US3684928A - Electrolytic cell with in-situ charging electrolyte - Google Patents

Electrolytic cell with in-situ charging electrolyte Download PDF

Info

Publication number
US3684928A
US3684928A US149984A US3684928DA US3684928A US 3684928 A US3684928 A US 3684928A US 149984 A US149984 A US 149984A US 3684928D A US3684928D A US 3684928DA US 3684928 A US3684928 A US 3684928A
Authority
US
United States
Prior art keywords
silver
situ
electrolytic cell
electrolyte
metaphosphate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US149984A
Inventor
Richard J Roethlein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sprague Electric Co
Original Assignee
Sprague Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sprague Electric Co filed Critical Sprague Electric Co
Application granted granted Critical
Publication of US3684928A publication Critical patent/US3684928A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/02Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electrolytic methods

Definitions

  • This invention relates to electrolytic cells with an in situ charging electrolyte, and more particularly to plating additives for electrolytes for low charge density silver coulometers.
  • An electrochemical timing device which employs the principles of a silver coulometer activates a relay by a voltage rise occurring within the coulometer cell when a predetermined quantity of silver has been removed from the positive (anode) electrode.
  • the voltage rise is caused by a shift in potential on the inert anode electrode, gold to its next highest electrode process, oxygen evolution.
  • the initial quantity of silver on the anode along with the discharge current therefore, determines the running time of the device.
  • a standard silver coulometer electrolyte of silver phosphate and phosphoric acid contains a relatively small amount (about 0.01M) of a metaphosphate added thereto. This combination increases the overvoltage of the system, decreases the rate of surface diffusion of the silver adions, and permits the in situ charging of silver from the cathode electrode to a gold anode within the coulometer.
  • the resultant silver deposit is smooth, bright, adherent, economic and more accurate than prior art deposits for silver coulometers.
  • FIG. 1 is a side view in section of an electrochemical timer with the electrolyte of the present invention.
  • FIG. 2 is an enlarged view of region 28 of FIG. 1.
  • the electrolyte containing the metaphosphate additive can advantageously be used in an electrochemical timer device such as is described in US. Letters Pat.
  • FIG. 1 of the drawings shows an electrochemical timer 10 that has a silver cathode can 12.
  • the cathode can 12 has a metal cathode lead 14 affixed thereto.
  • Located within can 12 is an insulating bobbin 16 having a threaded central shaft 17.
  • Located down through the center of bobbin l6 and helically wound onto threaded central shaft 17 of said bobbin is a gold or other metal anode wire 18 which is to be plated with silver from the cathode can 12.
  • the metal anode could be in the form of a thin metal film instead of a wound wire.
  • Placed in contact with the anode and cathode is an electrolyte 20.
  • Bobbin 16 is provided with end shoulders 19 which fit against the inside surface of cathode container 12.
  • a metal anode lead 22 is in contact with anode wire 18 at point 24.
  • a resilient sealing bung 26 Located about the juncture of anode lead 22 and anode wire 18, and closing can 12, is a resilient sealing bung 26. That part of anode wire 18 in the center of bobbin 16 is not exposed to the electrolyte, and, thus, is not part of the active anode of the timer.
  • Region 28 of FIG. 1 is shown enlarged in FIG. 2. This Figure illustrates that electrolyte 20 is available in the trough 30 of the threaded central shaft 17.
  • the electrolyte used herein is composed of approximately IN Ag PQ, and 62 weight percent of H PO
  • the insulating, non-conductive bobbin 16 can be made of either organic or inorganic material, any suitable organic polymer, ceramic or other inorganic material.
  • the end shoulders 19 thereof should be in engagement with the side of the silver can 12, and the bobbin thereby should have a surface extending in substantial parallelism with a portion of the wall of the can 12.
  • the electrolyte described herein will enhance the in situ charging of any silver cathode onto a metal anode.
  • the silver cathode is most advantageously the container itself, but any silver cathode may be used with this electrolyte.
  • the concentration of the metaphosphate added is between I O.lM(molar) and 0.01M, and the silver deposits produced herein will have good adherence to a gold anode wire or a gold film.
  • other conductive materials may be used as the anode wire or electrode, and these include carbon, boron carbide, iridium, rhodium, palladium and platinum.
  • Electron microscopy photos were taken of electrodeposited silver surfaces under varying conditions. Samples plated in the absence of metaphosphate had a granular structure with well defined growth of crystal faces; a lower silver ion concentration still retained the large grain structure but with less individual crystal definition. Growth in the presence of metaphosphate produced a smooth structure, consisting of very fine needles in the presence of a 1.0 normaHN) silver ion concentration. At a lower silver ion concentration the grains had little texture. The silver crystals produced in the presence of metaphosphate were much smaller and finer than those produced in the absence thereof. By comparison, crystals from a metaphosphate environment measured approximately l-2 microns in diameter, while those produced in the absence of metaphosphate measured approximately 6-10 microns. Consequently, the metaphosphate influenced silver deposits were much smoother than the others.
  • metaphosphate is discussed herein, as being an advantageous electrolytic additive
  • other compounds or additives that can be used to produce similar, although somewhat less desirable, results when used in conjunction with a phosphoric acid silver phosphate electrolyte includes succinic acid, lactic acid, sodium acetate, glycine and tartaric acid. All of these additives will produce smoother silver deposits when added to the phosphoric acid silver phosphate electrolyte than in their absence.
  • Tartaric acid for example, is an effective addition agent for producing smooth silver deposits by in situ charging, but has the disadvantage of lowering the stop voltage therein below the required level. This disadvantage, however, is
  • the electrolyte is approximately 62 weight percent phosphoric acid solution containing approximately LON Ag obtained from Ag PO and about 0.01M metaphosphate added to permit the in situ charging of the timer device by producing smooth silver deposits
  • an e le trolyge having 0.0lN t 2N 111 a solution 0 p osp one act rangmg mm weight percent to 85 weight percent would also be favorably affected by the addition of the small amounts of the plating additives of this invention.
  • the electrolyte of the present invention operates from temperatures below 55 to above 75 said electrolyte; said electrolyte comprising a composition of a silver salt in a solution of phosphoric acid, and having a plating additive of a metaphosphate added thereto.
  • said silver salt is a silver phosphate of between 0.0lN (normal) to 2.0N in a solution of phosphoric acid ranging from 30 weight percent to weight percent, and wherein said plating additive is present therein in a concentration of between 0.1M and 0.001M.
  • metaphosphate is in the form of sodium metaphosphate or meta-phosphoric acid.
  • metal anode electrode is at least one conductive material selected from the group consisting of carbon, boron carbide, iridium, rhodium, palladium, platinum and gold.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

