US3684175A - Reverberating liquid discharge device having random discharge pattern - Google Patents

Reverberating liquid discharge device having random discharge pattern Download PDF

Info

Publication number
US3684175A
US3684175A US147483A US3684175DA US3684175A US 3684175 A US3684175 A US 3684175A US 147483 A US147483 A US 147483A US 3684175D A US3684175D A US 3684175DA US 3684175 A US3684175 A US 3684175A
Authority
US
United States
Prior art keywords
opening
liquid
chamber
outlet
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US147483A
Inventor
John O Hruby Jr
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rain Jet Corp
Original Assignee
Rain Jet Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rain Jet Corp filed Critical Rain Jet Corp
Application granted granted Critical
Publication of US3684175A publication Critical patent/US3684175A/en
Assigned to RAIN JET CORP. reassignment RAIN JET CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: IRRIGATION ENGINEERING AND MANUFACTURING CO., BY: JOHN DREW; JOHN O. HRUBY, JR. ; GERALD W. FRASIER, PARTNERS
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B17/00Apparatus for spraying or atomising liquids or other fluent materials, not covered by the preceding groups
    • B05B17/08Fountains
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S239/00Fluid sprinkling, spraying, and diffusing
    • Y10S239/01Pattern sprinkler

Definitions

  • ABSTRACT A liquid discharge device, having no moving parts, [52] US. Cl ..239/22, 239/1310. 1, 239/4285 randomly pulsates liquid discharged therefrom, so as [51] hit. Cl. ..B05b 17/08 to randgmly vary the Shape and Configuration of the Field of Search -239/DIG- 17,22,231 discharge pattern. Switching between discharge pat- ,4 428'5 terns occurs entirely automatically at random intervals.
  • Liquid discharge devices which inherently cause a reverberating and pulsating effect to liquid discharged therefrom are known; see my prior U.S. Pat. Nos. 3,082,961, 3,341,133, and 3,547,351, each assigned to the assignee of the present invention, and see U.S. Pat. No. 3,301,493 to W. W. Frempter also assigned to the assignee of the present invention.
  • the structure which is common to all of these patents achieves liquid reverberation in a nozzle having a body defining an elongate inner chamber having ends spaced apart from each other by the length of the chamber.
  • a liquid inlet opening is defined adjacent one end of the chamber and has an effective area less than the mean transverse cross-sectional area of the chamber.
  • a liquid outlet opening is defined through the body laterally of the chamber and has an effective area greater than that of the liquid inlet opening.
  • the reverberation effect operates upon liquid in the chamber to produce a liquid discharge which is comprised of discrete droplets which are expelled through the outlet opening along paths which vary within wide limits with the reverberation effect.
  • the liquid discharge device of this invention has no moving parts and is of the type above described in that the liquid discharged therefrom reverberates and pulsates.
  • such devices are specially structured to produce a liquid discharge capable of assuming numerous patterns of varying shape and configuration in an entirely random manner. Switching between discharge patterns occurs entirely automatically at random intervals.
  • Devices according to this invention are particularly useful as ornamental fountain nozzles.
  • the uniquely random and unpredictable discharge pattern is produced by defining an aspiration opening laterally through an outlet tube between opposite ends of the tube.
  • the outlet tube is mounted to the device's body with one end thereof in liquid flow communication with the liquid outlet opening from the body.
  • the mean transverse cross-sectional area of the outlet tube is at least as great as the effective area of the liquid outlet opening from the body and is substantially greater than the effective area of the aspiration opening.
  • FIG. 1 is a cross-sectional view of a liquid discharge device of this invention:
  • FIG. 2 is a cross-section view taken along lines 22 of FIG. 1;
  • FIG. 3 is a view taken along lines 3--3 of FIG. 1;
  • FIG. 4 is a view taken along lines 4-4 of FIG. 1;
  • FIG. 5 is a cross-sectional view taken along lines 5- 5 of FIG. 1;
  • FIG. 6 is a view similar to that of FIG. 3 concerning another liquid discharge device according to this invention.
