US3683871A - Fuel supply system for an internal combustion engine providing voltage compensated cranking enrichment - Google Patents
Fuel supply system for an internal combustion engine providing voltage compensated cranking enrichment Download PDFInfo
- Publication number
- US3683871A US3683871A US55831A US3683871DA US3683871A US 3683871 A US3683871 A US 3683871A US 55831 A US55831 A US 55831A US 3683871D A US3683871D A US 3683871DA US 3683871 A US3683871 A US 3683871A
- Authority
- US
- United States
- Prior art keywords
- engine
- cranking
- supply voltage
- power source
- pulses
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/06—Introducing corrections for particular operating conditions for engine starting or warming up
- F02D41/062—Introducing corrections for particular operating conditions for engine starting or warming up for starting
- F02D41/065—Introducing corrections for particular operating conditions for engine starting or warming up for starting at hot start or restart
Definitions
- the present invention relates to a fuel supply system for an internal combustion engine. More particularly, the invention relates to an electronic fuel injection system for increasing the amount of fuel applied to an internal combustion engine during cranking.
- one or more voltage responsive fuel injectors deposit fuel within the intake manifold of an engine at a constant flow rate when energized by the supply voltage of a power source.
- the fuel injectors are energized for the duration of individual control pulses developed in synchronization with the rotation of the engine. Since the engine rotation is' relatively low during cranking, the number of control pulses normally produced is generally insufficient to apply enough fuel to the engine to insure reliable starting. Further, some of the applied fuel tends to condense within the intake manifold of the engine during cold cranking. Accordingly, additional control pulses are produced during each cranking period to increase the amount of fuel applied to the engine to facilitate quick starting. Moreover, since the total fuel condensation decreases as the engine temperature increases, the frequency of the additional control pulses is varied as an inverse function of the temperature of the engine.
- the engine will ordinarily start quickly during a cranking period.
- the energy capacity of the power source is relatively low, the engine cranking speed is slowed by a corresponding reduction in the supply voltage.
- the engine is more difficult to start.
- the remaining energy capacity of the power source is soon depleted.
- the operation of the voltage responsive fuel injectors is sluggish. Consequently, the amount of fuel applied to the engine to facilitate starting is effectively reduced. Therefore, engine starting is that much more difficult.
- the present invention provides an electronic fuel injection system including a cranking enrichment circuit which is compensated for variations in the supply voltage of the power source.
- the frequency of the additional control pulses produced during engine cranking is varied as an inverse function of the supply voltage of the power source.
- the frequency of the additional control pulses is increased when the energy capacity of the power source is reduced by a given amount.
- the frequency of the additional control pulses is increased by a given multiple as the supply voltage decreases below a minimum acceptable level. Accordingly, the amount of fuel applied to the engine during cranking is increased to facilitate quick starting when the supply voltage of the power source is relative ly low.
- FIG. 1 is a schematic diagram of an electronic fuel injection system incorporating the principles of the invention.
- FIG. 2 is a schematic diagram of a cranking enrichment circuit incorporating the principles of the invention.
- FIGS. 3, 4 and 5 are graphic diagrams of waveforms useful in explaining the principles of the invention.
- an internal combustion engine 10 for an automotive vehicle includes-a combustion chamber or cylinder 12.
- a piston 14 is mounted for reciprocation within the cylinder 12.
- a crankshaft 16 is supported for rotation within the'engine 10.
- a connecting rod 18 is pivotally connected betweenthe piston 14 and the crankshaft 16 for rotating the crankshaft within the engine 10 when the piston 14 is reciprocated within the cylinder 12.
- An intake manifold 20 is connected with the cylinder 12 through an intake port 22.
- An exhaust manifold 24 is connected with the cylinder 12 through an exhaust port 26.
- An intake valve 28 is slidably mounted within the top of the cylinder 12 in cooperation with the intake port 22 for regulating the entry of combustion ingredients into thecylinder 12 from the intake manifold 20.
- a spark plug 30 is mounted in the top of the cylinder 12 for igniting the combustion ingredients within the cylinder l2-when the spark plug 30 is energized.
- An exhaust valve 32 is slidably mounted in the top of the cylinder 12 in cooperation with the exhaust port 26 for regulating the exit of combustion products from the cylinder 12 into the exhaust manifold 24.
- the intake valve 28 and the exhaust valve 32 are driven through a suitable linkage 34 which conventionally includes rocker arms, lifters, and a camshaft.
- An electrical power source is provided by the vehicle battery 36.
- An ignition switch 38 connects the battery 36 between a power line 40 and a ground line 42. When the ignition switch 38 is closed, the battery 36 applies a supply voltage to the power line 40.
- a conventional ignition circuit 44 is electrically connected to the power line 40 and is mechanically connected with the crankshaft 16 of the engine 10. Further, the ignition circuit 44 is connected through a spark cable'46 to the spark plug 30. In a conventional manner, the ignition circuit 44 energizes the spark plug 30 in synchronization with the rotation of the crankshaft 16 of the engine 10. Hence, the ignition circuit 44 combines with the ignition switch 38 and the spark plug 30 to form an ignition system.
- a fuel injector 48 includes a housing 50 having a fixed metering orifice 52.
- a plunger 54 is supported within the housing 50 for reciprocation between a fully opened position and a fully closed position. In the fully opened position, the forward end of the plunger 54 is opened away from the orifice 52. In the fully closed position, the forward end of the plunger 54 is closed against the orifice 52.
- a bias spring 56 is seated between the rearward end of the plunger 54 and the housing 50 for normally maintaining the plunger 54 in the fully closed position.
- a solenoid or winding 58 is electromagnetically coupled with plunger 54 for driving the plunger 54 to the fully opened position against the action of the bias spring 56 when the winding 58 is energized.
- the bias spring 56 drivesthe plunger 54 to the fully closed position when the winding 58 is deenergized.
- the fuel injector 48 is mounted on the intake manifold 20 of the engine for injecting fuel into the intake manifold at a constant flow rate through the metering orifice 52 when the plunger 54 is in the fully opened position. Notwithstanding the illustrated structure, it is to be noted that the fuel injector 48 may be provided by virtually any suitable constant flow rate valve.
- a fuel pump 60 is connected to the fuel injector 48 by a conduit 62 and to the vehicle fuel tank 64 by a conduit 66 for pumping fuel from the fuel tank 64 to the fuel injector 48.
- the fuel pump 60 is connected to the power line 40 to be electrically driven from the vehicle battery 36.
- the fuel pump 60 could be connected to the crankshaft 16 to be mechanically driven from the engine 10.
- a pressure regulator 68 is connected to the conduit 62 by a conduit 70 and is connected to the fuel tank 64 by a conduit 72 for regulating the pressure of the fuel applied to the fuel injector 48.
- the fuel injector 48 combines with the fuel tank 64, the fuel pump 60 and the pressure regulator 68 to form a fuel supply system.
- a throttle 74 is rotatably mounted within the intake manifold 20 for regulating the flow of air into the intake manifold 20 in accordance with the position of the throttle 74.
- the throttle 74 is connected through a suitable linkage 76 with the vehicle accelerator pedal 78. As the accelerator pedal 78 is depressed, the throttle 74 is opened to increase the flow of air into the intake manifold 20. Conversely, as the accelerator pedal 78 is released, the throttle 74 is closed to decrease the flow of air into the intake manifold 20.
- fuel and air are combined within the intake manifold 20 to form an air/fuel mixture.
- the fuel is injected into the intake manifold 20 at a constant flow rate by the fuel injector 48 in response to energization.
- the precise amount of fuel deposited within the intake manifold 20 is regulated by a fuel supply control system which will be described later.
- the air enters the intake manifold 20 from the air intake system (not shown) which conventionally includes an air filter.
- the precise amount of air admitted into the intake manifold 20 is determined by the position of the throttle 74. As previously described, the position of the accelerator pedal 78 controls the position of the throttle 74.
- the intake valve 28 As the piston 14 initially moves downward within the cylinder 12 on the intake stroke, the intake valve 28 is opened away from the intake port 22 and the exhaust valve 32 is closed against the exhaust port 26. Accordingly, combustion ingredients in the form of the air/fuel mixture within the intake manifold 20 are drawn by negative pressure through the intake port 22 into the cylinder 12. As the piston 14 subsequently moves upward within the cylinder 12 on the compression stroke, the intake valve 28 is closed against the intake port 22 so that the air/fuel mixture is compressed between the top of the piston 14 and the top of the cylinder 12. When the piston 14 reaches the end of its upward travel on the compression stroke, the spark plug 30 is energized by the ignition circuit 44 to ignite the air/fuel mixture.
- the ignition of the air/fuel mixture starts a combustion reaction which drives the piston 14 downward within the cylinder 12 on the power stroke.
- the exhaust valve 32 is opened away from the exhaust port 26.
- the combustion products in the form of various exhaust gases are pushed by positive pressure out of the cylinder 12 through the exhaust port 26 into the exhaust manifold 24.
- the exhaust gases pass out of the exhaust manifold 24 into the exhaust system(not shown) which conventionally includes a muffler and an exhaust pipe.
- the illustrated internal combustion engine 10 may include additional cylinders 12 as desired.
- additional fuel injectors 48 may be provided as required.
- additional fuel injectors 48 may be provided as required.
- the number of additional fuel injectors 48 need not necessarily bear any fixed relation to the number of additional cylinders 12.
- the fuel injector 48 may be directly mounted on the cylinder 12 so as to inject fuel directly into the cylinder 12. In such instance, the number of additional fuel injectors 48 would necessarily equal the number of additional cylinder 12.
- a timing pulse generator 80 is connected with the crankshaft 16 for developing timing pulses having a frequency which is proportional to and synchronized with the rotating speed of the crankshaft 16.
- the timing pulses are applied to a timing line 82.
- the timing pulse generator 80 is some type of inductive speed transducer coupled with a bistable circuit.
- the timing pulse generator 80 may be provided by virtually any suitable pulse producing device such as a multiple contact rotary switch.
- An injector drive circuit 84 is connected to the power line 40 and to the timing line 82. Further, the injector drive circuit 84 is connected through an injection line 86 to the fuel injector 48. The injector drive circuit 84 is responsive to the timing pulses produced by the timing pulse generator 80 to energize the fuel injector valve 48 in synchronization with the rotating speed of the crankshaft 16 in much the same manner as the ignition circuit 44 energizes the spark plug 30. The length of time for which the fuel injector 48 is energized by the drive circuit 84 is determined by the width or duration of the control pulses produced by a modulator or control pulse generator 88 which will be more fully described later.
- control pulses are applied by the control pulse generator 88 to the injector drive circuit 84 over a control line 90 in synchronization with the timing pulses produced by the timing pulse generator 80.
- the injector drive circuit 84 is responsive to the coincidence of a timing pulse and a control pulse to energize the fuel injector 48 for the duration or width of the control pulse.
- the injector drive circuit 84 may be virtually any amplifier circuit capable of logically executing the desired coincident pulse operation. However, where additional fuel injectors 48 are provided, it may be necessary that the injector drive circuit 84 also select which one or ones of the fuel injectors 48 are to be energized on each respective timing pulse. As an example, where the fuel injectors 48 are mounted on the intake manifold 20, they may be divided into two separate groups which are alternately energized on successive ones of the timing pulses. Conversely, where the fuel injectors 48 are mounted directly on additional cylinders 12, the timing pulses may be applied to operate a counter which individually selects the fuel injectors 48 for energization.
- the control pulse generator 88 includes a monostable multivibrator or blocking oscillator 92.
- the blocking oscillator 92 includes a control transducer 94 having a primary winding 96 and a secondary winding 98 which are variably inductively coupled through a movable magnetizable core 100. The deeper the core 100 is inserted into the primary and secondary windings 96 and 98, the greater the inductive coupling between the primary winding 96 and the secondary winding 98.
- the movable core 100 is mechanically connected through a suitable linkage 102 with a vacuum sensor 104.
- the vacuum sensor 104 communicates with the intake manifold 20 of the engine downstream from the throttle 74 through a conduit 106 for monitoring the negative pressure within the intake manifold 20.
- the vacuum sensor 104 moves the core 100 within the control transducer 94 to regulate the inductive coupling between the primary and secondary windings 96 and 98 as an inverse function of the vacuum within the intake manifold 20. Therefore, as the vacuum within the intake manifold decreases in response to the opening of the throttle 74, the core 100 is inserted deeper within the control transducer 94 to proportionately increase the inductive coupling between the primary winding 96 and the secondary winding 98.
- the monostable multivibrator or blocking oscillator 92 further includes a pair of NPN junction transistors 108 and 110.
- the primary winding 96 is connected from the collector electrode of the transistor 110 through a limiting resistor 112 to the power line 40.
- the secondary winding 98 is connected from an input junction 114 through a steering diode 116 to a bias junction 118 between a pair of biasing resistors 120 and 122 which are connected in series between the power line 40 and the ground line 42.
- a biasing resistor 124 is connected between the junction 114 and the power line 40.
- the base electrode of the transistor 108 is connected through a steering diode 126 to the junction 114.
- the emitter electrodes of the transistors 108 and 110 are connected directly to the ground line 42.
- the collector electrode of the transistor 108 is connected through a biasing resistor 128 to the power line 40 and is connected through a biasing resistor 130 to the base electrode of the transistor 110.
- control pulse generator 88 includes a differentiator 132 provided by a capacitor 134 and a pair of resistors 136 and 138.
- the resistors 136 and 138 are connected in series between the power line 40 and the ground line 42.
- the capacitor 134 is connected from the timing line 82 to a junction 140 between the resistors 136 and 138.
- a steering diode 142 is connected from the junction 140 between the resistors 136 and 138 to the input junction 114.
- timing pulses are applied through the timing line 82 to the differentiator 132.
- the differentiator 132 develops negative trigger pulses at the junction 140 in response to the timing pulses.
- the diode 142 applies the trigger pulses from the junction 140 to the junction 114.
- the modulator or control pulse generator 88 is generally'well known in the fuel injection art. Accordingly, since it is only incidental to the present invention, its operation will not be described in great detail.
- the monostable multivibrator or blocking oscillator 92 switches from a stable state to an unstable state in response to a decrease in the voltage at the input junction 114 below a predetermined threshold level.
- the voltage appearing at the junction 114 comprises a feedback voltage provided by the control transducer 94 and a bias voltage provided by the resistors 120, 122 and 124. Specifically, when the voltage at the junction 114 rises above the threshold level, the transistor 108 is rendered fully conductive through the coupling action of the diode 126 and the transistor is rendered fully nonconductive through the biasing action of the resistor 130.
- the bias voltage is provided by the resistors 120, 122 and 124 normally maintains the voltage at the junction 114 above the threshold voltage so that the transistor 108 is normally turned on and the transistor 110 is normally turned off. 1
- the transistor 108 is turned off through the coupling action of the diode 126, and the transistor 110 is turned on through the biasing action of the resistors 128 and 130. With the transistor 110 turned on, a control pulse is initiated on the control line 90.
- the level of the control pulse is defined by the saturation voltage drop of the transistor 1 l0.
- the transistor 110 With the transistor 110 turned on, a current is established in the primary winding 96 of the control transducer 94 to develop the feedback voltage acrossthe secondary winding 98 of the control transducer 94.
