US3687668A - Palladium images by hydrogen reduction - Google Patents
Palladium images by hydrogen reduction Download PDFInfo
- Publication number
- US3687668A US3687668A US78946A US3687668DA US3687668A US 3687668 A US3687668 A US 3687668A US 78946 A US78946 A US 78946A US 3687668D A US3687668D A US 3687668DA US 3687668 A US3687668 A US 3687668A
- Authority
- US
- United States
- Prior art keywords
- palladium
- images
- metal
- titanium dioxide
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 title abstract description 113
- 229910052763 palladium Inorganic materials 0.000 title abstract description 60
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title abstract description 31
- 239000001257 hydrogen Substances 0.000 title abstract description 25
- 229910052739 hydrogen Inorganic materials 0.000 title abstract description 25
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 abstract description 70
- 239000004408 titanium dioxide Substances 0.000 abstract description 35
- -1 PALLADIUM (II) ION Chemical class 0.000 abstract description 22
- 229910001385 heavy metal Inorganic materials 0.000 abstract description 16
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 abstract description 14
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 abstract description 8
- 239000011787 zinc oxide Substances 0.000 abstract description 7
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 abstract description 6
- 239000010936 titanium Substances 0.000 abstract description 6
- 229910052719 titanium Inorganic materials 0.000 abstract description 6
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 abstract description 5
- 239000005751 Copper oxide Substances 0.000 abstract description 5
- 229910000431 copper oxide Inorganic materials 0.000 abstract description 5
- 229910000464 lead oxide Inorganic materials 0.000 abstract description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 4
- XJUNRGGMKUAPAP-UHFFFAOYSA-N dioxido(dioxo)molybdenum;lead(2+) Chemical compound [Pb+2].[O-][Mo]([O-])(=O)=O XJUNRGGMKUAPAP-UHFFFAOYSA-N 0.000 abstract description 4
- MOUPNEIJQCETIW-UHFFFAOYSA-N lead chromate Chemical compound [Pb+2].[O-][Cr]([O-])(=O)=O MOUPNEIJQCETIW-UHFFFAOYSA-N 0.000 abstract description 4
- 229910017052 cobalt Inorganic materials 0.000 abstract description 3
- 239000010941 cobalt Substances 0.000 abstract description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 abstract description 3
- 229910052697 platinum Inorganic materials 0.000 abstract description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052804 chromium Inorganic materials 0.000 abstract description 2
- 239000011651 chromium Substances 0.000 abstract description 2
- 229910052742 iron Inorganic materials 0.000 abstract description 2
- HTUMBQDCCIXGCV-UHFFFAOYSA-N lead oxide Chemical compound [O-2].[Pb+2] HTUMBQDCCIXGCV-UHFFFAOYSA-N 0.000 abstract 1
- 239000002184 metal Chemical class 0.000 description 38
- 229910052751 metal Inorganic materials 0.000 description 38
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 36
- 238000000034 method Methods 0.000 description 22
- 150000003839 salts Chemical class 0.000 description 19
- 229910052759 nickel Inorganic materials 0.000 description 18
- 239000000463 material Substances 0.000 description 17
- 239000010408 film Substances 0.000 description 15
- 238000000151 deposition Methods 0.000 description 14
- 239000008139 complexing agent Substances 0.000 description 13
- 230000008021 deposition Effects 0.000 description 12
- 230000005855 radiation Effects 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical class [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 10
- 229910052709 silver Inorganic materials 0.000 description 10
- 239000004332 silver Substances 0.000 description 10
- 239000011230 binding agent Substances 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 229910021645 metal ion Inorganic materials 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000003638 chemical reducing agent Substances 0.000 description 6
- SQGYOTSLMSWVJD-UHFFFAOYSA-N silver(1+) nitrate Chemical compound [Ag+].[O-]N(=O)=O SQGYOTSLMSWVJD-UHFFFAOYSA-N 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 150000002739 metals Chemical group 0.000 description 5
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 108010010803 Gelatin Proteins 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 4