A silver coulometer using a standard phosphoric acid - silver phosphate electrolyte has a metaphosphate added thereto to permit the in situ charging of the coulometer. The resultant silver deposit is smooth, bright, adherent, economic and more accurate than prior art deposits for silver coulometers.

Description

O Unlted States Patent [151 3,684,928 Roethlein [451 Aug. 15, 1972 [54] ELECTROLYTIC CELL WITH IN-SITU 3,052,830 9/1962 Ovshinsky ..317/231 CHARGING ELECTROLYTE 3,423,643 1/1969 Miller ..317/231 3,423,648 1/1969 Mintz ..317/231 [72] Invent f Bennmgmn 3,564,347 2/1971 Peck ..317/230 [73] Assignee: Sprague Electric Company, North Primary Examiner-James Kallam Ada M Attorney-Connolly & Hutz and Vincent l-l. Sweeney [21] Appl' 149984 A silver coulometer using a standard phosphoric acid silver phosphate electrolyte has a metaphosphate [52] 0.8. CI. ..317/230, 317/231, 252/622 added thereto t p rmit th in situ charging of the [51] Int. Cl. ..H0lg 9/02 cculometer- The resultant Silver deposit is smooth. [58] Field of Search ..317/230, 231, 233 bright, adh economic and m r a urate than prior art deposits for silver coulometers. [56] Rem-wees Cited. 7 Claim, 2 Drawing figures UNITED STATES PATENTS 2,791,473 5/l957 Mattox ..340/213 2 17 E5 28 5 E E:
ELECTROLYTIC CELL WITH IN-SITU CHARGING ELECTROLYTE BACKGROUND OF THE INVENTION This invention relates to electrolytic cells with an in situ charging electrolyte, and more particularly to plating additives for electrolytes for low charge density silver coulometers.
An electrochemical timing device which employs the principles of a silver coulometer activates a relay by a voltage rise occurring within the coulometer cell when a predetermined quantity of silver has been removed from the positive (anode) electrode. The voltage rise is caused by a shift in potential on the inert anode electrode, gold to its next highest electrode process, oxygen evolution. The initial quantity of silver on the anode along with the discharge current, therefore, determines the running time of the device.
The prior art teaches that anode-charging has been done in a separate plating bath (silver cyanide or the like), since plating in the silver phosphate/phosphoric acid electrolyte produces rough granular deposits with poor adherence. A cyanide bath produces smooth, bright deposits, but does have the disadvantage of redissolving some of the electro-deposited silver. Another disadvantage of depositing the silver in a separate plating bath, is that when the deposited silver is then placed into the timer device, there is always the danger of knocking off some of the silver. It would also be much more economical to deposit the silver in situ rather than in a separate plating bath prior to transferring same to the device to be used.
Accordingly, it is an object of the present invention to provide an economical and accurate system for plating silver on a gold substrate for subsequent use in an electrochemical timing device.
It is another object of this invention to provide an electrolyte plating additive that will allow this plating to take place, in situ, within the device itself, and will produce smooth silver deposits with good adherence.
SUMMARY OF THE INVENTION A standard silver coulometer electrolyte of silver phosphate and phosphoric acid contains a relatively small amount (about 0.01M) of a metaphosphate added thereto. This combination increases the overvoltage of the system, decreases the rate of surface diffusion of the silver adions, and permits the in situ charging of silver from the cathode electrode to a gold anode within the coulometer. The resultant silver deposit is smooth, bright, adherent, economic and more accurate than prior art deposits for silver coulometers.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a side view in section of an electrochemical timer with the electrolyte of the present invention; and
FIG. 2 is an enlarged view of region 28 of FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENT It has been found that certain plating additives when added in small quantities (about 0.01 molar) to a standard phosphoric acid silver phosphate coulometer electrolyte enhance a silver deposit from cathode to anode to a considerable degree when used in conjunction with a silver coulometer. This is especially true of low charge density silver coulometers. These plating additives provide the additional benefit of increased adhesion between the silver deposit and a gold substrate. The addition of these compounds to the plating electrolyte provides a more suitable means of charging a silver coulometer in situ, from within the silver container an operation that is more economical and more accurate than a separate plating bath.
The electrolyte containing the metaphosphate additive can advantageously be used in an electrochemical timer device such as is described in US. Letters Pat.
- No. 3,564,347 issued on Feb. 16, 1971, and assigned to the same assignee as is involved herein. Such a device is best described by reference to the drawings.
FIG. 1 of the drawings shows an electrochemical timer 10 that has a silver cathode can 12. The cathode can 12 has a metal cathode lead 14 affixed thereto. Located within can 12 is an insulating bobbin 16 having a threaded central shaft 17. Located down through the center of bobbin l6 and helically wound onto threaded central shaft 17 of said bobbin is a gold or other metal anode wire 18 which is to be plated with silver from the cathode can 12. Alternatively the metal anode could be in the form of a thin metal film instead of a wound wire. Placed in contact with the anode and cathode is an electrolyte 20. Bobbin 16 is provided with end shoulders 19 which fit against the inside surface of cathode container 12. A metal anode lead 22 is in contact with anode wire 18 at point 24. Located about the juncture of anode lead 22 and anode wire 18, and closing can 12, is a resilient sealing bung 26. That part of anode wire 18 in the center of bobbin 16 is not exposed to the electrolyte, and, thus, is not part of the active anode of the timer. Region 28 of FIG. 1 is shown enlarged in FIG. 2. This Figure illustrates that electrolyte 20 is available in the trough 30 of the threaded central shaft 17. The electrolyte used herein is composed of approximately IN Ag PQ, and 62 weight percent of H PO The insulating, non-conductive bobbin 16 can be made of either organic or inorganic material, any suitable organic polymer, ceramic or other inorganic material. The end shoulders 19 thereof should be in engagement with the side of the silver can 12, and the bobbin thereby should have a surface extending in substantial parallelism with a portion of the wall of the can 12. Speaking more generally, the electrolyte described herein will enhance the in situ charging of any silver cathode onto a metal anode. The silver cathode is most advantageously the container itself, but any silver cathode may be used with this electrolyte.