- the feedback voltage initially instantaneously decreases from the level of the bias voltage to a lower level and subsequently gradually increases back to the level of the bias voltage.
- the feedback voltage is coupled through the diode 116 to the junction 114 to hold the voltage at the junction 114 below the threshold level. Consequently, the transistor 108 remains turned off and the transistor 110 remains turned on.
- the lower level of the feedback voltage is determined by the inductive coupling between the primary and secondary windings ,96 and 98 of the control transducer 94.
- the inductive coupling between the primary and secondary windings 96 and 98 is defined by the position of the movable core 100.
- the rate at which the feedback voltage increases from the lower level back to thelevel of the bias voltage is determined by the L/R time constant of the primary winding 96 and the limiting resistor 112.
- the transistor 108 is turned on and the transistor 110 is turned off. With the transistor 108 turned off, the control pulse on the control line 90 is terminated.
- the duration of the control pulses occurring on the control line 90 is determined by the vacuum sensor 104 and the control transducer 94 as an inverse function of the vacuum within the intake manifold 20 of the engine 10.
- a starter circuit 146 is mechanically connected with the crankshaft 16 of the engine 10 through a'suitable linkage 148.
- a starter switch 150 connects the vehicle battery 36 with the starter circuit 146 through a starting line 152.
- the starter switch 150 is closed, the starter circuit 146 is actuated to initiate cranking of the engine 10.
- the starter switch 150 is opened, the starter circuit 146 is deactuated to terminate cranking of the engine 10.
- the starter switch 150 is ganged with the ignition switch 38 in the conventional manner. When ganged, the ignition switch 38 is closed when the starter switch 150 is in the starting position, but the starter switch 150 is opened when the ignition switch 38 is in the running position.
- the starter circuit 150 includes a starter solenoid and a starter motor.
- the starter circuit 146 combines with the starter switch 150 to form a starting system.
- the rotation of the crankshaft 16 is relatively slow.
- the frequency of the timing pulses produced by the timing pulse generator 80 is relatively low. Consequently, the frequency of the control pulses produced by the control pulse generator 88 is also low.
- the amount of fuel deposited within the intake manifold 20 by the fuel injector 48 is generally insufficient to insure reliable starting of the engine 10.
- some of the applied fuel tends to condense upon the walls of the intake manifold 20 and upon the surface of the intake valve 28.
- cranking enrichment circuit 154 is provided for increasing the number of control pulses developed by the control pulse generator 88 during cranking of the engine 10.
- the cranking enrichment circuit 154 is connected between the powerline 40 and the ground line 42.
- the cranking enrichment circuit 154 includes an input connected through the starting line 152 to the starter switch 150.
- the cranking enrichment circuit 154 includes an output connected through an output line 156 to a differentiator 158 in the control pulse generator 88.
- the differentiator 158 is provided by a capacitor 160 and a pair of resistors 162 and 164.
- the resistors 162 and 164 are connected in series between the power line 40 and the ground line 42.
- the capacitor 160 is connected between the output line 156 of the cranking enrichment circuit 154 and a junction 166 between the resistors 162 and 164.
- a steering diode 168 is connected from the junction 166 between the resistors 162 and 164 to the input junction 114 in the monostable multivibrator or blocking oscillator 92.
- the cranking enrichment circuit 154 is responsive to cranking of the engine 10, when the starter switch 150 is closed to produce cranking pulses on the output line 156.
- the cranking pulses produced by the cranking enrichment circuit 154 are applied through the output line 156 to the differentiator 158.
- the differentiator 158 develops negative trigger pulses at the junction 166 in response to the cranking pulses.
- the diode 16 8 applies the trigger pulses from the junction 166 to the junction 114.
- the monostable multivibrator or blocking oscillator 92 produces control pulses in response to the occurrence of the trigger pulses at the input junction 1 14. Hence, additional control pulses are developed by the control pulse generator 88 during cranking of the engine 10.
- the cranking enrichment circuit 154 includes an input connected througha sensing line 170 to a heat sensing element 172 mounted on the top of the cylinder 12 adjacent the intake valve 28 for monitoring the temperature of the engine 10.
- the heat sensing element 172 could be located in some other convenient position, such as within the engine coolant system.
- the heat sensing element 172 is provided by a negative temperature coefficient resistor or thermistor.
- the thermistor 172 regulates the frequency of the cranking pulses produced by the cranking enrichment circuit 154 as an inverse function of the temperature of the engine 10.
- the amount of fuel applied to the engine 10 during cranking is compensated for variations in the temperature of the engine 10.
- the supply voltage applied to the power line 40 and to the starting line 152 is decreased.
- the supply voltage of the battery 36 may be low due to an energy-drain placed on the battery 36 by some external accessory equipment, such as the vehicle light system (not shown), when the engine 10 is shut off. With the supply voltage on the starting line 152 reduced, the speed at which the crankshaft 16 of the engine 10 is cranked by the starter circuit 146 is slowed. Accordingly, the engine 10 is more difficult to start. Further, if the engine 10 does not rapidly start, the remaining energy of the battery 36 will be quickly depleted by the starter circuit 146 during cranking of the engine 10. In such event, it is impossible to start the engine 10.
- the magnitude of the voltage applied to the winding 58 of the fuel injector 48 by the injector drive circuit 84 is correspondingly lowered. Consequently, the response time of the fuel injector 48 is sluggish. More particularly, the opening time of the plunger 54 with respect to the metering orifice 52 is substantially increased. As a result, the amount of fuel deposited within the intake manifold 20 of the engine 10 by the fuel injector 48 is effectively decreased. Therefore, when the supply voltage of the battery 36 is low enough to adversely effect the response time of the fuel injector 48, the engine 10 is even more difficult to start. Further, since the amount of fuel deposited within the intake manifold 20 is inversely related to the temperature of the engine 10, engine starting is even more troublesome if the engine 10 is at an elevated temperature when the supply voltage is reduced.
- the frequency of the cranking pulses produced by the cranking enrichment circuit 154 is regulated as an inverse function of the energy capacity of the power source or battery 36. More particularly, the frequency of the cranking pulses is increased by. a given factor when the supply voltage of the battery 36 falls below a minimum acceptable level. Preferably, the frequency of the cranking pulses is doubled when the supply voltage is reduced. Thus, the amount of fuel applied to the engine 10 during cranking is compensated for variations in the supply voltage of the battery 36 as well as for variations in the temperature of the engine 10.
- cranking period may be defined as that time interval during which the starter switch 150 is closed to actuate the starter circuit 146.
- a resting period may be defined as that time interval during which the starter switch 150 is opened to deactuate the starter circuit 146.
- the cranking enrichment circuit 154 produces cranking pulses only during a limited enrichment interval. This prevents the engine 10 from becoming excessively flooded with fuel due to a continual supply of cranking pulses from the cranking enrichment circuit 154 in the absence of engine starting.
- the enrichment interval begins when the starter switch 150 is closed to actuate the starter circuit 146 and initiate cranking of the engine 10.
- the enrichment interval ends when the starter switch 150 is opened to deactuate the starter circuit 146 and terminate cranking of the engine 10.
- the minimum possible duration of an enrichment interval is directly related to the duration of the instant cranking period. This prevents the engine 10 from becoming flooded with fuel due to a continual supply of cranking pulses from the cranking enrichment circuit 154 in the absence of engine cranking.
- the maximum possible duration of an enrichment interval is directly related to the duration of the preceding resting period up to a predetermined limit. This prevents severe flooding of the'engine 10 due to an excessive number of cranking pulses produced by the cranking enrichment circuit 154 when the resting periods are disproportionately shorter than the cranking periods.
- the maximum possible duration of an enrichment interval is inversely re lated to the duration of the preceding cranking period up to a predetermined limit. More specifically, the maximum possible duration of an enrichment interval is inversely related to the duration of the preceding cranking period in excess of the preceding enrichment interval. This prevents continued flooding of the engine 10 due to a constant oversupply of cranking pulses from the cranking enrichment circuit 154 when the successive cranking periods and resting periods occurred in rapid order after the engine 10 has been initially flooded.
- the cranking enrichment circuit 154 comprises a cranking oscillator 174 and a cranking timer 176.
- the cranking pulse generator or cranking oscillator 174 includes an oscillator switching circuit 178 and an oscillator control circuit 180.
- the oscillator switching circuit or oscillator toggle circuit 178 comprises a differential amplifier 182 and an output switch 184.
- the differential amplifier 182 includes NPN junction transistors 186, 188, 200 and 202.
- the emitter electrode of the transistor 186 is connected through a biasing resistor 204 to the ground line 42.
- a voltage divider network includes a pair of biasing; resistors 206 and 208 and a temperature compensating; diode 210 which are connected in series between the power line 40 and the ground line 42.
- the base electrode of the transistor 186 is connected to a bias junction 212 between the resistor 206 and the diode 210.
- the collector electrode of the transistor 186 is connected directly to the emitter electrodes of the transistors 188 and 200.
- the base electrode of the transistor 188 is connected to the oscillator control circuit 180.
- the collector electrode of the transistor 188 is connected through a biasing resistor .214 to the power line 40.
- the collector electrode of the transistor 200 is connected through a temperature compensating diode 216 and a biasing resistor 218 to the power line 40.
- the base electrode of the transistor 202 is connected directly to the collector electrode of the transistor 188.
- the collector electrode of the transistor 202 is connected directly to the power line 40.
- the emitter electrode of the transistor 202 is connected through a pair of biasing resistors 220 and 222 to the ground line 42.
- the base electrode of the transistor 200 is connected to an oscillator reference junction or oscillator gating junction 224 between the resistors 220 and 222.
- the output switch 184 comprises a PNP junction transistor 226 and an NPN junction transistor 228.
- the base electrode of the transistor 226 is connected directly to the collector electrode of the transistor 200.
- the collector electrode of the transistor 226 is connected directly to the base electrode of the transistor 228.
- the emitter electrode of the transistor 226 and the collector electrode of the transistor 228 are connected together through an output resistor 230 to the power line 40.
- the emitter electrode of the transistor 228 is connected directly to the output line 156 of the cranking enrichment circuit 154.
- the oscillator control circuit or oscillator integrator circuit includes a storage element or capacitor 232, a charging circuit 234 and a discharging circuit 236.
- the discharging circuit 236 comprises a heat sensor network 238 and a voltage detector network 240.
- the capacitor 232 is connected between the base electrode of the transistor 188 and the ground line 42.
- An oscillator control junction 242 is defined between the top of the capacitor 232 and the base electrode of the transistor 188.
- the charging circuit or current source 234 includes a PNP junction transistor 244 and an NPN junction transistor 246.
- the base electrode of the transistor 244 is connected directly to the collector electrode of the transistor 200.
- the emitter electrode of the transistor 244 and the collector electrode of the transistor 246 are connected through a charging resistor 248 to the power line 40.
- the collector electrode of the transistor 244 and the base electrode of the transistor 246 are connected through a biasing resistor 250 to the oscillator control junction 242.
- the emitter electrode of the transistor 246 is connected directly to the oscillator control junction 242.
- the discharging circuit or current sink 236 includes an NPN junction transistor 252.
- the collector electrode of the transistor 252 is connected directly to the oscillator control junction 242.
- the base electrode of the transistor 252 is connected with the heat sensor network 236.
- the emitter electrode of the transistor 252 is connected with the voltage detector network 240. Further, the emitter electrode of the transistor 252 is connected through a discharging resistor 254 to the ground line 42.
- the heat sensor network 238 includes a pair of NPN junction transistors 256 and 258.
- the base electrode of the transistor 256 is connected to a junction between a pair of biasing resistors 260 and 262 which are connected in series between the power line 40 and the ground line 42.
- the collector electrode of the transistor 256 is connected directly to the power line 40.
- the base electrode of the transistor 258 is connected to a junction between the heat sensing. element or thermistor 172 and a biasing resistor 263 which are connected in'series between the emitter electrode of the transistor 256 and the ground line 42.
- the collector electrode of the transistor 258 is connected directly to the power line 40.
- the emitter electrode of the transistor 258 is connected through a pair of biasing resistors 264 and 266 to the ground line 42.
- the base electrode of the transistor 252 is connected directly to the junction between the resistors 264 and 266.
- the voltage detector network 240 includes a pair of NPN junction transistors 268 and 270.
- the base electrode of the transistor 268 is connected to the junction between a pair of detecting resistors 272 and 274 which are connected in series between the power line 40 and the ground line 42.
- the emitter electrode of the transistor 268 is connected directly to the ground line 42.
- the collector electrode of the transistor 268 and the base electrode of the transistor 270 are connected together through a biasing resistor 276 to the power line 40.
- the emitter electrode of the transistor 270 is connected directly to the ground line 42.
- the collector electrode of the transistor 270 is connected through a discharging resistor 278 to the emitter electrode of the transistor 252.
- the cranking timer 176 comprises a timer switching circuit 280 and a timer control circuit 282.
- the timer switching circuit or timer toggle circuit 280 includes a differential amplifier 284 and a logic switch 286.
- the differential amplifier 284 comprises NPN junction transistors 288, 290 and 292.
- the base electrode of the transistor 288 is connected directly to the bias junction 212 between the resistor 206 and the diode 210.
- the emitter electrode of the transistor 288 is connected through a biasing resistor 294 to the ground line 42.
- the collector electrode of the transistor 288 is connected directly to the emitter electrodes of the transistors 290 and 292.
- a voltage regulator or voltage divider network is formed by a bias resistor 296 and a string of diodes 298, 300, 302 and 304 which are connected in series between the power line 40 and the ground line 42.
- the base electrode of the transistor 290 is connected to a timer reference junction 305 between the resistor 296 and the diode 298.
- the collector electrode of the transistor 290 is connected directly to the power line 40.
- the collector electrode of the transistor 292 is connected through a biasing resistor 306 to the power line 40.
- the base electrode of the transistor 292 is connected with the timer control circuit 282.
- the logic switch 286 includes a PNP junction transistor 308 and an NPN junction transistor 310.
- the base electrode of the transistor 308 is connected directly to the collector electrode of the transistor 292.
- the emitter electrode of the transistor 308 is connected directly to the power line 40.
- the collector electrode of the transistor 308 is connected through a biasing resistor 312 to the base electrode of the transistor 310.
- the emitter electrode of the transistor 310 is connected directly to the ground line 42.
- the collector electrode of the transistor 310 is connected to the oscillator gating junction 224 between the resistors 220 and 222 in the oscillator switching circuit 178.
- the timer control circuit or timer integrator circuit 282 comprises a storage element or capacitor 314, a
- the capacitor 314 is connected between the base electrode of the transistor 292 and the ground line 42.
- a timer control junction 320 is defined between the top of the capacitor 314 and the base electrode of the transistor 292.
- the discharging circuit or current sink 318 includes a discharging resistor 322 connected between the timer control junction 320 and the ground line 42. As will be more fully explained later, the discharging circuit 318 also includes the transistors 288 and 292 and the resistor 294 of the differential amplifier 284.
- the charging circuit or current source 316 includes a PNP junction transistor 324 and a pair of NPN junction transistors 326 and 328.