  • FIG. 7 shows a liquid discharge fountain having a plurality of identical devices of this invention, each device shown producing a differing discharge pattern.
  • FIG. 1 A liquid discharge device 10 according to this invention is shown in FIG. 1.
  • Device 10 has a tubular body 12 of cylindrical configuration, such as, but not confined to, a right-circular cylinder.
  • Body 12 is hollow, thereby defining an inner chamber 14, and has opposite ends 16 and 18.
  • An inlet plug 20 is disposed within the body adjacent body end 16 to close the body tube but for an inlet opening 22 which, as shown in FIG. 2, is formed through plug 20.
  • a segment 23 of body 12 adjacent end 16 is threaded for screwing the device onto the threaded conduit of a source of pressurized liquid (not shown).
  • inlet opening 22 The precise position of inlet plug within chamber 14 is not critical for reverberation to occur, but-it must be between an outlet opening 24 of the body and end 16. Furthermore, the precise shape of inlet opening 22 is not critical to the reverberation phenomena produced in the device; what is important is that inlet opening 22 have an effective cross-sectional area which is less than that of outlet opening 24 of the body and is substantially less than the mean transverse area of chamber 14. For good results, it is desired that inlet opening 22 have substantially the configuration shown in FIG. 2 and be aligned in the body with outlet opening 24 from chamber 14.
  • Outlet opening 24, shown more clearly in FIG. 3, is defined laterally through body 12 at a point therealong substantially closer to body end 18 than to end 16.
  • the precise shape of outlet opening 24 is not critical for reverberation to occur. It is important, however, that the effective cross-sectional area of opening 24 be greater than that of inlet opening 22.
  • the precise location of outlet opening 24 along body 12 is not critical as long as it is laterally through body 12 and between the ends of the chamber.
  • a solid plug 26 is disposed in body tube 12 at its end 18 and closes such end.
  • liquid entering chamber 14 and passing through inlet opening 22 is directed out of the chamber through outlet opening 24. It is believed that the fact that outlet opening 24 has a greater crosssectional area than that of inlet opening 22, coupled with the fact that the outlet opening is located laterally through the side of the chamber and not precisely at one end thereof, results in the desired reverberation and pulsation phenomena.
  • Tube 28 of cylindrical configuration.
  • Tube 28 is hollow thereby defining therein a chamber 30 having opposite open ends 32 and 34 spaced apart by the length of chamber 30.
  • Tube 28 is preferably right-circular cylindrical in shape and is mounted to body 12 with open end 32 of chamber 30 in liquid flow communication with outlet opening 24. Mounting may be accomplished by numerous known means, such as a saddle mount 36 as shown in FIG. 1.
  • Tube 28 is preferably mounted with its axis perpendicular to the axis of body 12. Also, it is preferred that chamber 30 have a length which is greater than its diameter, in the case of a round chamber, or greater than its mean transverse dimension where the chamber is other than circular in cross-section.
  • Open end 32 of chamber 30 defines a liquid inlet opening into tube 28; whereas open end 34 defines a liquid outlet opening for the device.
  • the liquid discharged from device outlet opening 34 be capable of assuming numerous patterns of varying shape and configuration in an entirely random manner with switching between patterns occurring entirely automatically at random intervals.
  • FIG. 1 illustrates the preferred situation for smaller devices according to this invention
  • FIG. 6 illustrates the preferred situation for larger devices according to this invention.
  • an aspiration opening 38 be defined laterally through outlet tube 28 between opposite open ends 32 and 34 thereof. It is further essential that the effective area of aspiration opening 38 be substantially less than the mean transverse cross-sectional area of outlet tube 28.
  • the precise location of aspiration opening along tube 28 between ends 32 and 34 is not critical. Variance of the position will affect the periodicity of pattern change, however. Such variance also has an effect on the nature and extent of each discharge pattern.