Prior art techniques have plated silver onto the metal anode wire 18 prior to inserting it into the cathode can 12 because silver deposits produced in situ therein had very large granules and therefore, much less accuracy when used in electrochemical timer devices. However, it has been discovered that this silver plating of the metal anode wire 18 can advantageously be carried out in situ directly within the electrochemical timer 10 when at least 0.001M metaphosphate in the form of metaphosphoric acid or sodium metaphosphate is added to the phosphoric acid silver phosphate electrolyte currently being used with such devices. The most advantageous results are produced when the concentration of the metaphosphate added is between I O.lM(molar) and 0.01M, and the silver deposits produced herein will have good adherence to a gold anode wire or a gold film. It should be noted that other conductive materials may be used as the anode wire or electrode, and these include carbon, boron carbide, iridium, rhodium, palladium and platinum.
With no intention of being bound by any theory, it is believed that adsorption of metaphosphate takes place on low energy sites of the gold substrate in a manner which blocks those sites, and silver deposition is then forced to higher energy sites with a subsequent increase in overvoltage. As coverage increases the overvoltage rises so that the activation energy needed for nucleus formation is surpassed, and the rate of surface diffusion of the silver adions is diminished, and two dimensional nucleation of the silver adions becomes a part of the overall electrode process. Silver adions condense together without random-walking separately to lattice building sites, and two dimensional nucleation produces smaller grained deposits and, subsequently, smoother silver deposits having good adherence. And, of course, a smoother silver deposit will produce a more accurate timer device.
Electron microscopy photos were taken of electrodeposited silver surfaces under varying conditions. Samples plated in the absence of metaphosphate had a granular structure with well defined growth of crystal faces; a lower silver ion concentration still retained the large grain structure but with less individual crystal definition. Growth in the presence of metaphosphate produced a smooth structure, consisting of very fine needles in the presence of a 1.0 normaHN) silver ion concentration. At a lower silver ion concentration the grains had little texture. The silver crystals produced in the presence of metaphosphate were much smaller and finer than those produced in the absence thereof. By comparison, crystals from a metaphosphate environment measured approximately l-2 microns in diameter, while those produced in the absence of metaphosphate measured approximately 6-10 microns. Consequently, the metaphosphate influenced silver deposits were much smoother than the others.
While a metaphosphate is discussed herein, as being an advantageous electrolytic additive, other compounds or additives that can be used to produce similar, although somewhat less desirable, results when used in conjunction with a phosphoric acid silver phosphate electrolyte includes succinic acid, lactic acid, sodium acetate, glycine and tartaric acid. All of these additives will produce smoother silver deposits when added to the phosphoric acid silver phosphate electrolyte than in their absence. Tartaric acid, for example, is an effective addition agent for producing smooth silver deposits by in situ charging, but has the disadvantage of lowering the stop voltage therein below the required level. This disadvantage, however, is
amenable by effective concentration changes.
Most advantageous results are obtained where the electrolyte is approximately 62 weight percent phosphoric acid solution containing approximately LON Ag obtained from Ag PO and about 0.01M metaphosphate added to permit the in situ charging of the timer device by producing smooth silver deposits However, an e le trolyge having 0.0lN t 2N 111 a solution 0 p osp one act rangmg mm weight percent to 85 weight percent would also be favorably affected by the addition of the small amounts of the plating additives of this invention. The electrolyte of the present invention as described above operates from temperatures below 55 to above 75 said electrolyte; said electrolyte comprising a composition of a silver salt in a solution of phosphoric acid, and having a plating additive of a metaphosphate added thereto.
2. The in situ charged electrolytic cell of claim 1 wherein said silver salt is a silver phosphate of between 0.0lN (normal) to 2.0N in a solution of phosphoric acid ranging from 30 weight percent to weight percent, and wherein said plating additive is present therein in a concentration of between 0.1M and 0.001M.
3. The in situ charged electrolytic cell of claim 2 wherein said silver salt is a silver phosphate of approximately lN in a solution of approximately 62 weight percent of phosphoric acid, and wherein said plating additive is approximately 0.01 M metaphosphate.
4. The in situ charged electrolytic cell of claim 2 wherein said metaphosphate is in the form of sodium metaphosphate or meta-phosphoric acid.
5. The in situ charged electrolytic cell of claim 2 wherein said silver cathode electrode is in the form of the cell container, said electrolyte being in said container.
6. The in situ charged electrolytic cell of claim 5 wherein said metal anode electrode is at least one conductive material selected from the group consisting of carbon, boron carbide, iridium, rhodium, palladium, platinum and gold.
7. The in situ charged electrolytic cell of claim 6 wherein said metal anode electrode is a gold wire or a thin film of gold.