- the base electrode of the transistor 324 is connected directly to the timer control junction 320.
- the emitter electrode of the transistor 324 and the collector electrode of the transistor 326 are connected together through a charging resistor 330 to the power line 40.
- the collector electrode of the transistor 324 and the base electrode of the transistor 326 are connected together through a biasing resistor 332 to the ground line 42.
- the emitter electrode of the transistor 326- is connected directly to the ground line 42.
- the collector electrode of the transistor 328 is connected directly to a timer gating junction 329 between the resistor 330, the emitter electrode of the transistor 324 and the collector electrode of the transistor 326.
- the emitter electrode of the transistor 328 is connected directly to the ground line 42.
- the base electrode of the transistor 328 is connected through a pair of biasing resistors 334 and 336 to the power line 40.
- the base electrode of the transistor 310 is connected through a biasing resistor 338 and a turnoff diode 340 to an input junction 342 between the biasing resistors 334 and 336.
- a cranking driver switch is provided by a NPN junction transistor 344.
- the collector electrode of the transistor 344 is connected directly to the input junction 342.
- the emitter electrode of the transistor 344 is connected directly to the power line 42.
- the base electrode of the transistor 344 is connected through a biasing resistor 346 to the starting line 152 and through a biasing resistor 348 to the ground line 42.
- the starting line 152 is deenergized.
- the transistor 344 is rendered fully nonconductive through the biasing action of the resistor 348.
- the transistor 344 turned off, the transistor 310 is rendered fully conductive through the biasing action of the resistors 336 and 338 and the diode 340.
- the oscillator gating junction 224 is effectively clamped to the potential of the ground line 42. Consequently, the cranking oscillator 174 is disabled.
- the starter switch 150 is closed to initiate cranking of the engine 10
- the starting line 152 is energized.
- the transistor 344 With the starting line 152 energized, the transistor 344 is rendered fully conductive through the biasing action of the resistors 346 and 348. With the transistor .344 turned on, the transistor 310 is rendered fully nonconductive through the biasing action of the resistor 338 and the diode 340. With the transistor 310 turned off, the oscillator gating junction 224 is unclamped. As a result, the cranking oscillator 174 is enabled.
- the oscillator control circuit 180 when the cranking oscillator 174 is enabled, the oscillator control circuit 180 produces an oscillator control voltage V, at the oscillator control junction 242.
- the oscillator control voltage V varies with respect to an upper oscillator control level 350 and a lower oscillator control level 352.
- the control voltage V increases at a positive excursion rate from the lower control level 352 to the upper control level 350.
- the control voltage V decreases at a negative excursion rate from the upper control level 350 to the lower control level 352.
- the oscillator switching circuit 178 is responsive to the oscillator control voltage V to switch between a set state and a reset state.
- the oscillator switching circuit 178 assumes the set state when the control voltage V, reaches the upper control level 350 in the increasing sense. Conversely, the oscillator switching circuit 178 assumes the resetstate when the control voltage V, reaches the lower level 350 in the decreasing sense.
- a cranking pulse is produced on the output line 156 of the cranking. enrichment circuit 154 each time the oscillator switching circuit 178 assumes the set state.
- the differential amplifier 182 exhibits a high gain characteristic.
- the transistor 186 combines with the resistor 204 to pr0- vide a current sink for the transistors 188 and 200.
- the conduction of the transistor 186 is determined by the biasing action of the resistors 206 and 208 and the diode 210.
- the transistor 202 operates as an emitterfollower to define the upper and lower oscillator control levels 350 and 352 at the oscillator reference junction 224.
- transistor 188 is turned off and the transistors 200, 226 and 228 are turned on.
- the oscillator switching circuit 178 is driven to the reset state.
- the transistor 188 is rendered fully nonconductive and the transistor 200 is rendered fully conductive.
- the transistor 202 is driven into relatively heavy conduction by the biasing action of resistor 214. Since the voltage drop across the transistor 202 is relatively low, the reference voltage established at the oscillator reference junction 224 is increased to approximately the upper oscillator control level 350.
- the oscillator control voltage V produced by the oscillator control circuit begins to increase toward the upper oscillator control level 350.
- the transistors 226 and 228 in the output switch 184 are rendered fully conductive through the biasing action of the transistors 186 and 200, the resistors 204 and 218, the diode 216.
- the transistors 226 and 228 turned on, a relatively high voltage is ap plied through the resistor 230 to the output line 156.
- the oscillator switching circuit 178 As the oscillator control voltage V, at the oscillator control junction 242 reaches the upper control level 350, the oscillator switching circuit 178 is driven to the reset state. As the oscillator switching circuit 178 assumes the reset state, the transistor 188 is rendered.
- the transistor .200 is rendered fully nonconductive.
- the transistor 188 With the transistor 188 turned on, the transistor 202 is driven into relatively light conduction by the biasing action of the transistors 186 and 188 and the resistors 204 and 214. Since the voltage drop across the transistor 202 is relatively high, the reference voltage established at the oscillator reference junction 224 is decreased to approximatelythe lower oscillator level 352.
- the oscillator control voltage V produced by the oscillator control circuit 180 begins to decrease toward the lower oscillator control level 352.
- the transistors 226 and 228 in the output switch 184 are rendered fully nonconductive through the biasing action of the resistor 218 and the diode 216. With the transistors 226 and 228 turned off, a relatively low voltage is applied through the resistor 230 to the output line 156 to define a cranking pulse.
- the oscillator switching circuit 178 produces cranking pulses on the output line 156 of the cranking enrichment circuit .154 in synchronization. with the frequency of the oscillations in the oscillator control voltage V, developed by the oscillator control circuit 180. More specifically, a cranking pulse is produced on the output line 156 each time the transistor 200 is turned off. In turn, the transistor 200 is turned off each time the oscillator control voltage reaches the upper oscillator control level 350. The frequency with which the oscillator control voltage V, reaches the upper oscillator control level 350 is proportioned to the positive and negative excursion rates of the oscillator control voltage V,,. Accordingly, the frequency of the cranking pulses produced on the output line 156 by the oscillator switching circuit 178 is also a direct function of the positive and negative excursion rates of the oscillator control voltage V,,.
- the capacitor 232 defines the oscillator control voltage V, at the oscillator control junction 242.
- the charging circuit 234 applies a constant charging current to the capacitor 232 to charge the capacitor 232 at a constant charge rate when the oscillator switching circuit 178 is in the reset state.
- the discharging circuit 236 draws a constant discharging current from the capacitor 323 to discharge the capacitor 232 at a constant discharge rate when the oscillator switching circuit 178 is in both the set and reset states. In other words, the discharging circuit 236 operates independent of the operation of the oscillator switching circuit 178.
- the heat sensor network 238 regulates the discharge rate as an inverse function of the temperature of the engine 10.
- the voltage detector network 240 regulates the discharge rate as an inverse function of the supply voltage of the power source or battery 36.
- the positive excursion rate of the oscillator control voltage V is determined by the charge rate less the discharge rate.
- the positive excursion rate of the control voltage V is a direct function of the temperature of the engine 10 and the supply voltage of the battery 36.
- the negative excursion rate of the oscillator control voltage V is determined by the discharge rate only.
- the negative excursion rate of the control voltage V is an inverse function of the temperature of the engine and the supply voltage of the battery 36.
- the charge rate provided by the charging circuit 234 is substantially greater than the discharge rate provided by the discharging circuit 236. Preferably, the charge rate is several times greater than the discharge rate.
- the discharge rate dominates the charge rate in determining the excursion time for one complete cycle of the oscillator control voltage V, between the upper and lower oscillator control levels 350 and 352. More specifically, the frequency of the oscillations in the oscillator control voltage V, is inversely related to the temperature of the engine 10 and the supply voltage of the battery 36. Therefore, the frequency of the cranking pulses produced on the output line 156 by the oscillator switching circuit 178 is also an inverse function of the temperature of the engine 10 and the supply voltage of the battery 36.
- the transistors 244 and 246 are operated in a constant current mode to linearly charge the capacitor 232.
- the charge rate is determined, by the charging current applied through a charge path including the resistor 248 and the transistor 246.
- the magnitude of the charging current may be regulated by varying either one or both of the resistors 248 and 250.
- the transistor 200 When the transistor 200 is turned off as the oscillator switching circuit 178 assumes the set state, the transistors 244 and 246 are rendered fully nonconductive through the biasing action of the resistor 218 and the diode 216. Consequently, the application of the charging current to the capacitor 232 is terminated.
- the transistor 252 is operated in a constant current mode to linearly discharge the capacitor 232.
- the discharge rate is determined by the discharging current drawn from the capacitor 232 through a discharge path including the transistor 252 and the resistor 254.
- the capacitor 232 also discharges somewhat through a discharge path including the base-emitter junction of the transistor 188, the transistor 186 and the resistor 204.
- the amount of discharging current drawn through the discharge path internal to the differential amplifier 182 is negligible as compared to the amount of discharging current drawn through the discharge path external to the differential amplifier 182.
- the magnitude of the discharging current is directly related to the magnitude of a bias voltage applied to the base electrode of the transistor 252 by the heat sensor network 238. Further, the magnitude of the discharging current is inversely related to the magnitude of a resistance applied between the emitter electrode of the transistor 252 and the ground line 42 by the voltage detector network 240.
- the transistors 256 and 258 are operated as emitter-followers.
- the con duction of the transistor 256 is detennined by the biasing action of the resistors 260 and 262.
- the conduction of the transistor 258 is determined by the biasing action of the thermistor 172 and the resistor 263 in conjunction with the internal resistance of the transistor 256.
- the voltage at the base electrode of the transistor 252 is determined by the biasing action of the resistors 264 and 266 in conjunction with the internal resistance of the transistor 258.
- the resistance of the negative temperature coefficient thermistor 172 decreases to as to decrease the conduction of the transistor 258.
- the discharge rate of the capacitor 232 is inversely related to the temperature of the engine 10.
- the transistors 268 and 270 are operated as electronic switches.
- the supply voltage of the battery 36 appears across the power line 40 and the ground line 42.
- the detecting resistors 272 and 274 are selected to sense the level of the supply voltage with respect to a minimum acceptable level.
- the transistor 268 is rendered fully conductive through the biasing action of the resistors 272 and 274.
- the transistor 270 is rendered fully nonconductive.
- the voltage at the emitter electrode of the transistor 252 is defined by the biasing action of the resistor 254.
- the transistor 268 When the supply voltage of the battery 36 falls below the minimum acceptable level, the transistor 268 is rendered fully nonconductive through the biasing action of the resistors 272 and 274. With the transistor 268 turned off, the transistor 270 is rendered fully conductive through the biasing action of the resistor 276. With the transistor 270 turned on, the resistor 278 is effectively placed in parallel with the resistor 254 to decrease the effective resistance between the emitter electrode of the transistor 252 and the ground line 42. Accordingly, the magnitude of the discharge current drawn through the transistor 252 increases when the supply voltage of the battery 36 falls below the minimum acceptable level. Hence, the discharge rate of the capacitor 232 is inversely related to the supply voltage of the battery 36.
- the transistor 344 when the starter switch is opened, the transistor 344 is rendered fully nonconductive. With the transistor 344 turned off, the transistor 328 is rendered fully conductive through the biasing action of the resistors 334 and 336. When the transistor 328 is turned on, the timer gating junction 329 is clamped to the potential of the ground line 42. Consequently, the cranking timer 176 is disabled. However, when the starter switch 150 is closed, the transistor 344 is rendered fully conductive through the biasing action of the resistors 346 and 348. With the transistor 344 turned on, the transistor 328 is rendered fully nonconductive through the biasing action of the resistor 334. When the transistor 328 is turned off, the timer gating junction 329 is unclamped. As a result, the cranking timer 176 is enabled.
- the timer control circuit 282 produces a timer control voltage V, at the timer control junction 320.
- the timer control voltage V varies with respect to a timer control level 354.
- the timer switching circuit 280 is responsive to the timer control voltage V, to switch between a set state and a reset state.
- the timer switching circuit 280 assumes the set state when the control voltage V, decreases below the timer control level 354 and assumes the reset state when the timer control voltage V, increases above the timer control level 354.
- the differential amplifier 284 exhibits a high gain characteristic.
- the transistor 288 combines with the resistor 294 to provide a current sink for the transistors 290 and 292.
- the conduction of the transistor 288 is determined by the biasing action of the resistors 206. and 208 and the diode 210.
- the voltage regulator or voltage divider formed by the resistor 296 in conjunction with the diodes 298, 300, 302 and 304 establishes a timer reference voltage at the timer reference junction 305.
- the timer reference voltage is fixed at approximately the timer control level 354.
- the timer switching circuit 280 is driven to the set state.
- the transistor 290 is rendered fully conductive and the transistor 292 is rendered fully nonconductive.
- the transistor 308 in the logic switch 286 is rendered fully nonconductive through the biasing action of the resistor 306.
- the timer switching circuit 280 is driven to the reset state. As the timer switching circuit 280 as:
- the transistor 290 is rendered fully nonconductive and the transistor 292 is rendered fully conductive.
- the transistor 308 in the logic switch 286 is turned on through the biasing action of the transistors 288 and 292 and the resistors 294 and 306.
- the transistor 310 operates to enable the cranking oscillator 174 when rendered fully nonconductive and to disable the cranking oscillator 174 when rendered through the biasing action of the resistors 336 and 338 and the diode 340 when the transistor 344 is turned off.
- the transistor 310 is turned on through the biasing action of the resistor 312 when the transistor 308 is turned on.
- the transistor 344 is turned on when the starter switch 150 is. closed and is turned off when the starter switch 150 is opened.
- the transistor 308 is turned off when the timer switching circuit 280 is in the set state and is turned on when the timer switching circuit 280 is in the reset state. More particularly, the transistor 308 is turned on when the timer control voltage V, decreases to the timer control level 354 and is turned off when the timer control voltage V, increases to the timer control level 354.
- the transistor 310 is turned off to enable the cranking oscillator 174 when the starter switch 150 is closed and the timer control voltage V, is below the timer control level 354. Further, the transistor 310 is turned on to disable the cranking oscillator 1.74 when the starter switch 150 is opened or when the timer control voltage V, is above the timer control level 354.
- cranking period may be defined to extend from the time when the starter switch 150 is closed until the time when the starter switch 150 is next opened.
- a resting period may be defined to extend from the time when the starter switch 150 is opened until the time when the starter switch 150 is next closed.
- a set interval may be defined as extending from the time when. the starter switch 150 is closed until the earlier of the time when the timer control voltage V, next reaches the timer control level354 or the time when the starter switch 150 is next opened.
- a reset interval may be defined as extending from the time when the starter switch 150 is opened until the earlier of the time when the timer control voltage V, next reaches the timer control level 354 or the time when the starter switch 150 is next closed.
- the cranking oscillator 174 produces cranking pulses on the output line 156 of the cranking enrichment circuit 154 only during the set interval, the set interval represents an enrichment interval.
- the timer switching circuit is in an enabled condition during an enrichment interval and is in a disabled condition at all other times.
- the capacitor 314 defines the timer control voltage V, at the timer control junction 320.