  • the randomness and periodicity can be controlled in part by regulating the liquid flow rate through the device. It was found that a range of flow rates exists within which the pattern randomness phenomenon may occur for each device of this invention. A liquid flow rate less than this range may produce only a low type of pattern, whereas a liquid flow rate higher than such range may produce only a high type pattern. There is an optimum liquid flow rate for each nozzle of any given configuration and size which can be determined by trial and error.
  • water at a rate of about 250 gpm was supplied to device 10 wherein the body 12 was defined by nominal 3 inch Schedule polyvinyl chloride pipe having a length of about 20 inches, inlet plug 20 was about 8 inches from body end 16 and had a length of about 3 inches, inlet opening 22 had an area of about 1.75 square inches, and outlet opening 24 was centered about 5 inches from body end 18 and had a diameter of about 2 inches.
  • the outlet tube 28 was about 64; inches.
  • the outlet tube was defined by a piece of 2 inch Schedule 40 polyvinyl chloride pipe having an inner diameter of about 2 inches.
  • the aspiration opening had a diameter of l inch and was about 6 inches from device outlet opening 34. It was found that random pattern formations were achievable by this advice with water flow rates within the range of 200 to 300 gpm, 250 gpm being the optimum, however.
  • FIG. 6 pertains to a device 60 generally in accord with the foregoing description but which is larger than the exemplary device described immediately above.
  • opening 24' is round and outlet tube 28' has an inner diameter which is essentially equal to but no smaller than the diameter of hole 24.
  • devices according to this invention may be operated with maximum submergence in a fountain pool, thus producing an aesthetically appealing display
  • discharge device 10 include an air supply tube 60 which extends along the exterior of outlet tube 28' from an open upper end 61 which is disposed coplanar with the upper end of the outlet tube.
  • the air supply tube has a closed lower end 62 disposed below the aspiration opening.
  • the interior of the air supply tube is communicated to the aspiration opening 38 by an outlet opening 63 which is registered with the aspiration opening. Opening 63 is sized to prevent restriction of the aspiration opening.
  • the device may be disposed in a fountain pool with the aspiration opening to the outlet tube located physically below the water level in the pool.
  • FIG. 7 shows four identical devices 40, 42, 44 and 46 of this invention, each similar to device 10.
  • Four differently configured discharge patterns 48, 50, 52 and 54 are shown. These four patterns illustrate different discharge patterns which may be produced by any one of devices 40, 42, 44 and 46 operating under constant applied pressure and flowrate conditions.
  • patterns 48, 50 and 52 are exemplary of low patterns which are bubbly,- spouting and churning
  • pattern 54 is exemplary of a high pattern in the form of a straight stream discharge.
  • Each of the devices switches between a low and high pattern randomly, without warning, and during different periods of time. This randomness in the discharge characteristic of the devices is a principal factor contributing to the utility and appeal of the devices.
  • device 10 has been described with regard primarily to its aesthetic values, it has been discovered that it functions well as a foam nozzle. More specifically, a foamant may be sucked into tube 28 through aspiration opening from a foamant supply (not shown) via a tube (not shown) connected to the aspiration opening, thereby producing a foaming liquid discharge.
  • a liquid discharge device comprising:
  • a body defining an elongate inner chamber having ends spaced apart from each other by the length of the chamber;
  • a liquid outlet opening defied through the body laterally of the chamber and having an effective area greater than that of the liquid inlet opening
  • an outlet tube having opposite open ends mounted to the bodywith one end thereof in liquid flow communication with the liquid outlet opening from the body, the mean transverse cross-sectional area of the cavity within the outlet tube being at least as great as the effective area of the body outlet opening; and I an aspiration opening defined laterally through the outlet tube between the opposite ends thereof and having an effective area substantially less than the mean transverse cross-sectional area of the outlet tube.