Claims (6)

  1. 2. The in situ charged electrolytic cell of claim 1 wherein said silver salt Is a silver phosphate of between 0.01N (normal) to 2.0N in a solution of phosphoric acid ranging from 30 weight percent to 85 weight percent, and wherein said plating additive is present therein in a concentration of between 0.1M and 0.001M.
  2. 3. The in situ charged electrolytic cell of claim 2 wherein said silver salt is a silver phosphate of approximately 1N in a solution of approximately 62 weight percent of phosphoric acid, and wherein said plating additive is approximately 0.01M metaphosphate.
  3. 4. The in situ charged electrolytic cell of claim 2 wherein said metaphosphate is in the form of sodium metaphosphate or meta-phosphoric acid.
  4. 5. The in situ charged electrolytic cell of claim 2 wherein said silver cathode electrode is in the form of the cell container, said electrolyte being in said container.
  5. 6. The in situ charged electrolytic cell of claim 5 wherein said metal anode electrode is at least one conductive material selected from the group consisting of carbon, boron carbide, iridium, rhodium, palladium, platinum and gold.
  6. 7. The in situ charged electrolytic cell of claim 6 wherein said metal anode electrode is a gold wire or a thin film of gold.
US149984A 1971-06-04 1971-06-04 Electrolytic cell with in-situ charging electrolyte Expired - Lifetime US3684928A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14998471A 1971-06-04 1971-06-04