- the charging circuit 316 applies a chargfully conductive. Regardless of the operating condition of the transistor 308, the transistor 310 is turned on ing current to the capacitor 314 to charge the capacitor 314 only when the transistor 328 is turned off.
- the discharging circuit 318 draws a discharging current from the capacitor 314 to discharge the capacitor 314 when the transistor 328 is both tumedon and turned off. In other words, the operation of the discharging circuit 318 is independent of the operation of the transistor 328.
- the transistors 324 and 326 are rendered fully conductive when the transistor 328 is turned ofi as the starter switch is closed. Conversely, the transistors 324 and 326 are rendered fully nonconductive when the transistor 328 is turned on as the starter switch 150 is opened.
- the capacitor 314 charges at a charge rate through a charging path including the base-emitter junction of the transistor 324 and the resistor 330.
- the charge rate is determined by the RC charging time constant provided by the capacitor 314 in conjunction with the resistor 330 and the effective base-emitter junction resistance of the transistor 324.
- the RC charging time constant is chosen so that the charge rate as defined by the charging current applied through the charging path is substantially linear.
- the capacitor 314 is discharged at different first and second discharge rates.
- the capacitor 314 discharges at a first discharge rate through a first discharging path consisting of the resistor 322.
- the first discharge rate is determined by the RC time constant provided by the capacitor 314 in conjunction with the resistor 322.
- the capacitor 314 discharges at a second discharge rate through the first discharge path including the resistor 322 and also through a second discharge path including the base-emitter junction of the transistor 292, the transistor 288 and the resistor 294.
- the second discharge rate is determined by the RC discharging time constant provided by the capacitor 314 in conjunction with the resistors 294 and 322, the baseemitter junction resistance of the transistor 292 and the internal resistance of the transistor 288.
- the RC discharging time constants are chosen so that the first and second discharge rates are substantially linear.
- the charge rate provided by the charging circuit 316 is substantially greater than the discharge rate provided by the discharging circuit 318.
- the second discharge rate is substantially greater than the first discharge rate.
- the first discharge path is external to the differential amplifier 284 and the second discharge path is internal to the differential amplifier 284.
- FIG. 4 depicts the excursion of the timer control voltage V, over a complete operating cycle of the cranking timer 174;
- the starter switch 150 is closed to actuate the starter circuit 146 and initiate cranking of the engine 10.
- the transistor 344 is turned on.
- the timer control voltage V is at a minimum level below the timer control level 354. Accordingly, the transistor 290 is turned on and the transistors 292 and 308 are turned off. Since the transistor 344 is turned on and the transistor 308 is turned off, the transistor 310 is turned off. With the transistor 310 turned off, the cranking oscillator 174 is enabled to initiate the production of cranking pulses on the output line 156.
- the timer control voltage V increases at a first positive excursion rate defined by the charge rate less the first discharge rate.
- the timer control voltage V reaches the timer control level 354 in an increasing sense. Consequently, the transistor 290 is turned off and the transistors 292 and 308 are turned on. The transistor 344 remains turned on. Since the transistor 308 is turned on, the transistor 310 is turned on. With the transistor 310 turned on, the cranking oscillator 174 is disabled to terminate the production of cranking Pulses on the output line 156.
- the timer control voltage V increases at a second positive excursion less than the first positive excursion rate.
- the timer control voltage V reaches a maximum level as the capacitor 314 becomes fully charged.
- the timer control voltage V remains constant at the maximum level. In the illustrated timer control circuit 282, the maximum level is the voltage level on the power line 40.
- the starter switch 150 is opened to deactuate the starter circuit 146 and'terminate cranking of the engine 10. Consequently, the transistor '344 is turned ofi. However, since the transistor 308 remains turned on, the transistor 310 remains tumed-on. During the time intervalT, T, the timer control voltage V, decreases at a first negative excursion rate defined by the second discharge rate. At time T. the timer control voltage reaches the timer control level 354 in a decreasing sense. As a result, the transistor 290 is turned on and the transistors 292 and 308 are turned off. However, since the transistor 344 is turned off, the transistor 310 remains turned on. With the transistor 310 turned on, the cranking oscillator 174 remains disabled.
- T.i the timer control voltage V decreases at a second negative excursion rate as defined-by the first discharge rate.
- the second negative excursion rate is less than the first negative excursion rate.
- T4 the timer control voltage V reaches the minimum level as the capacitor 314 becomes fully charged.
- the timer control voltage V remains at the minimum level.
- the minimum level is the voltage level on the ground line 42.
- the time T when the starter switch 150 is opened can occur anytime after the time o, when the starter switch 150 is closed.
- the time 0, marks the termination of the cranking period Te -T, and the initiation of the resting period c
- the time interval r As the time n, moves toward the time i the following reset interval is represented by the time interval r, which remains unchanged at a maximum interval.
- the time interval Tn 3 As the time moves away fromthe time i toward the time the following reset interval is represented by the time interval Tn 3 which proportionately decreases.
- the duration of a reset interval is inversely related to the duration of the previous cranking period.
- the minimum possible duration of a set interval or enrichment interval is a direct function of the duration of the present cranking period.
- the time 0, when the starter switch 150 is closed can occur anytime after the time 0,, when the starter switch 150 is opened.
- the time n+l marks the termination of the resting period o a i and the initiation of the cranking period e o'
- the time interval T -T which proportionately a maximum interval.
- the time interval c B which proportionately decreases.
- the time T moves away from the time Tr toward the time the following set interval or enrichment interval is nonexistant.
- the duration of a set interval or enrichment interval is directly related to the duration of the previous resting period. Further, as the time Tcn+1 moves away from the time Referring to FIGS. 2 and 4, the maximum duration of the set interval or enrichment interval Tif may be adjusted by changing the first positive excursion rate of the timer control voltage V Similarly, the maximum duration of the reset interval o,,". r may be adjusted by changing the first negative excursion rate. Further, both the maximum'duration of the set interval or enrichment interval mr -n and the maximum duration of the resetinterval
- FIG. 5 depicts the excursion of the timer control voltage V, during a hypothetical portion of an engine starting sequence which illustrates the previously described operation of the cranking enrichment circuit 154.
- the set interval is represented by the time interval TC TO Throughout the first resting period T T, the reset interval is nonexistent.
- the set interval or enrichment interval is represented by the time interval o 5
- the reset interval is represented by the time interval og r
- the set interval or enrichment interval is represented by the time interval T03 TE
- the reset interval is represented by the time interval ri c
- the fourth cranking interval Ti -To the set interval or enrichment interval is nonexistent.
- the reset interval is represented by the time interval T,,,T,
- the com bination comprising: a power source for providing a supply voltage; starter means connected with'the engine for cranking the engine at a speed determined as a direct function of the supply voltage when energized by the power source; means connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine; cranking generator means connected with the starter means for producing cranking pulses when the starter means is energized, the cranking generator means including voltage detector means connected with the power source for defining the frequency of the cranking pulses as an inverse function of the supply voltage when the energy capacity of the power source is below normal; and means including fuel injection means for normally applying fuel to the engine in an amount directly related to the engine speed and for additionally applying a predetermined amount of fuel to the engine in responseto each cranking pulse so that the quantity of fuel delivered to the enginev during cranking is compensated for variations in the supply voltage of the power source.
- a power source for providing a supply voltage
- means including at least one voltage responsive fuel injector connected with the engine for applying fuel to the engine at a substantially constant rate when energized by the supply voltage
- starter means connected with the engine for cranking the engine at an output speed determined as a direct function of the supply voltage when energized by the supplyvoltage
- means connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine
- timing generator means connected with the engine for producing timing pulses having a frequency determined as a direct function of the output speed of the engine
- cranking generator means connected with the starter means for producing cranking pulses having a given frequency when the starter means is energized, the cranking generator means including voltage detector means connected to the power source for increasing the frequency of the cranking pulses when the supply voltage falls below a minimum acceptable level which indicates that the-energy capacity of the power source is below normal; and means connected with the timing generator means and the cranking generator means and connected between the fuel injector and
- a power source for providing a supply voltage
- starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source
- means connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine
- timing generator means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine
- cranking generator means connected with the starter means for producing cranking pulses when the starter means is energized
- the cranking generator means including voltage detector means connected with the power source for defining the frequency of the cranking pulses in inverse relation to the supply voltage when the energy capacity of the power source is below normal, the cranking generator means further including heat sensor means connected with the engine for defining the frequency of the cranking pulses in inverse relation to the temperature of the engine; and means connected
- a power source for providing electrical energy at a supply voltage
- means including at least one voltage responsive fuel injector connected with the enginefor applying fuel to the engine at a substantially constant rate when energized by the supply voltage
- starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized-from the power source
- means including a starter switch connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine
- timing generator means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine
- cranking oscillator means connected with the starter means for producing cranking pulses when the starter means is energized, the cranking oscillator means including oscillator control means for producing a control voltage having an excursion rate which determines the frequency of the cranking pulses, the oscillator control means including voltage detector means connected with the power source for regulating the excursion rate of the control voltage such that the frequency of the cranking pulses is inversely
- a power source for providing electrical energy at a supply voltage
- means including at least one voltage responsive fuel injector connected with the engine for applying fuel to the engine at a substantially constant rate when energized by the supply voltage
- starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source
- means including a starter switch connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine
- timing generator means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine
- cranking oscillator means connected with the starter means for producing cranking pulses when the starter means is in the actuated condition
- the cranking oscillator means including oscillator control means for producing a control voltage which alternately varies at a first excursion rate to a first control level and at a second excursion rate to a second control level, the oscillator control means including voltage detector means connected with the power source for regulating at least one of
- a power source for providing electrical energy at a supply voltage
- means including at least one voltage responsive fuel injector connected with the engine for applying fuel to the engine at a substantially constant rate when energized by the supply voltage
- starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source
- means including a starter switch connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine
- timing generator means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine
- cranking oscillator means connected with the starter means for producing cranking pulses when the starter means is actuated, the cranking oscillator means including oscillator control means for producing a control voltage which alternately increases to an upper control level at a positive excursion rate and decreases to a lower control level at a negative excursion rate, the oscillator control means including voltage detector means connected with the power source for increasing at least one of the positive and negative
- a power source for providing a supply voltage
- fuel injection means connected withlthe engine for applying fuel to the engine at a substantially constant rate when energized from the power source
- starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source
- means including a starter switch connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to A inga frequency directly related to the output speed of the engine
- cranking pulse generating means connected with the starter means for producing cranking pulses when the starter means is in the actuated condition, the cranking pulse generating means including control voltage generating means for producing a control voltage which alternately increases to an upper control level at a positive excursion rate and decreases to a lower control level at a negative excursion rate, the control voltage generating means including voltage detector means connected with the power source for increasing at least one of the positive and negative excursion rates when the supply voltage decreases below a minimum acceptable level which indicates that the energy
- a power source for providing electrical energy at a supply voltage
- means including at least one voltage responsive fuel injector connected with the engine for applying fuel to the engine at a substantially constant rate when energized by the supply voltage
- starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source
- cranking oscillator means including oscillator control means and oscillator switching means connected with the starter means, the oscillator control means developing a control voltage which varies in a first directional sense at a first excursion rate while the oscillator switching means is in a first state and which varies in a second directional sense at a second excursion rate while the oscillator switching means is in a second state, the oscillator switching means assuming the second state when the control voltage reaches a first control level in the first directional sense and assuming the first state when the control voltage reaches a second control level in the second directional sense,
- the oscillator switching means producing cranking pulses which are initiated when the oscillator switching means assumes one of the first and second states and which are terminated when the oscillator switching means assumes the other of the first and second states thereby to define the frequency of the cranking pulses as a direct function of the first and second excursion rates of the control voltage
- the oscillator control means including voltage detector means connected with the power source for regulating at least one of the first and second excursion rates of the control voltage as an inverse function of the supply voltage so that the frequency of the cranking pulses is inversely related to the supply voltage when the energy capacity of the power source is below normal; and means connected with the timing generator means and the cranking oscillator means and connected between the fuel injector and the power source for energizing the fuel injector with the supply voltage for a predetermined time period 'in response to each of the timing pulses and each of the cranking pulses so that the amount of fuel applied to the engine during cranking is compensated for variations in the supply voltage.
- a power source for providing electrical energy at a supply voltage
- means including at least one voltage responsive fuel injector connected with the engine for applying fuel to the engine at a substantially constant rate when energized by the supply voltage
- starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source
- means including a starter switch connected between the starter means and the power source for selectively energizing the starter means to crank the engine
- timing generator means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine
- cranking oscillator means connected with the starter means, the cranking oscillator means including oscillator switching means responsive to a control voltage when the starter means is actuated to switch to a set state as the control voltage decreases to a lower control level and to switch to a reset state as the control voltage increases to an upper control level, the oscillator switching means producing cranking pulses which are initiated when the oscillator switching means assumes one of the set and reset states
- a power source for providing a supply voltage
- fuel injection means connected with the engine for applying fuel to the engine at a substantially constant rate when energized from the power source
- starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source
- means including a starter switch connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine
- timing pulse generating means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine
- cranking pulse generating means connected with the starter means, the cranking pulse generating means including switching means responsive to a control voltage when the starter means is in the actuated condition to switch to a set state as the control voltage decreases to a lower control level and to switch to a reset state as the control voltage increases to an upper control level, the switching means producing cranking pulses which are initiated when the switching means assumes one of the set and reset states and which are terminated when the switching means
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
In an electronic fuel injection system, fuel is applied to an internal combustion engine for the duration of individual control pulses developed in synchronization with the engine rotation. During cranking of the engine, additional control pulses are supplied at a frequency which is inversely related to the temperature of the engine and which is also inversely related to the supply voltage of a power source. In a preferred embodiment, the frequency of the additional control pulses is doubled when the supply voltage falls below a minimum acceptable level.
Description
United States Patent.
Barr et al. [451 Aug. 15, 1972 [54] FUEL SUPPLY SYSTEM FOR AN 3,435,809 4/1969 Bassot 123/32 INTERNAL COMBUSTION ENGINE 3,483,851 12/1969 Reichardt ..123/32 PROVIDING VOLTAGE 3,504,657 4/1970 Eichlen. ..123/32 COMPENSATED CRANKING 3,566,846 3/1971 Glockler ..123/32 ENRICHMENT Primary Examiner-Laurence M. Goodridge [72] Inventors Paul Ban; 9mg! 9mm; Assistant Examiner-RonaldB Cox Attorney-E. w. Christen, c. R. Meland and Tim 0. [73] Assignee: General Motors Corporation, Jagodzinski Detroit, Mich. 221 Filed: July 17, 1910 [571 ABSTRACT 1n an electronic fuel injection system, fuel is applied to [211 App! 55331 an internal combustion engine for the duration of individual control ulses develo d in s chronization [52] US. Cl. ..123/32 EA, 123/32 R, 123/119 R, with the engine fixation Z; crankxlgg f the 51 I CI. 3 30 3 5 L gine, additional control pulses are supplied at a l 1 I l 2 F H 7/00 frequency which is inversely related to the tempera- [58] Field of Search ..123/32 EL, 179 G, 179 L ture of the engine and which is also inversely related [561v mm CM 12222522522222"22252252322: UNITED STATES PATENTS pulses is doublectlaglheln the supply voltage falls below a 3,429,302 2/1969 Scholl ..123/32 EA accep e 3,272,187 9/1966 Westbrook ..123/32 10 Clains, 5 Drawing Figures IGNITION .-w CIRCUlT GENERATOR ECTO R rave lcmcun 1 IPATENTEDMJBIB m2 3.683.871
In a well known electronic fuel injection system, one or more voltage responsive fuel injectors deposit fuel within the intake manifold of an engine at a constant flow rate when energized by the supply voltage of a power source. The fuel injectors are energized for the duration of individual control pulses developed in synchronization with the rotation of the engine. Since the engine rotation is' relatively low during cranking, the number of control pulses normally produced is generally insufficient to apply enough fuel to the engine to insure reliable starting. Further, some of the applied fuel tends to condense within the intake manifold of the engine during cold cranking. Accordingly, additional control pulses are produced during each cranking period to increase the amount of fuel applied to the engine to facilitate quick starting. Moreover, since the total fuel condensation decreases as the engine temperature increases, the frequency of the additional control pulses is varied as an inverse function of the temperature of the engine.