Landscapes

  • Nozzles (AREA)

Abstract

A liquid discharge device, having no moving parts, randomly pulsates liquid discharged therefrom, so as to randomly vary the shape and configuration of the discharge pattern. Switching between discharge patterns occurs entirely automatically at random intervals.

Description

United States Patent Hruby, Jr. 1 51 Aug. 1S, 1972 [54] REVERBERATING LIQUID 3,533,553 10/1971 Britzman ..239/22 X DISCHARGE DEVICE HAVING 3,558,053 1/ 1971 Hruby ..239/17 RANDOM DISCHARGE PATTERN 3,602,434 8/1971 Hruby ..239/17 3,630,443 12/1971 Hruby ..239/17 [72] Inventor: John O. Hruby, Jr., Burbank, Calif. 73 Assignee: Rain JetCorp., Burbank, Ca1if. 'f 'f Henson Asszstant Examiner-Edwin D. Grant [22] Flledi May 27, 19 1 Attorney-Christie, Parker & Hale [21] App1.No.: 147,483 I [57] ABSTRACT A liquid discharge device, having no moving parts, [52] US. Cl ..239/22, 239/1310. 1, 239/4285 randomly pulsates liquid discharged therefrom, so as [51] hit. Cl. ..B05b 17/08 to randgmly vary the Shape and Configuration of the Field of Search -239/DIG- 17,22,231 discharge pattern. Switching between discharge pat- ,4 428'5 terns occurs entirely automatically at random intervals. [56] References Cited 8 Claims, 7 Drawing Figures UNITED STATES PATENTS 3,330,486 7/1967 Semple ..239/17 X REVERBERATING LIQUID DISCHARGE DEVICE HAVING RANDOM DISCHARGE PATTERN BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to liquid discharge devices of the type having no moving parts and which reverberate and pulsate the liquid within the device to produce a discharge of discrete droplets.
2. Description of the Prior Art Liquid discharge devices which inherently cause a reverberating and pulsating effect to liquid discharged therefrom are known; see my prior U.S. Pat. Nos. 3,082,961, 3,341,133, and 3,547,351, each assigned to the assignee of the present invention, and see U.S. Pat. No. 3,301,493 to W. W. Frempter also assigned to the assignee of the present invention.
The structure which is common to all of these patents achieves liquid reverberation in a nozzle having a body defining an elongate inner chamber having ends spaced apart from each other by the length of the chamber. A liquid inlet opening is defined adjacent one end of the chamber and has an effective area less than the mean transverse cross-sectional area of the chamber. A liquid outlet opening is defined through the body laterally of the chamber and has an effective area greater than that of the liquid inlet opening.
It is the area of the inlet opening relative to the chamber and the area of the outlet opening relative to the inlet opening, in combination with the volume and configuration of the chamber, which provides the reverberating effect. The reverberation effect operates upon liquid in the chamber to produce a liquid discharge which is comprised of discrete droplets which are expelled through the outlet opening along paths which vary within wide limits with the reverberation effect.
SUMMARY OF THE INVENTION The liquid discharge device of this invention has no moving parts and is of the type above described in that the liquid discharged therefrom reverberates and pulsates. In this invention, however, such devices are specially structured to produce a liquid discharge capable of assuming numerous patterns of varying shape and configuration in an entirely random manner. Switching between discharge patterns occurs entirely automatically at random intervals. Devices according to this invention are particularly useful as ornamental fountain nozzles.
In viewing the discharge produced by a device of the present invention, it appears as if some person is somehow regulating the liquid flow rate and/or outlet opening to achieve such random patterns. Such, however, is not the case. One moment the pattern can be in the form of a churning and bubbling water dome only feet high and the next moment the discharge may spurt up feet in a straight stream. After a while, the discharge descends again and may assume yet another configuration. Also, the time span between high and low discharges may differ during each cycle.
The variance of discharge patterns, the random changes, the unscheduled and apparently unpredictable cyclic periods occur completely automatically once an optimum liquid flow rate is established. No external control, either mechanical or human, is used to achieve the desirable pattern randomness.
Generally speaking, the uniquely random and unpredictable discharge pattern is produced by defining an aspiration opening laterally through an outlet tube between opposite ends of the tube. The outlet tube is mounted to the device's body with one end thereof in liquid flow communication with the liquid outlet opening from the body. The mean transverse cross-sectional area of the outlet tube is at least as great as the effective area of the liquid outlet opening from the body and is substantially greater than the effective area of the aspiration opening.
Although the precise theory behind discharge pattern randomness is not entirely known, it is known to be caused by the above structural properties in combination with an optimum liquid flow rate to be discerned empirically. Inclusion of the aspiration opening in the outlet tube is essential for patternrandomness. Air is sucked into this opening and is led into the liquid stream through the outlet tube. This air intake is apparently the main cause of pattern randomness.
BRIEF DESCRIPTION OF THE DRAWING The above-mentioned and other aspects and advantages of the present invention are more fully described with reference to the accompanying drawing. wherein:
FIG. 1 is a cross-sectional view of a liquid discharge device of this invention:
FIG. 2 is a cross-section view taken along lines 22 of FIG. 1;
FIG. 3 is a view taken along lines 3--3 of FIG. 1;
FIG. 4 is a view taken along lines 4-4 of FIG. 1;
FIG. 5 is a cross-sectional view taken along lines 5- 5 of FIG. 1;