- 238000001771 vacuum deposition Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 150000007524 organic acids Chemical class 0.000 description 3
- 235000005985 organic acids Nutrition 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920002689 polyvinyl acetate Polymers 0.000 description 3
- 239000011118 polyvinyl acetate Substances 0.000 description 3
- 229960003975 potassium Drugs 0.000 description 3
- 229910052700 potassium Inorganic materials 0.000 description 3
- 239000011591 potassium Substances 0.000 description 3
- 229910001961 silver nitrate Inorganic materials 0.000 description 3
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- 229910021586 Nickel(II) chloride Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 101150003085 Pdcl gene Proteins 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 2
- 150000003863 ammonium salts Chemical class 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- UFMZWBIQTDUYBN-UHFFFAOYSA-N cobalt dinitrate Chemical compound [Co+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O UFMZWBIQTDUYBN-UHFFFAOYSA-N 0.000 description 2
- 239000000084 colloidal system Substances 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 238000011534 incubation Methods 0.000 description 2
- 239000001630 malic acid Substances 0.000 description 2
- 235000011090 malic acid Nutrition 0.000 description 2
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- QMMRZOWCJAIUJA-UHFFFAOYSA-L nickel dichloride Chemical compound Cl[Ni]Cl QMMRZOWCJAIUJA-UHFFFAOYSA-L 0.000 description 2
- 239000000123 paper Substances 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229920001059 synthetic polymer Polymers 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- 150000003609 titanium compounds Chemical class 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 239000004711 α-olefin Substances 0.000 description 2
- RYSXWUYLAWPLES-MTOQALJVSA-N (Z)-4-hydroxypent-3-en-2-one titanium Chemical compound [Ti].C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O.C\C(O)=C\C(C)=O RYSXWUYLAWPLES-MTOQALJVSA-N 0.000 description 1
- PSBDWGZCVUAZQS-UHFFFAOYSA-N (dimethylsulfonio)acetate Chemical group C[S+](C)CC([O-])=O PSBDWGZCVUAZQS-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- AIFLGMNWQFPTAJ-UHFFFAOYSA-J 2-hydroxypropanoate;titanium(4+) Chemical compound [Ti+4].CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O.CC(O)C([O-])=O AIFLGMNWQFPTAJ-UHFFFAOYSA-J 0.000 description 1
- KWSLGOVYXMQPPX-UHFFFAOYSA-N 5-[3-(trifluoromethyl)phenyl]-2h-tetrazole Chemical compound FC(F)(F)C1=CC=CC(C2=NNN=N2)=C1 KWSLGOVYXMQPPX-UHFFFAOYSA-N 0.000 description 1
- 229910021555 Chromium Chloride Inorganic materials 0.000 description 1
- 229910021584 Cobalt(II) iodide Inorganic materials 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- 229920000084 Gum arabic Polymers 0.000 description 1
- 229910021575 Iron(II) bromide Inorganic materials 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 241000978776 Senegalia senegal Species 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- XSTXAVWGXDQKEL-UHFFFAOYSA-N Trichloroethylene Chemical group ClC=C(Cl)Cl XSTXAVWGXDQKEL-UHFFFAOYSA-N 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 239000000205 acacia gum Substances 0.000 description 1
- 235000010489 acacia gum Nutrition 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- MCDLETWIOVSGJT-UHFFFAOYSA-N acetic acid;iron Chemical compound [Fe].CC(O)=O.CC(O)=O MCDLETWIOVSGJT-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000005250 alkyl acrylate group Chemical group 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 1
- 229910001864 baryta Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229940107218 chromium Drugs 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- WYYQVWLEPYFFLP-UHFFFAOYSA-K chromium(3+);triacetate Chemical compound [Cr+3].CC([O-])=O.CC([O-])=O.CC([O-])=O WYYQVWLEPYFFLP-UHFFFAOYSA-K 0.000 description 1
- PPUZYFWVBLIDMP-UHFFFAOYSA-K chromium(3+);triiodide Chemical compound I[Cr](I)I PPUZYFWVBLIDMP-UHFFFAOYSA-K 0.000 description 1
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 description 1
- XZQOHYZUWTWZBL-UHFFFAOYSA-L chromium(ii) bromide Chemical compound [Cr+2].[Br-].[Br-] XZQOHYZUWTWZBL-UHFFFAOYSA-L 0.000 description 1
- 235000015165 citric acid Nutrition 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- KTVIXTQDYHMGHF-UHFFFAOYSA-L cobalt(2+) sulfate Chemical compound [Co+2].[O-]S([O-])(=O)=O KTVIXTQDYHMGHF-UHFFFAOYSA-L 0.000 description 1