Publications (1)

Publication Number Publication Date
US3684928A true US3684928A (en) 1972-08-15

Family

ID=22532632

Family Applications (1)

Application Number Title Priority Date Filing Date
US149984A Expired - Lifetime US3684928A (en) 1971-06-04 1971-06-04 Electrolytic cell with in-situ charging electrolyte

Country Status (2)

Country Link
US (1) US3684928A (en)
CA (1) CA953684A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2715318A1 (en) * 1977-04-05 1978-10-12 Dmitrenko Electrolyte for integrator using silver electrolysis cell - contains soln. of silver phosphate and phosphoric acid

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2791473A (en) * 1955-01-31 1957-05-07 Gen Electric Elapsed time indicator
US3052830A (en) * 1959-02-16 1962-09-04 Ovitron Corp Electrical control device and process
US3423648A (en) * 1966-01-10 1969-01-21 Bissett Berman Corp Electrolytic cell with electrically conductive masking surface
US3423643A (en) * 1966-05-31 1969-01-21 Bissett Berman Corp Electrolytic cell with electrolyte containing silver salt
US3564347A (en) * 1969-01-21 1971-02-16 Sprague Electric Co Electrochemical timer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2791473A (en) * 1955-01-31 1957-05-07 Gen Electric Elapsed time indicator
US3052830A (en) * 1959-02-16 1962-09-04 Ovitron Corp Electrical control device and process
US3423648A (en) * 1966-01-10 1969-01-21 Bissett Berman Corp Electrolytic cell with electrically conductive masking surface
US3423643A (en) * 1966-05-31 1969-01-21 Bissett Berman Corp Electrolytic cell with electrolyte containing silver salt
US3564347A (en) * 1969-01-21 1971-02-16 Sprague Electric Co Electrochemical timer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2715318A1 (en) * 1977-04-05 1978-10-12 Dmitrenko Electrolyte for integrator using silver electrolysis cell - contains soln. of silver phosphate and phosphoric acid

Also Published As

Publication number Publication date
CA953684A (en) 1974-08-27

Similar Documents

Publication Publication Date Title
US3944430A (en) Rechargeable galvanic cell and electrolyte therefor-II
US4107407A (en) Battery and grid for positive electrode for lead storage batteries
US4510218A (en) Electrolyte for zinc-bromine storage batteries
Arouete et al. Controlled current deposition of zinc from alkaline solution
US3642539A (en) Secondary battery with indate ion in the electrolyte
US3853625A (en) Zinc fibers and needles and galvanic cell anodes made therefrom
US3653967A (en) Positive electrode for use in nickel cadmium cells and the method for producing same and products utilizing same
US3564347A (en) Electrochemical timer
US3326721A (en) Nickel cadmium batteries
US2590584A (en) Sea-water battery
US3790454A (en) Electrodeposition of sponge nickel
US3684928A (en) Electrolytic cell with in-situ charging electrolyte
US4133738A (en) Electrode with a graded electrical resistance substrate
US4143216A (en) Lead crystal storage cells and storage devices made therefrom
US3873367A (en) Zinc-container electrode
US4540476A (en) Procedure for making nickel electrodes
US3844838A (en) Alkaline cells with anodes made from zinc fibers and needles
Popov et al. Fundamental aspects of plating technology II: morphological aspects of metal electrodeposition from complex salt solutions
US2492206A (en) Lead perchloric acid primary cell
US3905833A (en) Cyanide and mercury corrosion inhibitors for zinc alkaline galvanic cells
Dirkse The behavior of the zinc electrode in alkaline solutions: IV. The effect of ionic strength in the tafel region
Boggio et al. Effects of antimony on the electrochemical behaviour of lead dioxide in sulphuric acid
KR830000240B1 (en) Manufacturing method of nickel electrode
US3966494A (en) Impregnation of electrodes for nickel cadmium batteries
US4399005A (en) Method of nickel electrode production