FIG. 6 is a view similar to that of FIG. 3 concerning another liquid discharge device according to this invention; and
FIG. 7 shows a liquid discharge fountain having a plurality of identical devices of this invention, each device shown producing a differing discharge pattern.
DESCRIPTION OF THE PREFERRED EMBODIMENTS A liquid discharge device 10 according to this invention is shown in FIG. 1. Device 10 has a tubular body 12 of cylindrical configuration, such as, but not confined to, a right-circular cylinder. Body 12 is hollow, thereby defining an inner chamber 14, and has opposite ends 16 and 18. An inlet plug 20 is disposed within the body adjacent body end 16 to close the body tube but for an inlet opening 22 which, as shown in FIG. 2, is formed through plug 20. A segment 23 of body 12 adjacent end 16 is threaded for screwing the device onto the threaded conduit of a source of pressurized liquid (not shown).
The precise position of inlet plug within chamber 14 is not critical for reverberation to occur, but-it must be between an outlet opening 24 of the body and end 16. Furthermore, the precise shape of inlet opening 22 is not critical to the reverberation phenomena produced in the device; what is important is that inlet opening 22 have an effective cross-sectional area which is less than that of outlet opening 24 of the body and is substantially less than the mean transverse area of chamber 14. For good results, it is desired that inlet opening 22 have substantially the configuration shown in FIG. 2 and be aligned in the body with outlet opening 24 from chamber 14.
Outlet opening 24, shown more clearly in FIG. 3, is defined laterally through body 12 at a point therealong substantially closer to body end 18 than to end 16. As with the inlet opening, the precise shape of outlet opening 24 is not critical for reverberation to occur. It is important, however, that the effective cross-sectional area of opening 24 be greater than that of inlet opening 22. Furthermore, the precise location of outlet opening 24 along body 12 is not critical as long as it is laterally through body 12 and between the ends of the chamber.
, Variations in the position of outlet opening 22 along the body will produce variations in the degree of reverberation, however.
A solid plug 26 is disposed in body tube 12 at its end 18 and closes such end. Thus, liquid entering chamber 14 and passing through inlet opening 22 is directed out of the chamber through outlet opening 24. It is believed that the fact that outlet opening 24 has a greater crosssectional area than that of inlet opening 22, coupled with the fact that the outlet opening is located laterally through the side of the chamber and not precisely at one end thereof, results in the desired reverberation and pulsation phenomena.
Device includes an outlet tube 28 of cylindrical configuration. Tube 28 is hollow thereby defining therein a chamber 30 having opposite open ends 32 and 34 spaced apart by the length of chamber 30. Tube 28 is preferably right-circular cylindrical in shape and is mounted to body 12 with open end 32 of chamber 30 in liquid flow communication with outlet opening 24. Mounting may be accomplished by numerous known means, such as a saddle mount 36 as shown in FIG. 1.
Tube 28 is preferably mounted with its axis perpendicular to the axis of body 12. Also, it is preferred that chamber 30 have a length which is greater than its diameter, in the case of a round chamber, or greater than its mean transverse dimension where the chamber is other than circular in cross-section.
Open end 32 of chamber 30 defines a liquid inlet opening into tube 28; whereas open end 34 defines a liquid outlet opening for the device. As is described in greater detail below, it is an important feature of this invention that the liquid discharged from device outlet opening 34 be capable of assuming numerous patterns of varying shape and configuration in an entirely random manner with switching between patterns occurring entirely automatically at random intervals. To this end, it has been found important to structure tube 28 such that its mean transverse cross-sectional area is at least as great as, and preferably greater than, the effective area of body outlet opening 24; FIG. 1 illustrates the preferred situation for smaller devices according to this invention, while FIG. 6 illustrates the preferred situation for larger devices according to this invention.
It is essential, in order for the random pattern phenomenon to occur, that an aspiration opening 38 be defined laterally through outlet tube 28 between opposite open ends 32 and 34 thereof. It is further essential that the effective area of aspiration opening 38 be substantially less than the mean transverse cross-sectional area of outlet tube 28. The precise location of aspiration opening along tube 28 between ends 32 and 34 is not critical. Variance of the position will affect the periodicity of pattern change, however. Such variance also has an effect on the nature and extent of each discharge pattern.
Although the reason for the behavior of the liquid discharged from device 10 is not entirely known, it is believed to involve the dimensional relationship as above described in combination with the suction effects of aspiration opening 38. More specifically, air is sucked into the liquid flowing through tube 28 and it mixes with and aerates it. This interaction of air and liquid causes the discharge to fluctuate between rela' tively low discharges of a bubbling and churning nature to relatively high straight stream discharges. The periodicity between highs" and lows" varies randomly. Furthermore, the patterns for high and low discharges usually are different during each cycle.