With the previously described electronic fuel injection system, the engine will ordinarily start quickly during a cranking period. However, if for some reason the energy capacity of the power source is relatively low, the engine cranking speed is slowed by a corresponding reduction in the supply voltage. As a result, the engine is more difficult to start. In addition, if the engine does not rapidly start, the remaining energy capacity of the power source is soon depleted. Further, when the supply voltage is relatively low, the operation of the voltage responsive fuel injectors is sluggish. Consequently, the amount of fuel applied to the engine to facilitate starting is effectively reduced. Therefore, engine starting is that much more difficult.
In order to alleviate these problems, the present invention provides an electronic fuel injection system including a cranking enrichment circuit which is compensated for variations in the supply voltage of the power source. According to one aspect of the invention, the frequency of the additional control pulses produced during engine cranking is varied as an inverse function of the supply voltage of the power source. In another aspect of the invention, the frequency of the additional control pulses is increased when the energy capacity of the power source is reduced by a given amount. As contemplated by a further aspect of the invention, the frequency of the additional control pulses is increased by a given multiple as the supply voltage decreases below a minimum acceptable level. Accordingly, the amount of fuel applied to the engine during cranking is increased to facilitate quick starting when the supply voltage of the power source is relative ly low. I
These and other aspects and advantages of the invention will become more apparent by reference to the following detailed description of a preferred embodiment when considered in conjunction with the accompanying drawing.
IN THE DRAWING FIG. 1 is a schematic diagram of an electronic fuel injection system incorporating the principles of the invention.
FIG. 2 is a schematic diagram of a cranking enrichment circuit incorporating the principles of the invention.
FIGS. 3, 4 and 5 are graphic diagrams of waveforms useful in explaining the principles of the invention.
Referring to FIG. 1, an internal combustion engine 10 for an automotive vehicle includes-a combustion chamber or cylinder 12. A piston 14 is mounted for reciprocation within the cylinder 12. A crankshaft 16 is supported for rotation within the'engine 10. A connecting rod 18 is pivotally connected betweenthe piston 14 and the crankshaft 16 for rotating the crankshaft within the engine 10 when the piston 14 is reciprocated within the cylinder 12.
An intake manifold 20 is connected with the cylinder 12 through an intake port 22. An exhaust manifold 24 is connected with the cylinder 12 through an exhaust port 26. An intake valve 28 is slidably mounted within the top of the cylinder 12 in cooperation with the intake port 22 for regulating the entry of combustion ingredients into thecylinder 12 from the intake manifold 20. A spark plug 30 is mounted in the top of the cylinder 12 for igniting the combustion ingredients within the cylinder l2-when the spark plug 30 is energized. An exhaust valve 32 is slidably mounted in the top of the cylinder 12 in cooperation with the exhaust port 26 for regulating the exit of combustion products from the cylinder 12 into the exhaust manifold 24. The intake valve 28 and the exhaust valve 32 are driven through a suitable linkage 34 which conventionally includes rocker arms, lifters, and a camshaft.
An electrical power source is provided by the vehicle battery 36. An ignition switch 38 connects the battery 36 between a power line 40 and a ground line 42. When the ignition switch 38 is closed, the battery 36 applies a supply voltage to the power line 40. A conventional ignition circuit 44 is electrically connected to the power line 40 and is mechanically connected with the crankshaft 16 of the engine 10. Further, the ignition circuit 44 is connected through a spark cable'46 to the spark plug 30. In a conventional manner, the ignition circuit 44 energizes the spark plug 30 in synchronization with the rotation of the crankshaft 16 of the engine 10. Hence, the ignition circuit 44 combines with the ignition switch 38 and the spark plug 30 to form an ignition system.
A fuel injector 48 includes a housing 50 having a fixed metering orifice 52. A plunger 54 is supported within the housing 50 for reciprocation between a fully opened position and a fully closed position. In the fully opened position, the forward end of the plunger 54 is opened away from the orifice 52. In the fully closed position, the forward end of the plunger 54 is closed against the orifice 52. A bias spring 56 is seated between the rearward end of the plunger 54 and the housing 50 for normally maintaining the plunger 54 in the fully closed position. A solenoid or winding 58 is electromagnetically coupled with plunger 54 for driving the plunger 54 to the fully opened position against the action of the bias spring 56 when the winding 58 is energized. The bias spring 56 drivesthe plunger 54 to the fully closed position when the winding 58 is deenergized. The fuel injector 48 is mounted on the intake manifold 20 of the engine for injecting fuel into the intake manifold at a constant flow rate through the metering orifice 52 when the plunger 54 is in the fully opened position. Notwithstanding the illustrated structure, it is to be noted that the fuel injector 48 may be provided by virtually any suitable constant flow rate valve.
A fuel pump 60 is connected to the fuel injector 48 by a conduit 62 and to the vehicle fuel tank 64 by a conduit 66 for pumping fuel from the fuel tank 64 to the fuel injector 48. Preferably, the fuel pump 60 is connected to the power line 40 to be electrically driven from the vehicle battery 36. Altemately, the fuel pump 60 could be connected to the crankshaft 16 to be mechanically driven from the engine 10. A pressure regulator 68 is connected to the conduit 62 by a conduit 70 and is connected to the fuel tank 64 by a conduit 72 for regulating the pressure of the fuel applied to the fuel injector 48. Thus, the fuel injector 48 combines with the fuel tank 64, the fuel pump 60 and the pressure regulator 68 to form a fuel supply system.
A throttle 74 is rotatably mounted within the intake manifold 20 for regulating the flow of air into the intake manifold 20 in accordance with the position of the throttle 74. The throttle 74 is connected through a suitable linkage 76 with the vehicle accelerator pedal 78. As the accelerator pedal 78 is depressed, the throttle 74 is opened to increase the flow of air into the intake manifold 20. Conversely, as the accelerator pedal 78 is released, the throttle 74 is closed to decrease the flow of air into the intake manifold 20.
In operation, fuel and air are combined within the intake manifold 20 to form an air/fuel mixture. The fuel is injected into the intake manifold 20 at a constant flow rate by the fuel injector 48 in response to energization. The precise amount of fuel deposited within the intake manifold 20 is regulated by a fuel supply control system which will be described later. The air enters the intake manifold 20 from the air intake system (not shown) which conventionally includes an air filter. The precise amount of air admitted into the intake manifold 20 is determined by the position of the throttle 74. As previously described, the position of the accelerator pedal 78 controls the position of the throttle 74.
As the piston 14 initially moves downward within the cylinder 12 on the intake stroke, the intake valve 28 is opened away from the intake port 22 and the exhaust valve 32 is closed against the exhaust port 26. Accordingly, combustion ingredients in the form of the air/fuel mixture within the intake manifold 20 are drawn by negative pressure through the intake port 22 into the cylinder 12. As the piston 14 subsequently moves upward within the cylinder 12 on the compression stroke, the intake valve 28 is closed against the intake port 22 so that the air/fuel mixture is compressed between the top of the piston 14 and the top of the cylinder 12. When the piston 14 reaches the end of its upward travel on the compression stroke, the spark plug 30 is energized by the ignition circuit 44 to ignite the air/fuel mixture. The ignition of the air/fuel mixture starts a combustion reaction which drives the piston 14 downward within the cylinder 12 on the power stroke. As the piston 14 again moves upward within the cylinder 12 on the exhaust stroke, the exhaust valve 32 is opened away from the exhaust port 26. As a result, the combustion products in the form of various exhaust gases are pushed by positive pressure out of the cylinder 12 through the exhaust port 26 into the exhaust manifold 24. The exhaust gases pass out of the exhaust manifold 24 into the exhaust system(not shown) which conventionally includes a muffler and an exhaust pipe.
Although the structure and operation of only a single combustion chamber or cylinder 12 has been described, it will be readily appreciated that the illustrated internal combustion engine 10 may include additional cylinders 12 as desired. Similarly, additional fuel injectors 48 may be provided as required. However, as
long as the fuel injectors 48 are mounted on the intake manifold 20, the number of additional fuel injectors 48 need not necessarily bear any fixed relation to the number of additional cylinders 12. Alternately, the fuel injector 48 may be directly mounted on the cylinder 12 so as to inject fuel directly into the cylinder 12. In such instance, the number of additional fuel injectors 48 would necessarily equal the number of additional cylinder 12. At this point, it is to be understood that the illustrated internal combustion engine 10, together with all of its associated equipment, is shown only to facilitate a more complete understanding of the inventive fuel supply control system.
A timing pulse generator 80 is connected with the crankshaft 16 for developing timing pulses having a frequency which is proportional to and synchronized with the rotating speed of the crankshaft 16. The timing pulses are applied to a timing line 82. Preferably, the timing pulse generator 80 is some type of inductive speed transducer coupled with a bistable circuit. However, the timing pulse generator 80 may be provided by virtually any suitable pulse producing device such as a multiple contact rotary switch.
An injector drive circuit 84 is connected to the power line 40 and to the timing line 82. Further, the injector drive circuit 84 is connected through an injection line 86 to the fuel injector 48. The injector drive circuit 84 is responsive to the timing pulses produced by the timing pulse generator 80 to energize the fuel injector valve 48 in synchronization with the rotating speed of the crankshaft 16 in much the same manner as the ignition circuit 44 energizes the spark plug 30. The length of time for which the fuel injector 48 is energized by the drive circuit 84 is determined by the width or duration of the control pulses produced by a modulator or control pulse generator 88 which will be more fully described later. The control pulses are applied by the control pulse generator 88 to the injector drive circuit 84 over a control line 90 in synchronization with the timing pulses produced by the timing pulse generator 80. In other words, the injector drive circuit 84 is responsive to the coincidence of a timing pulse and a control pulse to energize the fuel injector 48 for the duration or width of the control pulse.
The injector drive circuit 84 may be virtually any amplifier circuit capable of logically executing the desired coincident pulse operation. However, where additional fuel injectors 48 are provided, it may be necessary that the injector drive circuit 84 also select which one or ones of the fuel injectors 48 are to be energized on each respective timing pulse. As an example, where the fuel injectors 48 are mounted on the intake manifold 20, they may be divided into two separate groups which are alternately energized on successive ones of the timing pulses. Conversely, where the fuel injectors 48 are mounted directly on additional cylinders 12, the timing pulses may be applied to operate a counter which individually selects the fuel injectors 48 for energization.
The control pulse generator 88 includes a monostable multivibrator or blocking oscillator 92. The blocking oscillator 92 includes a control transducer 94 having a primary winding 96 and a secondary winding 98 which are variably inductively coupled through a movable magnetizable core 100. The deeper the core 100 is inserted into the primary and secondary windings 96 and 98, the greater the inductive coupling between the primary winding 96 and the secondary winding 98. The movable core 100 is mechanically connected through a suitable linkage 102 with a vacuum sensor 104. The vacuum sensor 104 communicates with the intake manifold 20 of the engine downstream from the throttle 74 through a conduit 106 for monitoring the negative pressure within the intake manifold 20. The vacuum sensor 104 moves the core 100 within the control transducer 94 to regulate the inductive coupling between the primary and secondary windings 96 and 98 as an inverse function of the vacuum within the intake manifold 20. Therefore, as the vacuum within the intake manifold decreases in response to the opening of the throttle 74, the core 100 is inserted deeper within the control transducer 94 to proportionately increase the inductive coupling between the primary winding 96 and the secondary winding 98.
The monostable multivibrator or blocking oscillator 92 further includes a pair of NPN junction transistors 108 and 110. The primary winding 96 is connected from the collector electrode of the transistor 110 through a limiting resistor 112 to the power line 40. The secondary winding 98 is connected from an input junction 114 through a steering diode 116 to a bias junction 118 between a pair of biasing resistors 120 and 122 which are connected in series between the power line 40 and the ground line 42. A biasing resistor 124 is connected between the junction 114 and the power line 40. The base electrode of the transistor 108 is connected through a steering diode 126 to the junction 114. The emitter electrodes of the transistors 108 and 110 are connected directly to the ground line 42. The collector electrode of the transistor 108 is connected through a biasing resistor 128 to the power line 40 and is connected through a biasing resistor 130 to the base electrode of the transistor 110.
Further, the control pulse generator 88 includes a differentiator 132 provided by a capacitor 134 and a pair of resistors 136 and 138. The resistors 136 and 138 are connected in series between the power line 40 and the ground line 42. The capacitor 134 is connected from the timing line 82 to a junction 140 between the resistors 136 and 138. A steering diode 142 is connected from the junction 140 between the resistors 136 and 138 to the input junction 114. In operation, timing pulses are applied through the timing line 82 to the differentiator 132. The differentiator 132 develops negative trigger pulses at the junction 140 in response to the timing pulses. The diode 142 applies the trigger pulses from the junction 140 to the junction 114.
The modulator or control pulse generator 88 is generally'well known in the fuel injection art. Accordingly, since it is only incidental to the present invention, its operation will not be described in great detail. In operation, the monostable multivibrator or blocking oscillator 92 switches from a stable state to an unstable state in response to a decrease in the voltage at the input junction 114 below a predetermined threshold level. The voltage appearing at the junction 114 comprises a feedback voltage provided by the control transducer 94 and a bias voltage provided by the resistors 120, 122 and 124. Specifically, when the voltage at the junction 114 rises above the threshold level, the transistor 108 is rendered fully conductive through the coupling action of the diode 126 and the transistor is rendered fully nonconductive through the biasing action of the resistor 130.
With the feedback voltage absent, the bias voltage is provided by the resistors 120, 122 and 124 normally maintains the voltage at the junction 114 above the threshold voltage so that the transistor 108 is normally turned on and the transistor 110 is normally turned off. 1
However, when a negative trigger pulse arrives at the junction 114, the voltage at the junction 114 immediately drops below the threshold level. Consequently, the transistor 108 is turned off through the coupling action of the diode 126, and the transistor 110 is turned on through the biasing action of the resistors 128 and 130. With the transistor 110 turned on, a control pulse is initiated on the control line 90. The level of the control pulse is defined by the saturation voltage drop of the transistor 1 l0.