- AVWLPUQJODERGA-UHFFFAOYSA-L cobalt(2+);diiodide Chemical compound [Co+2].[I-].[I-] AVWLPUQJODERGA-UHFFFAOYSA-L 0.000 description 1
- QAHREYKOYSIQPH-UHFFFAOYSA-L cobalt(II) acetate Chemical compound [Co+2].CC([O-])=O.CC([O-])=O QAHREYKOYSIQPH-UHFFFAOYSA-L 0.000 description 1
- BZRRQSJJPUGBAA-UHFFFAOYSA-L cobalt(ii) bromide Chemical compound Br[Co]Br BZRRQSJJPUGBAA-UHFFFAOYSA-L 0.000 description 1
- 229940097267 cobaltous chloride Drugs 0.000 description 1
- 229940045032 cobaltous nitrate Drugs 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical class [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- HFDWIMBEIXDNQS-UHFFFAOYSA-L copper;diformate Chemical compound [Cu+2].[O-]C=O.[O-]C=O HFDWIMBEIXDNQS-UHFFFAOYSA-L 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- CPMVCRMQKZREQQ-UHFFFAOYSA-L ctk4c8528 Chemical compound [Ca+2].[O-]S(=O)S([O-])=O CPMVCRMQKZREQQ-UHFFFAOYSA-L 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- CVOQYKPWIVSMDC-UHFFFAOYSA-L dipotassium;butanedioate Chemical compound [K+].[K+].[O-]C(=O)CCC([O-])=O CVOQYKPWIVSMDC-UHFFFAOYSA-L 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- GRWZHXKQBITJKP-UHFFFAOYSA-N dithionous acid Chemical class OS(=O)S(O)=O GRWZHXKQBITJKP-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229940046149 ferrous bromide Drugs 0.000 description 1
- 229960002089 ferrous chloride Drugs 0.000 description 1
- 239000011790 ferrous sulphate Substances 0.000 description 1
- 235000003891 ferrous sulphate Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- FDWREHZXQUYJFJ-UHFFFAOYSA-M gold monochloride Chemical compound [Cl-].[Au+] FDWREHZXQUYJFJ-UHFFFAOYSA-M 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000002563 ionic surfactant Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- NMCUIPGRVMDVDB-UHFFFAOYSA-L iron dichloride Chemical compound Cl[Fe]Cl NMCUIPGRVMDVDB-UHFFFAOYSA-L 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- GYCHYNMREWYSKH-UHFFFAOYSA-L iron(ii) bromide Chemical compound [Fe+2].[Br-].[Br-] GYCHYNMREWYSKH-UHFFFAOYSA-L 0.000 description 1
- 239000004816 latex Substances 0.000 description 1
- 229920000126 latex Polymers 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- FLFJVPPJGJSHMF-UHFFFAOYSA-L manganese hypophosphite Chemical compound [Mn+2].[O-]P=O.[O-]P=O FLFJVPPJGJSHMF-UHFFFAOYSA-L 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- UQPSGBZICXWIAG-UHFFFAOYSA-L nickel(2+);dibromide;trihydrate Chemical compound O.O.O.Br[Ni]Br UQPSGBZICXWIAG-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- BFSQJYRFLQUZKX-UHFFFAOYSA-L nickel(ii) iodide Chemical compound I[Ni]I BFSQJYRFLQUZKX-UHFFFAOYSA-L 0.000 description 1
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- MUJIDPITZJWBSW-UHFFFAOYSA-N palladium(2+) Chemical compound [Pd+2] MUJIDPITZJWBSW-UHFFFAOYSA-N 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-M phosphinate Chemical compound [O-][PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-M 0.000 description 1
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical class O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 1
- PQTLYDQECILMMB-UHFFFAOYSA-L platinum(2+);sulfate Chemical compound [Pt+2].[O-]S([O-])(=O)=O PQTLYDQECILMMB-UHFFFAOYSA-L 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920000058 polyacrylate Polymers 0.000 description 1
- 229920006289 polycarbonate film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000001508 potassium citrate Substances 0.000 description 1
- 229960002635 potassium citrate Drugs 0.000 description 1
- QEEAPRPFLLJWCF-UHFFFAOYSA-K potassium citrate (anhydrous) Chemical compound [K+].[K+].[K+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O QEEAPRPFLLJWCF-UHFFFAOYSA-K 0.000 description 1
- 235000011082 potassium citrates Nutrition 0.000 description 1
- HEZHYQDYRPUXNJ-UHFFFAOYSA-L potassium dithionite Chemical compound [K+].[K+].[O-]S(=O)S([O-])=O HEZHYQDYRPUXNJ-UHFFFAOYSA-L 0.000 description 1
- 229910001380 potassium hypophosphite Inorganic materials 0.000 description 1
- CRGPNLUFHHUKCM-UHFFFAOYSA-M potassium phosphinate Chemical compound [K+].[O-]P=O CRGPNLUFHHUKCM-UHFFFAOYSA-M 0.000 description 1
- LJCNRYVRMXRIQR-OLXYHTOASA-L potassium sodium L-tartrate Chemical compound [Na+].[K+].[O-]C(=O)[C@H](O)[C@@H](O)C([O-])=O LJCNRYVRMXRIQR-OLXYHTOASA-L 0.000 description 1
- 229940074439 potassium sodium tartrate Drugs 0.000 description 1