This random and entirely automatic fluctuation is most desirable since it givesthe effect of the device being preprogrammed. The randomness and periodicity can be controlled in part by regulating the liquid flow rate through the device. It was found that a range of flow rates exists within which the pattern randomness phenomenon may occur for each device of this invention. A liquid flow rate less than this range may produce only a low type of pattern, whereas a liquid flow rate higher than such range may produce only a high type pattern. There is an optimum liquid flow rate for each nozzle of any given configuration and size which can be determined by trial and error.
In a preferred embodiment, water at a rate of about 250 gpm was supplied to device 10 wherein the body 12 was defined by nominal 3 inch Schedule polyvinyl chloride pipe having a length of about 20 inches, inlet plug 20 was about 8 inches from body end 16 and had a length of about 3 inches, inlet opening 22 had an area of about 1.75 square inches, and outlet opening 24 was centered about 5 inches from body end 18 and had a diameter of about 2 inches. The outlet tube 28 was about 64; inches. The outlet tube was defined by a piece of 2 inch Schedule 40 polyvinyl chloride pipe having an inner diameter of about 2 inches. The aspiration opening had a diameter of l inch and was about 6 inches from device outlet opening 34. It was found that random pattern formations were achievable by this advice with water flow rates within the range of 200 to 300 gpm, 250 gpm being the optimum, however.
FIG. 6 pertains to a device 60 generally in accord with the foregoing description but which is larger than the exemplary device described immediately above. In device 60, opening 24' is round and outlet tube 28' has an inner diameter which is essentially equal to but no smaller than the diameter of hole 24.
In order that devices according to this invention may be operated with maximum submergence in a fountain pool, thus producing an aesthetically appealing display,
it is preferred that discharge device 10 include an air supply tube 60 which extends along the exterior of outlet tube 28' from an open upper end 61 which is disposed coplanar with the upper end of the outlet tube. The air supply tube has a closed lower end 62 disposed below the aspiration opening. The interior of the air supply tube is communicated to the aspiration opening 38 by an outlet opening 63 which is registered with the aspiration opening. Opening 63 is sized to prevent restriction of the aspiration opening. Thus,
device may be disposed in a fountain pool with the aspiration opening to the outlet tube located physically below the water level in the pool.
FIG. 7 shows four identical devices 40, 42, 44 and 46 of this invention, each similar to device 10. Four differently configured discharge patterns 48, 50, 52 and 54 are shown. These four patterns illustrate different discharge patterns which may be produced by any one of devices 40, 42, 44 and 46 operating under constant applied pressure and flowrate conditions. For instance, patterns 48, 50 and 52 are exemplary of low patterns which are bubbly,- spouting and churning, whereas pattern 54 is exemplary of a high pattern in the form of a straight stream discharge. Each of the devices switches between a low and high pattern randomly, without warning, and during different periods of time. This randomness in the discharge characteristic of the devices is a principal factor contributing to the utility and appeal of the devices.
Although device 10 has been described with regard primarily to its aesthetic values, it has been discovered that it functions well as a foam nozzle. More specifically, a foamant may be sucked into tube 28 through aspiration opening from a foamant supply (not shown) via a tube (not shown) connected to the aspiration opening, thereby producing a foaming liquid discharge.
Although the present invention has been described with regard to a specifically described embodiment, it will be understood that various modifications and alterations may be made to the described structure without departing from the spirit of the invention. For this reason, the foregoing description should not be regarded as exhausting or limiting the forms which this invention may take.
What is claimed is:
- l. A liquid discharge device comprising:
a. a body defining an elongate inner chamber having ends spaced apart from each other by the length of the chamber;
b. a liquid inlet opening adjacent one end of the chamber and having an effective area less than the mean transverse cross-sectional area of the chamber;
. a liquid outlet opening defied through the body laterally of the chamber and having an effective area greater than that of the liquid inlet opening;
an outlet tube having opposite open ends mounted to the bodywith one end thereof in liquid flow communication with the liquid outlet opening from the body, the mean transverse cross-sectional area of the cavity within the outlet tube being at least as great as the effective area of the body outlet opening; and I an aspiration opening defined laterally through the outlet tube between the opposite ends thereof and having an effective area substantially less than the mean transverse cross-sectional area of the outlet tube.
2. The device of claim 1, wherein the aspiration opening is closer to the one end of the tube than to the other end of the tube.
3. The device of claim 1, wherein the liquid inlet opening is located eccentric to the elongate extent of the body inner chamber.
4. The device of claim 3, wherein the liquid inlet opening is aligned with the outlet opening from the body chamber.
5. The device of claim 1, wherein the cavity within the outlet tube has a length which exceeds the mean transverse dimension thereof.
6. The device of claim 5, wherein the mean crosssectional area of the cavity is greater than the effective area of the outlet opening from the body.
7. The device of claim 1, wherein the cavity is of constant cross-sectional area between the opposite ends thereof.
8. The device of claim 5, wherein the mean crossse'ctional area of the cavity is essentially equal to the effective area of the outlet opening from the body.