With the transistor 110 turned on, a current is established in the primary winding 96 of the control transducer 94 to develop the feedback voltage acrossthe secondary winding 98 of the control transducer 94. The feedback voltage initially instantaneously decreases from the level of the bias voltage to a lower level and subsequently gradually increases back to the level of the bias voltage. The feedback voltage is coupled through the diode 116 to the junction 114 to hold the voltage at the junction 114 below the threshold level. Consequently, the transistor 108 remains turned off and the transistor 110 remains turned on.
The lower level of the feedback voltage is determined by the inductive coupling between the primary and secondary windings ,96 and 98 of the control transducer 94. In turn, the inductive coupling between the primary and secondary windings 96 and 98 is defined by the position of the movable core 100. The rate at which the feedback voltage increases from the lower level back to thelevel of the bias voltage is determined by the L/R time constant of the primary winding 96 and the limiting resistor 112. As the feedback voltage increases, the voltage at the junction 114 eventually rises above the threshold level. Accordingly, the transistor 108 is turned on and the transistor 110 is turned off. With the transistor 108 turned off, the control pulse on the control line 90 is terminated. Thus, the duration of the control pulses occurring on the control line 90 is determined by the vacuum sensor 104 and the control transducer 94 as an inverse function of the vacuum within the intake manifold 20 of the engine 10.
A starter circuit 146 is mechanically connected with the crankshaft 16 of the engine 10 through a'suitable linkage 148. A starter switch 150 connects the vehicle battery 36 with the starter circuit 146 through a starting line 152. When the starter switch 150 is closed, the starter circuit 146 is actuated to initiate cranking of the engine 10. When the starter switch 150 is opened, the starter circuit 146 is deactuated to terminate cranking of the engine 10. Preferably, the starter switch 150 is ganged with the ignition switch 38 in the conventional manner. When ganged, the ignition switch 38 is closed when the starter switch 150 is in the starting position, but the starter switch 150 is opened when the ignition switch 38 is in the running position. conventionally, the starter circuit 150 includes a starter solenoid and a starter motor. Thus, the starter circuit 146 combines with the starter switch 150 to form a starting system.
During cranking of the engine 10 by the starter circuit 146, the rotation of the crankshaft 16 is relatively slow. As a result, the frequency of the timing pulses produced by the timing pulse generator 80 is relatively low. Consequently, the frequency of the control pulses produced by the control pulse generator 88 is also low. With the number of control pulses reduced during cranking of the engine 10, the amount of fuel deposited within the intake manifold 20 by the fuel injector 48 is generally insufficient to insure reliable starting of the engine 10. In addition, when the engine 10 is cold, some of the applied fuel tends to condense upon the walls of the intake manifold 20 and upon the surface of the intake valve 28. As a result, the amount of fuel actually drawn from the intake manifold 20 through the intake port 22 past the intake valve 28 into the cylinder 12 is substantially reduced during cold cranking of the engine 10. For these reasons, a cranking enrichment circuit 154 is provided for increasing the number of control pulses developed by the control pulse generator 88 during cranking of the engine 10.
The cranking enrichment circuit 154 is connected between the powerline 40 and the ground line 42. The cranking enrichment circuit 154 includes an input connected through the starting line 152 to the starter switch 150. Correspondingly, the cranking enrichment circuit 154 includes an output connected through an output line 156 to a differentiator 158 in the control pulse generator 88. The differentiator 158 is provided by a capacitor 160 and a pair of resistors 162 and 164. The resistors 162 and 164 are connected in series between the power line 40 and the ground line 42. The capacitor 160 is connected between the output line 156 of the cranking enrichment circuit 154 and a junction 166 between the resistors 162 and 164. A steering diode 168 is connected from the junction 166 between the resistors 162 and 164 to the input junction 114 in the monostable multivibrator or blocking oscillator 92.
In a manner to be more fully described later, the cranking enrichment circuit 154 is responsive to cranking of the engine 10, when the starter switch 150 is closed to produce cranking pulses on the output line 156. The cranking pulses produced by the cranking enrichment circuit 154 are applied through the output line 156 to the differentiator 158. The differentiator 158 develops negative trigger pulses at the junction 166 in response to the cranking pulses. The diode 16 8 applies the trigger pulses from the junction 166 to the junction 114. As previously described, the monostable multivibrator or blocking oscillator 92 produces control pulses in response to the occurrence of the trigger pulses at the input junction 1 14. Hence, additional control pulses are developed by the control pulse generator 88 during cranking of the engine 10.
As might be expected, the total amount of fuel which is condensed upon the walls of the intake manifold 20 and upon the surface of the intake valve 28 is inversely related to the temperature 'of the engine 10. Therefore, as the engine temperature increases, an increasing amount of fuel is drawn from the intake manifold 20 through the intakeport 22 past the intake valve 28 into the cylinder 12 tending to flood the engine 10 with excess fuel. Accordingly, the cranking enrichment circuit 154 includes an input connected througha sensing line 170 to a heat sensing element 172 mounted on the top of the cylinder 12 adjacent the intake valve 28 for monitoring the temperature of the engine 10. Altemately, it will be appreciated that the heat sensing element 172 could be located in some other convenient position, such as within the engine coolant system. Preferably, the heat sensing element 172 is provided by a negative temperature coefficient resistor or thermistor. The thermistor 172 regulates the frequency of the cranking pulses produced by the cranking enrichment circuit 154 as an inverse function of the temperature of the engine 10. Thus, the amount of fuel applied to the engine 10 during cranking is compensated for variations in the temperature of the engine 10.
In addition, if the energy capacity of the power source or battery 36 is relatively low, the supply voltage applied to the power line 40 and to the starting line 152 is decreased. As an example, the supply voltage of the battery 36 may be low due to an energy-drain placed on the battery 36 by some external accessory equipment, such as the vehicle light system (not shown), when the engine 10 is shut off. With the supply voltage on the starting line 152 reduced, the speed at which the crankshaft 16 of the engine 10 is cranked by the starter circuit 146 is slowed. Accordingly, the engine 10 is more difficult to start. Further, if the engine 10 does not rapidly start, the remaining energy of the battery 36 will be quickly depleted by the starter circuit 146 during cranking of the engine 10. In such event, it is impossible to start the engine 10.
Moreover, with the supply voltage on the power line 40 reduced, the magnitude of the voltage applied to the winding 58 of the fuel injector 48 by the injector drive circuit 84 is correspondingly lowered. Consequently, the response time of the fuel injector 48 is sluggish. More particularly, the opening time of the plunger 54 with respect to the metering orifice 52 is substantially increased. As a result, the amount of fuel deposited within the intake manifold 20 of the engine 10 by the fuel injector 48 is effectively decreased. Therefore, when the supply voltage of the battery 36 is low enough to adversely effect the response time of the fuel injector 48, the engine 10 is even more difficult to start. Further, since the amount of fuel deposited within the intake manifold 20 is inversely related to the temperature of the engine 10, engine starting is even more troublesome if the engine 10 is at an elevated temperature when the supply voltage is reduced.
In order to alleviate these problems, the frequency of the cranking pulses produced by the cranking enrichment circuit 154 is regulated as an inverse function of the energy capacity of the power source or battery 36. More particularly, the frequency of the cranking pulses is increased by. a given factor when the supply voltage of the battery 36 falls below a minimum acceptable level. Preferably, the frequency of the cranking pulses is doubled when the supply voltage is reduced. Thus, the amount of fuel applied to the engine 10 during cranking is compensated for variations in the supply voltage of the battery 36 as well as for variations in the temperature of the engine 10.
Ordinarily, the engine 10 will start quickly when cranked by the starter circuit 146. However, if the engine 10 initially fails to start, the starting sequence may become a series of alternate cranking periods and resting periods under control of the vehicle operator. A cranking period may be defined as that time interval during which the starter switch 150 is closed to actuate the starter circuit 146. A resting period may be defined as that time interval during which the starter switch 150 is opened to deactuate the starter circuit 146.
As will be more fully described later, the cranking enrichment circuit 154 produces cranking pulses only during a limited enrichment interval. This prevents the engine 10 from becoming excessively flooded with fuel due to a continual supply of cranking pulses from the cranking enrichment circuit 154 in the absence of engine starting. Preferably, the enrichment interval begins when the starter switch 150 is closed to actuate the starter circuit 146 and initiate cranking of the engine 10. Similarly, the enrichment interval ends when the starter switch 150 is opened to deactuate the starter circuit 146 and terminate cranking of the engine 10. Hence, the minimum possible duration of an enrichment interval is directly related to the duration of the instant cranking period. This prevents the engine 10 from becoming flooded with fuel due to a continual supply of cranking pulses from the cranking enrichment circuit 154 in the absence of engine cranking.
Further, the maximum possible duration of an enrichment interval is directly related to the duration of the preceding resting period up to a predetermined limit. This prevents severe flooding of the'engine 10 due to an excessive number of cranking pulses produced by the cranking enrichment circuit 154 when the resting periods are disproportionately shorter than the cranking periods. In addition, the maximum possible duration of an enrichment interval is inversely re lated to the duration of the preceding cranking period up to a predetermined limit. More specifically, the maximum possible duration of an enrichment interval is inversely related to the duration of the preceding cranking period in excess of the preceding enrichment interval. This prevents continued flooding of the engine 10 due to a constant oversupply of cranking pulses from the cranking enrichment circuit 154 when the successive cranking periods and resting periods occurred in rapid order after the engine 10 has been initially flooded.
Referring to FIG. 2, the cranking enrichment circuit 154 comprises a cranking oscillator 174 and a cranking timer 176. The cranking pulse generator or cranking oscillator 174 includes an oscillator switching circuit 178 and an oscillator control circuit 180. The oscillator switching circuit or oscillator toggle circuit 178 comprises a differential amplifier 182 and an output switch 184.
The differential amplifier 182 includes NPN junction transistors 186, 188, 200 and 202. The emitter electrode of the transistor 186 is connected through a biasing resistor 204 to the ground line 42. A voltage divider network includes a pair of biasing; resistors 206 and 208 and a temperature compensating; diode 210 which are connected in series between the power line 40 and the ground line 42. The base electrode of the transistor 186 is connected to a bias junction 212 between the resistor 206 and the diode 210. The collector electrode of the transistor 186 is connected directly to the emitter electrodes of the transistors 188 and 200. The base electrode of the transistor 188 is connected to the oscillator control circuit 180.
The collector electrode of the transistor 188 is connected through a biasing resistor .214 to the power line 40. The collector electrode of the transistor 200 is connected through a temperature compensating diode 216 and a biasing resistor 218 to the power line 40. The base electrode of the transistor 202 is connected directly to the collector electrode of the transistor 188. The collector electrode of the transistor 202 is connected directly to the power line 40. The emitter electrode of the transistor 202 is connected through a pair of biasing resistors 220 and 222 to the ground line 42. The base electrode of the transistor 200 is connected to an oscillator reference junction or oscillator gating junction 224 between the resistors 220 and 222.
The output switch 184 comprises a PNP junction transistor 226 and an NPN junction transistor 228. The base electrode of the transistor 226 is connected directly to the collector electrode of the transistor 200. The collector electrode of the transistor 226 is connected directly to the base electrode of the transistor 228. The emitter electrode of the transistor 226 and the collector electrode of the transistor 228 are connected together through an output resistor 230 to the power line 40. The emitter electrode of the transistor 228 is connected directly to the output line 156 of the cranking enrichment circuit 154.
The oscillator control circuit or oscillator integrator circuit includes a storage element or capacitor 232, a charging circuit 234 and a discharging circuit 236. The discharging circuit 236 comprises a heat sensor network 238 and a voltage detector network 240. The capacitor 232 is connected between the base electrode of the transistor 188 and the ground line 42. An oscillator control junction 242 is defined between the top of the capacitor 232 and the base electrode of the transistor 188.
The charging circuit or current source 234 includes a PNP junction transistor 244 and an NPN junction transistor 246. The base electrode of the transistor 244 is connected directly to the collector electrode of the transistor 200. The emitter electrode of the transistor 244 and the collector electrode of the transistor 246 are connected through a charging resistor 248 to the power line 40. The collector electrode of the transistor 244 and the base electrode of the transistor 246 are connected through a biasing resistor 250 to the oscillator control junction 242. The emitter electrode of the transistor 246 is connected directly to the oscillator control junction 242.
The discharging circuit or current sink 236 includes an NPN junction transistor 252. The collector electrode of the transistor 252 is connected directly to the oscillator control junction 242. The base electrode of the transistor 252 is connected with the heat sensor network 236. The emitter electrode of the transistor 252 is connected with the voltage detector network 240. Further, the emitter electrode of the transistor 252 is connected through a discharging resistor 254 to the ground line 42.
The heat sensor network 238 includes a pair of NPN junction transistors 256 and 258. The base electrode of the transistor 256 is connected to a junction between a pair of biasing resistors 260 and 262 which are connected in series between the power line 40 and the ground line 42. The collector electrode of the transistor 256 is connected directly to the power line 40. The base electrode of the transistor 258 is connected to a junction between the heat sensing. element or thermistor 172 and a biasing resistor 263 which are connected in'series between the emitter electrode of the transistor 256 and the ground line 42. The collector electrode of the transistor 258 is connected directly to the power line 40. The emitter electrode of the transistor 258 is connected through a pair of biasing resistors 264 and 266 to the ground line 42. The base electrode of the transistor 252 is connected directly to the junction between the resistors 264 and 266.
The voltage detector network 240 includes a pair of NPN junction transistors 268 and 270. The base electrode of the transistor 268 is connected to the junction between a pair of detecting resistors 272 and 274 which are connected in series between the power line 40 and the ground line 42. The emitter electrode of the transistor 268 is connected directly to the ground line 42. The collector electrode of the transistor 268 and the base electrode of the transistor 270 are connected together through a biasing resistor 276 to the power line 40. The emitter electrode of the transistor 270 is connected directly to the ground line 42. The collector electrode of the transistor 270 is connected through a discharging resistor 278 to the emitter electrode of the transistor 252.
The cranking timer 176 comprises a timer switching circuit 280 and a timer control circuit 282. The timer switching circuit or timer toggle circuit 280 includes a differential amplifier 284 and a logic switch 286. The differential amplifier 284 comprises NPN junction transistors 288, 290 and 292. The base electrode of the transistor 288 is connected directly to the bias junction 212 between the resistor 206 and the diode 210. The emitter electrode of the transistor 288 is connected through a biasing resistor 294 to the ground line 42. The collector electrode of the transistor 288 is connected directly to the emitter electrodes of the transistors 290 and 292.
A voltage regulator or voltage divider network is formed by a bias resistor 296 and a string of diodes 298, 300, 302 and 304 which are connected in series between the power line 40 and the ground line 42. The base electrode of the transistor 290 is connected to a timer reference junction 305 between the resistor 296 and the diode 298. The collector electrode of the transistor 290 is connected directly to the power line 40. The collector electrode of the transistor 292 is connected through a biasing resistor 306 to the power line 40. The base electrode of the transistor 292 is connected with the timer control circuit 282.