- FIJPWGLOBMXXSF-UHFFFAOYSA-M potassium;2-hydroxyacetate Chemical compound [K+].OCC([O-])=O FIJPWGLOBMXXSF-UHFFFAOYSA-M 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 238000009738 saturating Methods 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 229960001790 sodium citrate Drugs 0.000 description 1
- JVBXVOWTABLYPX-UHFFFAOYSA-L sodium dithionite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])=O JVBXVOWTABLYPX-UHFFFAOYSA-L 0.000 description 1
- 229940023144 sodium glycolate Drugs 0.000 description 1
- 229910001379 sodium hypophosphite Inorganic materials 0.000 description 1
- 235000011006 sodium potassium tartrate Nutrition 0.000 description 1
- 229940074404 sodium succinate Drugs 0.000 description 1
- ZDQYSKICYIVCPN-UHFFFAOYSA-L sodium succinate (anhydrous) Chemical compound [Na+].[Na+].[O-]C(=O)CCC([O-])=O ZDQYSKICYIVCPN-UHFFFAOYSA-L 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000000935 solvent evaporation Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- LLZRNZOLAXHGLL-UHFFFAOYSA-J titanic acid Chemical compound O[Ti](O)(O)O LLZRNZOLAXHGLL-UHFFFAOYSA-J 0.000 description 1
- UBOXGVDOUJQMTN-UHFFFAOYSA-N trichloroethylene Natural products ClCC(Cl)Cl UBOXGVDOUJQMTN-UHFFFAOYSA-N 0.000 description 1
- JEJAMASKDTUEBZ-UHFFFAOYSA-N tris(1,1,3-tribromo-2,2-dimethylpropyl) phosphate Chemical compound BrCC(C)(C)C(Br)(Br)OP(=O)(OC(Br)(Br)C(C)(C)CBr)OC(Br)(Br)C(C)(C)CBr JEJAMASKDTUEBZ-UHFFFAOYSA-N 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920003176 water-insoluble polymer Polymers 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C5/00—Photographic processes or agents therefor; Regeneration of such processing agents
- G03C5/58—Processes for obtaining metallic images by vapour deposition or physical development
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03C—PHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
- G03C1/00—Photosensitive materials
- G03C1/705—Compositions containing chalcogenides, metals or alloys thereof, as photosensitive substances, e.g. photodope systems
Definitions
- This invention relates to a process for the physical development of photographic images on a radiation-sensitive element, comprising a radiation-sensitive, non-silver, metal salt or oxide, and in one aspect, to a method for the deposition of palladium metal on a titanium dioxide photosensitive element.
- This invention further relates to a method for the deposition of stable nickel images on a titanium dioxide photosensitive element which has been treated to produce an initial visible image of palladium metal.
- Stable metal-hypophosphite physical developers are well established and have found particular utility in photographic systems wherein palladium nuclei are photolytically generated.
- attempts to catalytically decompose such developers with photolytically or otherwise produced silver nuclei have thus far been unsuccessful.
- the primary obstacle appears to be the relative ineffectiveness of silver as a catalyst for decomposition of such stable metal-hypophosphite physical developers.
- Methods are known for recording an image pattern wherein the image-producing agent forms the image solely on contact with activated portions of a copy medium.
- a titanium dioxide layer is employed which may be exposed and treated with silver nitrate to form a visible image.
- the present invention relates to a means for producing a visible palladium image upon a photosensitive element, in such a manner as to avoid non-selective metal deposition, and affording the stability and cost advantages of non-silver physical developers.
- Still a further object of this invention is to form palladium photographic images on a titanium dioxide lightsensitive element, and to form these images in such a way as to render them catalytically active, at room temperature, with respect to stable physical developer baths containing hypophosphite as the reducing agent.
- the photosensitive non-silver metal salts and oxides employed in this invention include such materials as titanium dioxide, zinc oxide, lead chromate, lead molybdate, lead oxide, copper oxide, and mixtures thereof.
- the preferred materials are titanium dioxide and Zinc oxide.
- Suitable photosensitive elements may comprise a dispersion of photosensitive material such as titanium dioxide, in a hydrophilic binder such as gelatin, or a hydrophobic binder such as polyvinylacetate.