Claims (8)

1. A liquid discharge device comprising: a. a body defining an elongate inner chamber having ends spaced apart from each other by the length of the chamber; b. a liquid inlet opening adjacent one end of the chamber and having an effective area less than the mean transverse crosssectional area of the chamber; c. a liquid outlet opening defied through the body laterally of the chamber and having an effective area greater than that of the liquid inlet opening; d. an outlet tube having opposite open ends mounted to the body with one end thereof in liquid flow communication with the liquid outlet opening from the body, the mean transverse crosssectional area of the cavity within the outlet tube being at least as great as the effective area of the body outlet opening; and e. an aspiration opening defined laterally through the outlet tube between the opposite ends thereof and having an effective area substantially less than the mean transverse crosssectional area of the outlet tube.
2. The device of claim 1, wherein the aspiration opening is closer to the one end of the tube than to the other end of the tube.
3. The device of claim 1, wherein the liquid inlet opening is located eccentric to the elongate extent of the body inner chamber.
4. The device of claim 3, wherein the liquid inlet opening is aligned with the outlet opening from the body chamber.
5. The device of claim 1, wherein the cavity within the outlet tube has a length which exceeds the mean transverse dimension thereof.
6. The device of claim 5, wherein the mean cross-sectional area of the cavity is greater than the effective area of the outlet opening from the body.
7. The device of claim 1, wherein the cavity is of constant cross-sectional area between the opposite ends thereof.
8. The device of claim 5, wherein the mean cross-sectional area of the cavity is essentially equal to the effective area of the outlet opening from the body.
US147483A 1971-05-27 1971-05-27 Reverberating liquid discharge device having random discharge pattern Expired - Lifetime US3684175A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14748371A 1971-05-27 1971-05-27

Publications (1)

Publication Number Publication Date
US3684175A true US3684175A (en) 1972-08-15

Family

ID=22521740

Family Applications (1)

Application Number Title Priority Date Filing Date
US147483A Expired - Lifetime US3684175A (en) 1971-05-27 1971-05-27 Reverberating liquid discharge device having random discharge pattern

Country Status (1)

Country Link
US (1) US3684175A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852801A (en) * 1988-03-11 1989-08-01 Wet Enterprises, Inc. Airpowered water displays
US5161740A (en) * 1990-10-04 1992-11-10 Kuykendal Robert L Pop jet fountain
EP1972381A2 (en) 2007-03-23 2008-09-24 Oase GmbH Nozzle array for creating a water stream
US7770306B2 (en) 2000-03-10 2010-08-10 Lyden Robert M Custom article of footwear