The logic switch 286 includes a PNP junction transistor 308 and an NPN junction transistor 310. The
base electrode of the transistor 308 is connected directly to the collector electrode of the transistor 292. The emitter electrode of the transistor 308 is connected directly to the power line 40. The collector electrode of the transistor 308 is connected through a biasing resistor 312 to the base electrode of the transistor 310. The emitter electrode of the transistor 310 is connected directly to the ground line 42. The collector electrode of the transistor 310 is connected to the oscillator gating junction 224 between the resistors 220 and 222 in the oscillator switching circuit 178.
The timer control circuit or timer integrator circuit 282 comprises a storage element or capacitor 314, a
charging circuit 316 and a discharging circuit 318. The capacitor 314 is connected between the base electrode of the transistor 292 and the ground line 42. A timer control junction 320 is defined between the top of the capacitor 314 and the base electrode of the transistor 292. The discharging circuit or current sink 318 includes a discharging resistor 322 connected between the timer control junction 320 and the ground line 42. As will be more fully explained later, the discharging circuit 318 also includes the transistors 288 and 292 and the resistor 294 of the differential amplifier 284.
The charging circuit or current source 316 includes a PNP junction transistor 324 and a pair of NPN junction transistors 326 and 328. The base electrode of the transistor 324 is connected directly to the timer control junction 320. The emitter electrode of the transistor 324 and the collector electrode of the transistor 326 are connected together through a charging resistor 330 to the power line 40. The collector electrode of the transistor 324 and the base electrode of the transistor 326 are connected together through a biasing resistor 332 to the ground line 42. The emitter electrode of the transistor 326-is connected directly to the ground line 42. The collector electrode of the transistor 328 is connected directly to a timer gating junction 329 between the resistor 330, the emitter electrode of the transistor 324 and the collector electrode of the transistor 326. The emitter electrode of the transistor 328 is connected directly to the ground line 42. The base electrode of the transistor 328 is connected through a pair of biasing resistors 334 and 336 to the power line 40. The base electrode of the transistor 310 is connected through a biasing resistor 338 and a turnoff diode 340 to an input junction 342 between the biasing resistors 334 and 336.
A cranking driver switch is provided by a NPN junction transistor 344. .The collector electrode of the transistor 344 is connected directly to the input junction 342. The emitter electrode of the transistor 344 is connected directly to the power line 42. The base electrode of the transistor 344 is connected through a biasing resistor 346 to the starting line 152 and through a biasing resistor 348 to the ground line 42.
Referring to FIG. 2, when the starter switch. is opened to terminate cranking of the engine .10, the starting line 152 is deenergized. With the starting line 152 deenergized, the transistor 344 is rendered fully nonconductive through the biasing action of the resistor 348. With the transistor 344 turned off, the transistor 310 is rendered fully conductive through the biasing action of the resistors 336 and 338 and the diode 340. When the transistor 310 is turned on, the oscillator gating junction 224is effectively clamped to the potential of the ground line 42. Consequently, the cranking oscillator 174 is disabled. However, when the starter switch 150 is closed to initiate cranking of the engine 10, the starting line 152 is energized. With the starting line 152 energized, the transistor 344 is rendered fully conductive through the biasing action of the resistors 346 and 348. With the transistor .344 turned on, the transistor 310 is rendered fully nonconductive through the biasing action of the resistor 338 and the diode 340. With the transistor 310 turned off, the oscillator gating junction 224 is unclamped. As a result, the cranking oscillator 174 is enabled.
Referring to FIGS. 2 and 3, when the cranking oscillator 174 is enabled, the oscillator control circuit 180 produces an oscillator control voltage V, at the oscillator control junction 242. The oscillator control voltage V, varies with respect to an upper oscillator control level 350 and a lower oscillator control level 352. In particular, the control voltage V, increases at a positive excursion rate from the lower control level 352 to the upper control level 350. Altemately, the control voltage V decreases at a negative excursion rate from the upper control level 350 to the lower control level 352. The oscillator switching circuit 178 is responsive to the oscillator control voltage V to switch between a set state and a reset state. More specifically, the oscillator switching circuit 178 assumes the set state when the control voltage V, reaches the upper control level 350 in the increasing sense. Conversely, the oscillator switching circuit 178 assumes the resetstate when the control voltage V, reaches the lower level 350 in the decreasing sense. A cranking pulse is produced on the output line 156 of the cranking. enrichment circuit 154 each time the oscillator switching circuit 178 assumes the set state.
In the oscillator switching circuit 178, the differential amplifier 182 exhibits a high gain characteristic. The transistor 186 combines with the resistor 204 to pr0- vide a current sink for the transistors 188 and 200. The conduction of the transistor 186 is determined by the biasing action of the resistors 206 and 208 and the diode 210. The transistor 202 operates as an emitterfollower to define the upper and lower oscillator control levels 350 and 352 at the oscillator reference junction 224. When the oscillator switching circuit 178 is in the set state, the transistor 188 is turned on and the transistors 200, 226 and 228 are turned off. When the oscillator switching circuit 178 is in the reset state, the
More particularly, as the oscillator control voltage V, at the oscillator control junction 242 reaches the lower control level 352, the oscillator switching circuit 178 is driven to the reset state. As the oscillator switching circuit 178 assumes the reset state, the transistor 188 is rendered fully nonconductive and the transistor 200 is rendered fully conductive. With the transistor 188 turned off, the transistor 202 is driven into relatively heavy conduction by the biasing action of resistor 214. Since the voltage drop across the transistor 202 is relatively low, the reference voltage established at the oscillator reference junction 224 is increased to approximately the upper oscillator control level 350. As the transistor 200 turns on, the oscillator control voltage V, produced by the oscillator control circuit begins to increase toward the upper oscillator control level 350. Further, with the transistor 200 turned on, the transistors 226 and 228 in the output switch 184 are rendered fully conductive through the biasing action of the transistors 186 and 200, the resistors 204 and 218, the diode 216. With the transistors 226 and 228 turned on, a relatively high voltage is ap plied through the resistor 230 to the output line 156.
As the oscillator control voltage V, at the oscillator control junction 242 reaches the upper control level 350, the oscillator switching circuit 178 is driven to the reset state. As the oscillator switching circuit 178 assumes the reset state, the transistor 188 is rendered.
fully conductive and the transistor .200 is rendered fully nonconductive. With the transistor 188 turned on, the transistor 202 is driven into relatively light conduction by the biasing action of the transistors 186 and 188 and the resistors 204 and 214. Since the voltage drop across the transistor 202 is relatively high, the reference voltage established at the oscillator reference junction 224 is decreased to approximatelythe lower oscillator level 352. As the transistor 200 turns off, the oscillator control voltage V produced by the oscillator control circuit 180 begins to decrease toward the lower oscillator control level 352. Further, with the transistor 200 turned off, the transistors 226 and 228 in the output switch 184 are rendered fully nonconductive through the biasing action of the resistor 218 and the diode 216. With the transistors 226 and 228 turned off, a relatively low voltage is applied through the resistor 230 to the output line 156 to define a cranking pulse.
Thus, the oscillator switching circuit 178 produces cranking pulses on the output line 156 of the cranking enrichment circuit .154 in synchronization. with the frequency of the oscillations in the oscillator control voltage V, developed by the oscillator control circuit 180. More specifically, a cranking pulse is produced on the output line 156 each time the transistor 200 is turned off. In turn, the transistor 200 is turned off each time the oscillator control voltage reaches the upper oscillator control level 350. The frequency with which the oscillator control voltage V, reaches the upper oscillator control level 350 is proportioned to the positive and negative excursion rates of the oscillator control voltage V,,. Accordingly, the frequency of the cranking pulses produced on the output line 156 by the oscillator switching circuit 178 is also a direct function of the positive and negative excursion rates of the oscillator control voltage V,,.
In the oscillator control circuit. 180, the capacitor 232 defines the oscillator control voltage V, at the oscillator control junction 242. The charging circuit 234 applies a constant charging current to the capacitor 232 to charge the capacitor 232 at a constant charge rate when the oscillator switching circuit 178 is in the reset state. The discharging circuit 236 draws a constant discharging current from the capacitor 323 to discharge the capacitor 232 at a constant discharge rate when the oscillator switching circuit 178 is in both the set and reset states. In other words, the discharging circuit 236 operates independent of the operation of the oscillator switching circuit 178. The heat sensor network 238 regulates the discharge rate as an inverse function of the temperature of the engine 10. In addition, the voltage detector network 240 regulates the discharge rate as an inverse function of the supply voltage of the power source or battery 36.
The positive excursion rate of the oscillator control voltage V, is determined by the charge rate less the discharge rate. Hence, the positive excursion rate of the control voltage V, is a direct function of the temperature of the engine 10 and the supply voltage of the battery 36. The negative excursion rate of the oscillator control voltage V, is determined by the discharge rate only. Thus, the negative excursion rate of the control voltage V is an inverse function of the temperature of the engine and the supply voltage of the battery 36. The charge rate provided by the charging circuit 234 is substantially greater than the discharge rate provided by the discharging circuit 236. Preferably, the charge rate is several times greater than the discharge rate. Consequently, the discharge rate dominates the charge rate in determining the excursion time for one complete cycle of the oscillator control voltage V, between the upper and lower oscillator control levels 350 and 352. More specifically, the frequency of the oscillations in the oscillator control voltage V, is inversely related to the temperature of the engine 10 and the supply voltage of the battery 36. Therefore, the frequency of the cranking pulses produced on the output line 156 by the oscillator switching circuit 178 is also an inverse function of the temperature of the engine 10 and the supply voltage of the battery 36.
In the charging circuit 234, the transistors 244 and 246 are operated in a constant current mode to linearly charge the capacitor 232. The charge rate is determined, by the charging current applied through a charge path including the resistor 248 and the transistor 246. The magnitude of the charging current may be regulated by varying either one or both of the resistors 248 and 250. When the transistor 200 is turned on as the oscillator switching circuit assumes the reset state, the transistors 244 and 246 are rendered conductive through the biasing action of the transistors 186 and 200, the resistors 204 and 218 and the diode 216. Accordingly, the application of the charging current to the capacitor 232 is initiated. When the transistor 200 is turned off as the oscillator switching circuit 178 assumes the set state, the transistors 244 and 246 are rendered fully nonconductive through the biasing action of the resistor 218 and the diode 216. Consequently, the application of the charging current to the capacitor 232 is terminated.
In the discharging circuit 236, the transistor 252 is operated in a constant current mode to linearly discharge the capacitor 232. The discharge rate is determined by the discharging current drawn from the capacitor 232 through a discharge path including the transistor 252 and the resistor 254. When the oscillator switching circuit 178 is in the reset state, the capacitor 232 also discharges somewhat through a discharge path including the base-emitter junction of the transistor 188, the transistor 186 and the resistor 204. However, the amount of discharging current drawn through the discharge path internal to the differential amplifier 182 is negligible as compared to the amount of discharging current drawn through the discharge path external to the differential amplifier 182. The magnitude of the discharging current is directly related to the magnitude of a bias voltage applied to the base electrode of the transistor 252 by the heat sensor network 238. Further, the magnitude of the discharging current is inversely related to the magnitude of a resistance applied between the emitter electrode of the transistor 252 and the ground line 42 by the voltage detector network 240.
In the heat sensor network 238, the transistors 256 and 258 are operated as emitter-followers. The con duction of the transistor 256 is detennined by the biasing action of the resistors 260 and 262. The conduction of the transistor 258 is determined by the biasing action of the thermistor 172 and the resistor 263 in conjunction with the internal resistance of the transistor 256. Similarly, the voltage at the base electrode of the transistor 252 is determined by the biasing action of the resistors 264 and 266 in conjunction with the internal resistance of the transistor 258. As the temperature of the engine 10 increases, the resistance of the negative temperature coefficient thermistor 172 decreases to as to decrease the conduction of the transistor 258. However, as the conduction of the transistor 258 decreases, the voltage at the base electrode of the transistor 252 decreases so as to decrease the bias voltage applied to the base electrode of the transistor 252. As a result, the magnitude of the discharging current drawn through the transistor 252 and the resistor 254 decreases as the temperature of the engine 10 increases. Thus, the discharge rate of the capacitor 232 is inversely related to the temperature of the engine 10.
In the voltage detector network 240, the transistors 268 and 270 are operated as electronic switches. The supply voltage of the battery 36 appears across the power line 40 and the ground line 42. The detecting resistors 272 and 274 are selected to sense the level of the supply voltage with respect to a minimum acceptable level. When the supply voltage of the battery 36 is above the minimum acceptable level, the transistor 268 is rendered fully conductive through the biasing action of the resistors 272 and 274. With the transistor 268 turned on, the transistor 270 is rendered fully nonconductive. With the transistor 270 turned off, the voltage at the emitter electrode of the transistor 252 is defined by the biasing action of the resistor 254.
When the supply voltage of the battery 36 falls below the minimum acceptable level, the transistor 268 is rendered fully nonconductive through the biasing action of the resistors 272 and 274. With the transistor 268 turned off, the transistor 270 is rendered fully conductive through the biasing action of the resistor 276. With the transistor 270 turned on, the resistor 278 is effectively placed in parallel with the resistor 254 to decrease the effective resistance between the emitter electrode of the transistor 252 and the ground line 42. Accordingly, the magnitude of the discharge current drawn through the transistor 252 increases when the supply voltage of the battery 36 falls below the minimum acceptable level. Hence, the discharge rate of the capacitor 232 is inversely related to the supply voltage of the battery 36.
Referring to FIG. 2, when the starter switch is opened, the transistor 344 is rendered fully nonconductive. With the transistor 344 turned off, the transistor 328 is rendered fully conductive through the biasing action of the resistors 334 and 336. When the transistor 328 is turned on, the timer gating junction 329 is clamped to the potential of the ground line 42. Consequently, the cranking timer 176 is disabled. However, when the starter switch 150 is closed, the transistor 344 is rendered fully conductive through the biasing action of the resistors 346 and 348. With the transistor 344 turned on, the transistor 328 is rendered fully nonconductive through the biasing action of the resistor 334. When the transistor 328 is turned off, the timer gating junction 329 is unclamped. As a result, the cranking timer 176 is enabled.
Referring to FIGS. 3, 4 and 5 when the cranking timer 176 is enabled, the timer control circuit 282 produces a timer control voltage V, at the timer control junction 320. The timer control voltage V, varies with respect to a timer control level 354. The timer switching circuit 280 is responsive to the timer control voltage V, to switch between a set state and a reset state. The timer switching circuit 280 assumes the set state when the control voltage V, decreases below the timer control level 354 and assumes the reset state when the timer control voltage V, increases above the timer control level 354.
In the timer switching circuit 280, the differential amplifier 284 exhibits a high gain characteristic. The transistor 288 combines with the resistor 294 to provide a current sink for the transistors 290 and 292. The conduction of the transistor 288 is determined by the biasing action of the resistors 206. and 208 and the diode 210. The voltage regulator or voltage divider formed by the resistor 296 in conjunction with the diodes 298, 300, 302 and 304 establishes a timer reference voltage at the timer reference junction 305. The timer reference voltage is fixed at approximately the timer control level 354. When the timer switching circuit 280 is in the set state, the transistor 292 is turned off and the transistors 290 and 308 are turned on. When the timer switching circuit 280 is in the reset state, the transistor 292 is turned on and the transistors 290 and 308 are turned off.