- photosensitive elements may be employed which have been prepared by the vacuum deposition of the appropriate photosensitive material, or, by the oxidation of metal containing surfaces such as of titanium metal or of organic titanium compounds.
- One class of photosensitive elements of this invention comprise a support having coated thereupon a binderfree light-sensitive layer comprising titanium dioxide.
- the light-sensitive titanium dioxide layers which are employed in the practice of the invention described herein may be thin, abrasion resistant layers of titanium dioxide, deposited, without a binder, upon a support material by vacuum deposition techniques.
- the coating operation may be accomplished by wellknown vacuum deposition techniques, such as those described for vacuum depositing silver halide as in US. Pat. 1,970,496.
- the support material is placed within a scalable enclosure along with titanium dioxide.
- metallic titanium can be used as a source of titanium dioxide by introducing oxygen into the vacuum system. The enclosure is sealed, the pressure reduced, and the temperature elevated, which combination of conditions produces the sublimation of titanium dioxide micro-crystals upon such support material.
- An alternative process for the preparation of titanium dioxide photosensitive materials comprises depositing upon a suitable support, by vacuum deposition, a titanium metal film.
- the titanium bearing film is heated to a temperature of from about 400 C. to about 900 C. for a suitable period of time; generally between one half hour and ten hours.
- Materials containing chemically bound titanium which are suitable for forming radiation-sensitive titanium dioxide coatings include organic titanates such as hydrolyzable aliphatic esters of titanic acid, and the polymers formed by hydrolysis thereof. These materials include water-sensitive tetra-alkyl esters such as the tetraisopropyl-, tetra-butyl-, tetra-stearyh, and tetrakis-(2-et-hylhexyl)- titanates. These esters when applied to :a moist substrate or when present on a substrate in the presence of atmospheric moisture, are readily hydrolyzed to form polymers on the substrates. 1
- the organic titanium compounds mentioned are conveniently applied to a substrate in the form of thin films, if liquid or a solution, suitably by dipping, spraying, painting, or the like.
- the compounds are soluble in organic solvents including alcohols such as isopropanol, hydrocarbons such as hexane, heptane and benzene, and halogenated solvents such as trichloroethylene or carbon tetrachloride.
- organic solvents including alcohols such as isopropanol, hydrocarbons such as hexane, heptane and benzene, and halogenated solvents such as trichloroethylene or carbon tetrachloride.
- Still another alternative method for the preparation of titanium dioxide, zinc oxide, copper oxide, lead oxide, lead chromate or lead molybdate light-sensitive elements is to disperse the photosensitive material in a suitable binder, and apply it to a substrate by typical solvent evaporation techniques.
- Suitable colloids may be employed, either alone or in combination, as vehicles and binding agents.
- Suitable hydrophilic materials include both naturally-occurring substances such as proteins, for example, gelatin, gelatin derivatives, cellulose derivatives, polysaccharides such as dextran, gum arabic and the like; and synthetic polymeric substances such as water soluble polyvinyl compounds like poly(vinylpyrrolidone), acrylamide polymers and the like.
- Suitable hydrophobic binders include polyvinylacetate, polyvinylbutyral, and the like.
- the titanium dioxide coatings may be protected with a thin transparent film to prevent damage to the titanium dioxide.
- Conventional plastic materials such as polyacrylates, can be used to provide such a coating, but should remain permeable to the solutions which are used for physical development of the image in the underlying titanium dioxide film. Gelatin is particularly suited for such a purpose.
- no protective film would be required for a titanium dioxide photosensitive layer prepared by the method disclosed in copending application Ser. No. 636,016 of Kenrrard et al., filed May 4, 1967, now Pat. No. 3,547,635.
- the coating method taught therein, and briefly described above, produces extremely thin adherent and abrasion resistant layers of vacuum deposited titanium dioxide.
- the described photographic layers and other layers of a photographic element employed in the practice of this invention can also contain, alone or in combination with hydrophilic water permeable colloids, other synthetic polymeric compounds such as dispersed vinyl compounds, such as latex form, and particularly those which increase the dimensional stability of the photographic materials.
- Suitable synthetic polymers include those described for example in Nottorf US. Pat. 3,142,568, issued July 28, 1964; White US. Pat. 3,193,386, issued July 6, 1965; Houck et al. US. Pat. 3,062,674, issued Nov. 6, 1962; Houck et al. US. Pat. 3,220,844, issued Nov. 30, 1965; Ream et al. US. Pat. 3,287,289, issued Nov. 22, 1966; and Dykstra U.S.