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330486A (en) * 1965-06-14 1967-07-11 Rain Jet Corp Aerating nozzle
US3533553A (en) * 1968-07-30 1970-10-13 Meridian Enterprises Inc Aerating fountain device
US3558053A (en) * 1968-12-09 1971-01-26 Rain Jet Corp Aerating liquid discharge nozzles
US3602434A (en) * 1970-05-01 1971-08-31 Rain Jet Corp Liquid discharge nozzle
US3630443A (en) * 1968-12-09 1971-12-28 Rain Jet Corp Liquid discharge nozzle with inverted cone discharge pattern

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3330486A (en) * 1965-06-14 1967-07-11 Rain Jet Corp Aerating nozzle
US3533553A (en) * 1968-07-30 1970-10-13 Meridian Enterprises Inc Aerating fountain device
US3558053A (en) * 1968-12-09 1971-01-26 Rain Jet Corp Aerating liquid discharge nozzles
US3630443A (en) * 1968-12-09 1971-12-28 Rain Jet Corp Liquid discharge nozzle with inverted cone discharge pattern
US3602434A (en) * 1970-05-01 1971-08-31 Rain Jet Corp Liquid discharge nozzle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4852801A (en) * 1988-03-11 1989-08-01 Wet Enterprises, Inc. Airpowered water displays
US5161740A (en) * 1990-10-04 1992-11-10 Kuykendal Robert L Pop jet fountain
US7770306B2 (en) 2000-03-10 2010-08-10 Lyden Robert M Custom article of footwear
EP1972381A2 (en) 2007-03-23 2008-09-24 Oase GmbH Nozzle array for creating a water stream
DE102007014629A1 (en) * 2007-03-23 2008-09-25 Oase Gmbh Nozzle arrangement for generating a water jet
US20080230130A1 (en) * 2007-03-23 2008-09-25 Oase Gmbh Nozzle Arrangement for Creating a Water Jet
EP1972381A3 (en) * 2007-03-23 2011-05-11 Oase GmbH Nozzle array for creating a water stream
US8162234B2 (en) * 2007-03-23 2012-04-24 Oase Gmbh Nozzle arrangement for creating a water jet
CN101269357B (en) * 2007-03-23 2012-06-13 奥阿泽有限公司 Nozzle arrangement for creating a water jet

Similar Documents

Publication Publication Date Title
US3946947A (en) Foam generating apparatus
US5381957A (en) Water/air mixing and dispensing devices
US3918647A (en) Foam generating apparatus
US4013228A (en) Foam generating sprayer apparatus
US2388445A (en) Spraying proportioner
US3082961A (en) Liquid discharge
US3640472A (en) Liquid discharge nozzle having improved flow control means
US4426040A (en) Adjustable aerating shower head
US3684175A (en) Reverberating liquid discharge device having random discharge pattern
US3330486A (en) Aerating nozzle
US3785560A (en) Nozzle for discharging liquids containing solid matter
US3602434A (en) Liquid discharge nozzle
US3558053A (en) Aerating liquid discharge nozzles
US3633822A (en) Liquid discharge nozzle with air injection feature
US3749311A (en) Ornamental fountain with multi-tier or horizontal discharge patterns
US3533553A (en) Aerating fountain device
CN211716756U (en) Multipurpose spray head
GB1481993A (en) Foam generating apparatus
US3635407A (en) Sprinkler head
US4872611A (en) Venturi-less water nozzle
US3784101A (en) Liquid discharge nozzle having cylindrical internal liquid flow director means
US4403737A (en) Water-hose-powered garden/agricultural sprayers and special nozzle
US4204631A (en) Nozzle for canopy-style water fountains
SU1186278A1 (en) Decorative fountain nozzle
US3547351A (en) Industrial liquid discharge nozzle and the like

Legal Events

Date Code Title Description
AS Assignment

Owner name: RAIN JET CORP., 27671 LAPAZ RD. LAGUNA NIGUEL, CA.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:IRRIGATION ENGINEERING AND MANUFACTURING CO., BY: JOHN DREW; JOHN O. HRUBY, JR. ; GERALD W. FRASIER, PARTNERS;REEL/FRAME:004026/0088

Effective date: 19820719