of palladium metal.
  • said radiation-sensitive element comprises titanium dioxide.
  • a method for the deposition of visible palladium images which comprises imbibing a photosensitive titanium dioxide element with a solution of palladium chloride, drying, imagewise exposing said element to activating radiation, and contacting said imagewise exposed element with hydrogen.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemically Coating (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
US78946A 1970-10-07 1970-10-07 Palladium images by hydrogen reduction Expired - Lifetime US3687668A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US7894670A 1970-10-07 1970-10-07

Publications (1)

Publication Number Publication Date
US3687668A true US3687668A (en) 1972-08-29

Family

ID=22147175

Family Applications (1)

Application Number Title Priority Date Filing Date
US78946A Expired - Lifetime US3687668A (en) 1970-10-07 1970-10-07 Palladium images by hydrogen reduction

Country Status (5)

Country Link
US (1) US3687668A (enrdf_load_stackoverflow)
BE (1) BE773630A (enrdf_load_stackoverflow)
CA (1) CA955787A (enrdf_load_stackoverflow)
FR (1) FR2111032A5 (enrdf_load_stackoverflow)
GB (1) GB1373656A (enrdf_load_stackoverflow)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3935013A (en) * 1973-11-12 1976-01-27 Eastman Kodak Company Electroless deposition of a copper-nickel alloy on an imagewise pattern of physically developable metal nuclei
US4084968A (en) * 1973-03-30 1978-04-18 U.S. Philips Corporation Method of manufacturing electrically conductive metal layers on substrates

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7200295A (enrdf_load_stackoverflow) * 1972-01-08 1973-07-10

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4084968A (en) * 1973-03-30 1978-04-18 U.S. Philips Corporation Method of manufacturing electrically conductive metal layers on substrates
US3935013A (en) * 1973-11-12 1976-01-27 Eastman Kodak Company Electroless deposition of a copper-nickel alloy on an imagewise pattern of physically developable metal nuclei

Also Published As

Publication number Publication date
FR2111032A5 (enrdf_load_stackoverflow) 1972-06-02
CA955787A (en) 1974-10-08
BE773630A (fr) 1972-01-31
GB1373656A (en) 1974-11-13

Similar Documents

Publication Publication Date Title
US3719490A (en) Photosensitive element containing a photoreducible palladium compound and the use thereof in physical development
US3873359A (en) Method of depositing a metal on a surface of a substrate
US3179517A (en) Web processing method and composition
DE2004798C3 (enrdf_load_stackoverflow)
US2766119A (en) Aluminum photographic surfaces
US3783005A (en) Method of depositing a metal on a surface of a nonconductive substrate
US3950570A (en) Method of depositing a metal on a surface
US3687668A (en) Palladium images by hydrogen reduction
US3942983A (en) Electroless deposition of a non-noble metal on light generated nuclei of a metal more noble than silver
US3856524A (en) Photographic elements and processes for providing tanned image records
US3960564A (en) Physical development process utilizing a physical developer containing a specific reducing agent, a thiol compound
US3793072A (en) Method of depositing a metal on a surface of a substrate
US3859092A (en) Photographic systems based on photosensitive copper (i) complexes
US3650748A (en) Photographic reproduction using novel physical developers
US3404980A (en) Silver images in light-sensitive print-forming layers
US3650747A (en) Electroless deposition of nickel, cobalt, copper or iron metal and a bismuth, antimony, lead, tin, titanium, tungsten or chromium salt on a gold, platinum or palladium latent image
US3860501A (en) Photosensitive copper (i) complexes and the use thereof in photographic development
CA1081521A (en) Physical development of pd (ii) photosensitive complexes
US3598587A (en) Photographic physical developers
US3824103A (en) Photographic element,composition and process having an s-carbamoyl stabilizer
US3547635A (en) Vacuum deposited light-sensitive titanium dioxide
US3821001A (en) Heat decolorizable antihalation layers of a vanadium complex of 8-hydroxyquinoline
US3817751A (en) Color forming agents for the peroxide color intensifying process
US3873357A (en) Method of depositing a metal on a surface of a substrate
US3808002A (en) Photographic physical developers comprising a water soluble salt of an alkenyl amine compound as an ionic surfactant and processes utilizing this developer