- Typical supports include cellulose nitrate film, cellulose ester film, poly (vinyl acetal) film, polystyrene film, poly(ethylene terephthalate) film, polycarbonate film and related films or resinous materials, as well as glass, paper, metal, and the like.
- a flexible support is employed, especially a paper support, which can be partially acetylated or coated with baryta and/ or an alpha-olefin polymer, particularly a polymer of an alpha-olefin containing 2 to 1-0 carbon atoms such as polyethylene, polypropylene, ethylene-butene copolymers and the like.
- any of the above methods may be employed in preparing the radiation-sensitive element which is to be treated according to the method of this invention.
- such elements have been exposed and treated with silver nitrate to form a visible image.
- the means for making an initial visible image avoids the expense and various disadvantages of a silver nitrate system.
- visible palladium images are formed by treating an imagewise exposed element with palladium ions, thereby forming an imagewise distribution of palladium nuclei, and subsequently forming palladium metal on such imagewise formed palladium nuclei by re duction with hydrogen.
- Palladium ions can be provided by contacting the imagewise exposed elements with a solution, e.g. an aqueous solution, of a palladium halide or other salt such as, for example, palladium chloride or potassium tetrachloropalladite.
- additional metal may be further deposited on these images by the use of stable physical developers.
- Visible palladium metal is selectively formed only in exposed areas upon treatment of the nucleated sample with hydrogen.
- areas of exposure a low density image of palladium metal is obtained very rapidly when hydrogen is brought into contact with the palladium nuclei.
- This low density image may then be intensified to the desired level by physical development in a conventional nickel physical developer.
- Other conventional plating baths may also be employed, such as electroless palladium copper, or cobalt. It is noted, however, that no irnagewise physical development of the nickel, etc., is observed on a palladium nucleated sample without visible palladium image formation caused by hydrogen reduction.
- Hydrogen may be provided, for example, by contacting the imagewise exposed element with a stream of hydrogen gas.
- the exposed element may be placed in a closed chamber in a hydrogen rich atmosphere, at a temperature between about 0 C. and about 25 C., at a pressure of from about one half to about two atmospheres.
- the time necessary for the formation of palladium metal may vary from a few seconds to several minutes, depending upon such factors as pressure, temperature, and image density.
- the physical developer which is used in the practice of this invention may comprise an aqueous bath in which is dissolved a salt of a heavy metal, a complexing agent for the metal ions in said bath, and a reducing agent.
- the physical developer bath is catalyzed by palladium metal sites.
- the heavy metal deposited from the bath must itself be autocatalytic; that is, it must act as a catalyst for further deposition of metal from the developer. This is necessary in order that deposition and development will continue after the palladium metal sites are enveloped with heavy metal.
- suitable heavy metals can be selected from Group VII metals such as nickel, cobalt, iron, palladium and platinum, Group VI-B metals such as chromium and Group I-B metals such as copper, silver and gold. Almost any heavy metal salt which is a source of the desired heavy metal ions can be employed.
- Suitable heavy metal salts useful in the invention include heavy metal halides such as cobaltous bromide, cobaltous chloride, cobaltous iodide, ferrous bromide, ferrous chloride, chromium bromide, chromium chloride, chromium iodide, copper chloride, nickel chloride, nickel bromide, nickel iodide, gold chloride, palladium chloride and platinum chloride, heavy metal sulfates such as nickel sulfate, ferrous sulfate, cobaltous sulfate, chromium sulfate, copper sulfate, palladium sulfate and platinum sulfate, heavy metal nitrates such as nickel nitrate, ferrous nitrate, cobaltous nitrate, chromlium nitrate and copper nitrate, and heavy metal salts of organic acids such as ferrous acetate, cobaltous acetate, chrom
- Baths can be formulated based on a single heavy metal or based on mixtures of heavy metals. When more than one heavy metal is employed in the bath, the image which is deposited will generally be an alloy of the two metals.
- Physical developers based on noble metals such as silver, gold, and platinum are relatively unstable and cannot be stored for long periods of time. However, such physical developers are operative in the processes of this invention and can be employed if the developer bath is prepared shortly before use.
- the complexing agent employed in the physical developer bath should tie up the metal ions so that they show a lessened tendency to be reduced spontaneously. However, the complexing agent should not bind the metal ions so tightly that they will be unable to be reduced and deposited on the image sites in the presence of the catalyst.
- Suitable complexing agents include ammonium salts such as ammonium chloride, organic acids such as aspartic acid, malic acid, citric acid, glycolic acid, salts of organic acids such as sodium citrate, potassium citrate, sodium glycolate, potassium glycolate, sodium succinate, potassium succinate, potassium sodium tartrate, etc.
- a single complexing agent can be used or a combination of more than one complexing agent can be incorporated in the physical developer bath.
- the reducing agent can be any compound which provides a ready source of electrons for the reduction of the metal ions and which does not otherwise interfere with development.
- Suitable reducing agents include hypophosphites such as sodium hypophosphite, manganous hypophosphite, potassium hypophosphite, etc., hydrosulfites such as sodium hydrosulfite, potassium hydrosulfite, calcium hydrosulfite, etc., and the like.
- the proportions in which the various components of the physical developer are present in the bath can vary over a wide range. Suitable concentrations of metal salt in the developer bath are in the range of from about 0.01 to about 0.5 mole of metal salt per liter of bath. The upper limit of concentration is controlled by the solubility of the particular metal salt employed. Preferably, the bath is between about 0.05 molar and 0.25 molar with respect to metal salt.
- the relative proportions of metal salt and complexing agent are dependent upon the particular metal salt or salts and the particular complexing agent or agents which are employed. As a general rule suflicient complexing agent should be incorporated to bind the metal ions and lessen the tendency of the metal ions to be reduced prior to use of the developer.
- the amount of complexing agent present can vary from about 4 moles to about 10 moles of complexing agent per mole of metal salt present.
- the reducing agent can be present in amounts of from about 0.1 mole to about moles of reducing agent per mole of metal salt present.
- EXAMPLE 1 Unsensitized titanium dioxide is coated upon a poly- (ethylene terephthalate) film support employing polyvinyl acetate as a binder. The thus prepared element is exposed for 5 seconds at 400 footcandles illumination through a line copy negative using a 500 watt projection lamp. The exposed sample is immersed for nucleaticna, in a 0.1-0.2 percent aqueous solution of K PdCl for 30 seconds, and squeegeed dry. The nucleated sample (containing no visible image) is then placed in a stream of hydrogen gas until the palladium image fully develops, a matter of a few seconds. The desired degree of nickel development is obtained by immersion for an appropriate length of time in a nickel physical developer of the following composition:
- High quality nickel images are obtained in this fashion, having D equal to 2.88, after 120 seconds of development time. Shorter development times produce lower densities.
- the visible palladium images formed upon hydrogen reduction of the palladium nucleated sample have D equal to 0.27-0.44. Similar results are obtained using photosensitive elements of zinc oxide, lead oxide, or copper oxide.
- EXAMPLE 2 Samples of titanium dioxide, as prepared above, are imbibed with a saturated, filtered aqueous solution of PdCl and allowed to dry. Exposure and treatment with hydrogen gas as in Example 1 results in visible palladium images. These images are also subsequently enhanced by nickel physical development as in the preceding example. However, no visible palladium or nickel images form when a similar sample is treated with hydrogen prior to exposure or when the hydrogen reduction is omitted.
- EXAMPLE 3 A sample of titanium dioxide is prepared, exposed, and nucleated as in Example 1 above, and immersed in the nickel physical developer of Example 1 which has been previously saturated by hydrogen gas. A visible image forms rapidly and is of comparable quality to those obtained in the previous examples.
- the developer is rendered inactive by degasing with nitrogen. Activity may be regenerated by again saturating the nickel developer bath with hydrogen. No images are obtained if hydrogen gas is not passed through the developer solution, or otherwise brought in contact with the nucleated element, again illustrating the criticality of hydrogen reduction.
- EXAMPLE Visible palladium images formed by hydrogen reduction as in Example 1 are heated at 100 C. over phosphorous pcntoxide under vacuum for 2 hours in order to remove chemisorbed or adsorbed hydrogen.
- the palladium images are themselves visually unaifected by this treatment.
- the results of subsequent development in the nickel developer employed in Example 1 are as follows:
- a method for the deposition of visible palladium images which comprises imagewise exposing a radiationsensitive element comprising a metal salt or oxide selected from the group consisting of titanium dioxide, zinc oxide, copper oxide, lead oxide, lead chromate, and lead molybdate, to a source of activating radiation, treating said imagewise exposed radiation-sensitive element with palladium ions to imagewise deposit palladium nuclei, and treating said element with hydrogen to form a visible imagewise distribution of palladium metal.
- said radiation-sensitive element comprises titanium dioxide.
- a method for the deposition of visible palladium images which comprises imbibing a photosensitive titanium dioxide element with a solution of palladium chloride, drying, imagewise exposing said element to activating radiation, and contacting said imagewise exposed element with hydrogen.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Metallurgy (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Chemically Coating (AREA)
- Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US7894670A | 1970-10-07 | 1970-10-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3687668A true US3687668A (en) | 1972-08-29 |
Family
ID=22147175
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US78946A Expired - Lifetime US3687668A (en) | 1970-10-07 | 1970-10-07 | Palladium images by hydrogen reduction |
Country Status (5)
Country | Link |
---|---|
US (1) | US3687668A (enrdf_load_stackoverflow) |
BE (1) | BE773630A (enrdf_load_stackoverflow) |
CA (1) | CA955787A (enrdf_load_stackoverflow) |
FR (1) | FR2111032A5 (enrdf_load_stackoverflow) |
GB (1) | GB1373656A (enrdf_load_stackoverflow) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3935013A (en) * | 1973-11-12 | 1976-01-27 | Eastman Kodak Company | Electroless deposition of a copper-nickel alloy on an imagewise pattern of physically developable metal nuclei |
US4084968A (en) * | 1973-03-30 | 1978-04-18 | U.S. Philips Corporation | Method of manufacturing electrically conductive metal layers on substrates |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL7200295A (enrdf_load_stackoverflow) * | 1972-01-08 | 1973-07-10 |
-
1970
- 1970-10-07 US US78946A patent/US3687668A/en not_active Expired - Lifetime
-
1971
- 1971-09-03 CA CA122,080A patent/CA955787A/en not_active Expired
- 1971-10-06 FR FR7135912A patent/FR2111032A5/fr not_active Expired
- 1971-10-07 BE BE773630A patent/BE773630A/xx unknown
- 1971-10-07 GB GB4669071A patent/GB1373656A/en not_active Expired
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4084968A (en) * | 1973-03-30 | 1978-04-18 | U.S. Philips Corporation | Method of manufacturing electrically conductive metal layers on substrates |
US3935013A (en) * | 1973-11-12 | 1976-01-27 | Eastman Kodak Company | Electroless deposition of a copper-nickel alloy on an imagewise pattern of physically developable metal nuclei |
Also Published As
Publication number | Publication date |
---|---|
FR2111032A5 (enrdf_load_stackoverflow) | 1972-06-02 |
CA955787A (en) | 1974-10-08 |
BE773630A (fr) | 1972-01-31 |
GB1373656A (en) | 1974-11-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3719490A (en) | Photosensitive element containing a photoreducible palladium compound and the use thereof in physical development | |
US3873359A (en) | Method of depositing a metal on a surface of a substrate | |
US3179517A (en) | Web processing method and composition | |
DE2004798C3 (enrdf_load_stackoverflow) | ||
US2766119A (en) | Aluminum photographic surfaces | |
US3783005A (en) | Method of depositing a metal on a surface of a nonconductive substrate | |
US3950570A (en) | Method of depositing a metal on a surface | |
US3687668A (en) | Palladium images by hydrogen reduction | |
US3942983A (en) | Electroless deposition of a non-noble metal on light generated nuclei of a metal more noble than silver | |
US3856524A (en) | Photographic elements and processes for providing tanned image records | |
US3960564A (en) | Physical development process utilizing a physical developer containing a specific reducing agent, a thiol compound | |
US3793072A (en) | Method of depositing a metal on a surface of a substrate | |
US3859092A (en) | Photographic systems based on photosensitive copper (i) complexes | |
US3650748A (en) | Photographic reproduction using novel physical developers | |
US3404980A (en) | Silver images in light-sensitive print-forming layers | |
US3650747A (en) | Electroless deposition of nickel, cobalt, copper or iron metal and a bismuth, antimony, lead, tin, titanium, tungsten or chromium salt on a gold, platinum or palladium latent image | |
US3860501A (en) | Photosensitive copper (i) complexes and the use thereof in photographic development | |
CA1081521A (en) | Physical development of pd (ii) photosensitive complexes | |
US3598587A (en) | Photographic physical developers | |
US3824103A (en) | Photographic element,composition and process having an s-carbamoyl stabilizer | |
US3547635A (en) | Vacuum deposited light-sensitive titanium dioxide | |
US3821001A (en) | Heat decolorizable antihalation layers of a vanadium complex of 8-hydroxyquinoline | |
US3817751A (en) | Color forming agents for the peroxide color intensifying process | |
US3873357A (en) | Method of depositing a metal on a surface of a substrate | |
US3808002A (en) | Photographic physical developers comprising a water soluble salt of an alkenyl amine compound as an ionic surfactant and processes utilizing this developer |