More specifically, as the timer control voltage V, at the timer control junction 320 decreases below the timer control level 354, the timer switching circuit 280 is driven to the set state. As the timer switching circuit 280 assumes the set state, the transistor 290 is rendered fully conductive and the transistor 292 is rendered fully nonconductive. When the transistor 292 turns off, the transistor 308 in the logic switch 286 is rendered fully nonconductive through the biasing action of the resistor 306. As the timer control voltage V, at the timer control junction 320 increases above the timer control level 354, the timer switching circuit 280 is driven to the reset state. As the timer switching circuit 280 as:
sumes the reset state; the transistor 290 is rendered fully nonconductive and the transistor 292 is rendered fully conductive. With the transistor 292 turned on, the transistor 308 in the logic switch 286 is turned on through the biasing action of the transistors 288 and 292 and the resistors 294 and 306.
The transistor 310 operates to enable the cranking oscillator 174 when rendered fully nonconductive and to disable the cranking oscillator 174 when rendered through the biasing action of the resistors 336 and 338 and the diode 340 when the transistor 344 is turned off. Similarly, regardless of the operating condition of the transistor 344, the transistor 310 is turned on through the biasing action of the resistor 312 when the transistor 308 is turned on. The transistor 344 is turned on when the starter switch 150 is. closed and is turned off when the starter switch 150 is opened. The transistor 308 is turned off when the timer switching circuit 280 is in the set state and is turned on when the timer switching circuit 280 is in the reset state. More particularly, the transistor 308 is turned on when the timer control voltage V, decreases to the timer control level 354 and is turned off when the timer control voltage V, increases to the timer control level 354. Hence,
the transistor 310 is turned off to enable the cranking oscillator 174 when the starter switch 150 is closed and the timer control voltage V, is below the timer control level 354. Further, the transistor 310 is turned on to disable the cranking oscillator 1.74 when the starter switch 150 is opened or when the timer control voltage V, is above the timer control level 354.
It will now be apparent that a cranking period may be defined to extend from the time when the starter switch 150 is closed until the time when the starter switch 150 is next opened. Similarly, a resting period may be defined to extend from the time when the starter switch 150 is opened until the time when the starter switch 150 is next closed. In addition, a set interval may be defined as extending from the time when. the starter switch 150 is closed until the earlier of the time when the timer control voltage V, next reaches the timer control level354 or the time when the starter switch 150 is next opened. correspondingly, a reset interval may be defined as extending from the time when the starter switch 150 is opened until the earlier of the time when the timer control voltage V, next reaches the timer control level 354 or the time when the starter switch 150 is next closed. Further,,since the cranking oscillator 174 produces cranking pulses on the output line 156 of the cranking enrichment circuit 154 only during the set interval, the set interval represents an enrichment interval. Hence, the timer switching circuitis in an enabled condition during an enrichment interval and is in a disabled condition at all other times.
In the timer control circuit 282, the capacitor 314 defines the timer control voltage V, at the timer control junction 320. The charging circuit 316 applies a chargfully conductive. Regardless of the operating condition of the transistor 308, the transistor 310 is turned on ing current to the capacitor 314 to charge the capacitor 314 only when the transistor 328 is turned off. The discharging circuit 318 draws a discharging current from the capacitor 314 to discharge the capacitor 314 when the transistor 328 is both tumedon and turned off. In other words, the operation of the discharging circuit 318 is independent of the operation of the transistor 328.
In the charging circuit 316, the transistors 324 and 326 are rendered fully conductive when the transistor 328 is turned ofi as the starter switch is closed. Conversely, the transistors 324 and 326 are rendered fully nonconductive when the transistor 328 is turned on as the starter switch 150 is opened. When the transistors 324 and 326 are turned on, the capacitor 314 charges at a charge rate through a charging path including the base-emitter junction of the transistor 324 and the resistor 330. The charge rate is determined by the RC charging time constant provided by the capacitor 314 in conjunction with the resistor 330 and the effective base-emitter junction resistance of the transistor 324. Preferably, the RC charging time constant is chosen so that the charge rate as defined by the charging current applied through the charging path is substantially linear.
In the discharging circuit 318, the capacitor 314 is discharged at different first and second discharge rates.
With the transistor 292 turned off when the timer switching circuit 280 is in the reset state, the capacitor 314 discharges at a first discharge rate through a first discharging path consisting of the resistor 322. The first discharge rate is determined by the RC time constant provided by the capacitor 314 in conjunction with the resistor 322. With the transistor 292 turned on when the timer switching circuit 280 is in the set state, the capacitor 314 discharges at a second discharge rate through the first discharge path including the resistor 322 and also through a second discharge path including the base-emitter junction of the transistor 292, the transistor 288 and the resistor 294. The second discharge rate is determined by the RC discharging time constant provided by the capacitor 314 in conjunction with the resistors 294 and 322, the baseemitter junction resistance of the transistor 292 and the internal resistance of the transistor 288.
Preferably, the RC discharging time constants are chosen so that the first and second discharge rates are substantially linear. The charge rate provided by the charging circuit 316 is substantially greater than the discharge rate provided by the discharging circuit 318. Further, the second discharge rate is substantially greater than the first discharge rate. In addition, it will be noted that the first discharge path is external to the differential amplifier 284 and the second discharge path is internal to the differential amplifier 284.
FIG. 4 depicts the excursion of the timer control voltage V, over a complete operating cycle of the cranking timer 174; At time T,, the starter switch 150 is closed to actuate the starter circuit 146 and initiate cranking of the engine 10. As a result, the transistor 344 is turned on. Assuming the capacitor 314 became fully charged at time Ta the timer control voltage V, is at a minimum level below the timer control level 354. Accordingly, the transistor 290 is turned on and the transistors 292 and 308 are turned off. Since the transistor 344 is turned on and the transistor 308 is turned off, the transistor 310 is turned off. With the transistor 310 turned off, the cranking oscillator 174 is enabled to initiate the production of cranking pulses on the output line 156.
During the time interval e I the timer control voltage V, increases at a first positive excursion rate defined by the charge rate less the first discharge rate. At time 5,, the timer control voltage V, reaches the timer control level 354 in an increasing sense. Consequently, the transistor 290 is turned off and the transistors 292 and 308 are turned on. The transistor 344 remains turned on. Since the transistor 308 is turned on, the transistor 310 is turned on. With the transistor 310 turned on, the cranking oscillator 174 is disabled to terminate the production of cranking Pulses on the output line 156.
Throughout the time interval 'l, 'll the timer control voltage V, increases at a second positive excursion less than the first positive excursion rate. At time Ti the timer control voltage V, reaches a maximum level as the capacitor 314 becomes fully charged. During the time interval Ti T0, the timer control voltage V, remains constant at the maximum level. In the illustrated timer control circuit 282, the maximum level is the voltage level on the power line 40.
At time '11, the starter switch 150 is opened to deactuate the starter circuit 146 and'terminate cranking of the engine 10. Consequently, the transistor '344 is turned ofi. However, since the transistor 308 remains turned on, the transistor 310 remains tumed-on. During the time intervalT, T, the timer control voltage V, decreases at a first negative excursion rate defined by the second discharge rate. At time T. the timer control voltage reaches the timer control level 354 in a decreasing sense. As a result, the transistor 290 is turned on and the transistors 292 and 308 are turned off. However, since the transistor 344 is turned off, the transistor 310 remains turned on. With the transistor 310 turned on, the cranking oscillator 174 remains disabled.
Throughout the time interval T, T.i the timer control voltage V, decreases at a second negative excursion rate as defined-by the first discharge rate. The second negative excursion rate is less than the first negative excursion rate. At time a the timer control voltage V, reaches the minimum level as the capacitor 314 becomes fully charged. During the time interval T4,,
'T' c the timer control voltage V, remains at the minimum level. In the illustrated timer control circuit 282, the minimum level is the voltage level on the ground line 42. At time o the starter switch is again closed to actuate the starter circuit 146 and initiate cranking of the engine 10. Accordingly, the'previously described cycle is repeated.
Although only the operating cycle c,, c is shown in its entirety, it is'to be noted that there exists a preceding operating cycle c c and a succeeding operating cycle c It will be recognized that the time interval T -T represents a full cranking period and the time interval 0 c represents a full resting period. In-addition, a maximum set interval or enrichment interval is represented by the time interval c,,- s,, and a maximum reset interval is represented by the time interval u,, The maximum possible duration of the set interval or enrichment interval T, T. is a direct function of the duration of the preced- 'ing resting period 0 n up to a predetermined set interval or enrichment interval T -T Of course, it will be appreciated that the time T when the starter switch 150 is opened, can occur anytime after the time o, when the starter switch 150 is closed. The time 0,, marks the termination of the cranking period Te -T, and the initiation of the resting period c As the time n, moves toward the time i the following reset interval is represented by the time interval r,, which remains unchanged at a maximum interval. As the time moves away fromthe time i toward the time the following reset interval is represented by the time interval Tn 3 which proportionately decreases. As the time T, moves away from the time toward the time Ts the reset interval is nonexistant. Hence, as previously described, the duration of a reset interval is inversely related to the duration of the previous cranking period.
Further, as the time 0,, moves away from the time toward the time o the set interval or enrichment interval is represented by the time interval Q,, O,, which proportionately decreases. Thus, the minimum possible duration of a set interval or enrichment interval is a direct function of the duration of the present cranking period.
. Similarly, the time 0,, when the starter switch 150 is closed can occur anytime after the time 0,, when the starter switch 150 is opened. The time n+l marks the termination of the resting period o a i and the initiation of the cranking period e o' As the time o, moves toward the time T thefollowing set interval or enrichment interval is represented by the time interval T -T which proportionately a maximum interval. As the time moves away from the time a toward the time T the following set interval'or enrichment interval is represented by the time interval c B which proportionately decreases. As the time T moves away from the time Tr toward the time the following set interval or enrichment interval is nonexistant. Thus, the duration of a set interval or enrichment interval is directly related to the duration of the previous resting period. Further, as the time Tcn+ 1 moves away from the time Referring to FIGS. 2 and 4, the maximum duration of the set interval or enrichment interval Tif may be adjusted by changing the first positive excursion rate of the timer control voltage V Similarly, the maximum duration of the reset interval o,,". r may be adjusted by changing the first negative excursion rate. Further, both the maximum'duration of the set interval or enrichment interval mr -n and the maximum duration of the resetinterval |i,"' r may be altered by changing the timer control level 354. Preferably, the maximum duration of the set interval or enrichment interbustion engine, the following values for the respective time intervals were found to yield satisfactory results:
. Time Intervals Seconds Maximum set interval or enrichment interval (T T 3 Maximum effective cranking interval (T T 6 Maximum reset interval(T -T f a 4 Maximum effective n i resting interval (T T It will now be apparent that the present invention pensated and voltage compensated. However, it is to be understood that the previous embodiment of the invention is shown for illustrative purposes only and that various modifications and alterations may be made to it without. departing from the spirit and scope of the invention. As an example, the crankingpulses produced by the cranking enrichment circuit 154 could be applied through an appropriate drive circuit to directly T toward the time T the reset intervalis represented by the time interval E -T which proportionately decreases. Hence, the minimum possible duration of a reset interval is a direct function of the duration of the present resting period.
FIG. 5 depicts the excursion of the timer control voltage V, during a hypothetical portion of an engine starting sequence which illustrates the previously described operation of the cranking enrichment circuit 154. During the first cranking period cr o the set interval is represented by the time interval TC TO Throughout the first resting period T T, the reset interval is nonexistent. Over the second cranking period T' 0 the set interval or enrichment interval is represented by the time interval o 5 During the second resting time period og' a the reset interval is represented by the time interval og r Over the third cranking period T -T the set interval or enrichment interval is represented by the time interval T03 TE, During the third resting period i c, the reset interval is represented by the time interval ri c, Throughout, the fourth cranking interval Ti -To the set interval or enrichment interval is nonexistent. During the fourth resting period 4 5 the reset interval is represented by the time interval T,,,T,
energize an extra fuel injector mounted on the intake manifold 20 upstreamof the fuel injector 48. Further, it is to be noted that the wavefomts illustrated in the drawing are not necessarily to scale.
What is claimed is:
1. In an internal combustion engine system, the com bination comprising: a power source for providing a supply voltage; starter means connected with'the engine for cranking the engine at a speed determined as a direct function of the supply voltage when energized by the power source; means connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine; cranking generator means connected with the starter means for producing cranking pulses when the starter means is energized, the cranking generator means including voltage detector means connected with the power source for defining the frequency of the cranking pulses as an inverse function of the supply voltage when the energy capacity of the power source is below normal; and means including fuel injection means for normally applying fuel to the engine in an amount directly related to the engine speed and for additionally applying a predetermined amount of fuel to the engine in responseto each cranking pulse so that the quantity of fuel delivered to the enginev during cranking is compensated for variations in the supply voltage of the power source.
2. In an internal combustion engine system, the combination comprising: a power source for providing a supply voltage; means including at least one voltage responsive fuel injector connected with the engine for applying fuel to the engine at a substantially constant rate when energized by the supply voltage; starter means connected with the engine for cranking the engine at an output speed determined as a direct function of the supply voltage when energized by the supplyvoltage; means connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine; timing generator means connected with the engine for producing timing pulses having a frequency determined as a direct function of the output speed of the engine; cranking generator means connected with the starter means for producing cranking pulses having a given frequency when the starter means is energized, the cranking generator means including voltage detector means connected to the power source for increasing the frequency of the cranking pulses when the supply voltage falls below a minimum acceptable level which indicates that the-energy capacity of the power source is below normal; and means connected with the timing generator means and the cranking generator means and connected between the fuel injector and the power source for energizing the fuel injector with the supply voltage for a predetermined time period in response to each of the timing pulses and each of the cranking pulses so that the amount of fuel applied to the engine during cranking is compensated for variations in the supply voltage.
3. In an internal combustion engine system, the combination comprising: a power source for providing a supply voltage; means including at least one fuel injector connected with the engine for applying fuel to the engine at a substantially constant rate when energized by the supply voltage from the power source; starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source; means connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine; timing generator means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine; cranking generator means connected with the starter means for producing cranking pulses when the starter means is energized, the cranking generator means including voltage detector means connected with the power source for defining the frequency of the cranking pulses in inverse relation to the supply voltage when the energy capacity of the power source is below normal, the cranking generator means further including heat sensor means connected with the engine for defining the frequency of the cranking pulses in inverse relation to the temperature of the engine; and means connected with the timing generator means and the cranking generator means and connected between the fuel injector and the power source for energizing the fuel injector with the supply voltage for a predetermined time period in response to each of the timing pulses and each of the cranking pulses so that the amount of fuel applied to the engine during cranking is compensated for variations in the supply voltage of the power source and for variations in the temperature of the engine.
4. In an internal combustion engine, the combination comprising: a power source for providing electrical energy at a supply voltage; means including at least one voltage responsive fuel injector connected with the enginefor applying fuel to the engine at a substantially constant rate when energized by the supply voltage; starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized-from the power source; means including a starter switch connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine; timing generator means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine; cranking oscillator means connected with the starter means for producing cranking pulses when the starter means is energized, the cranking oscillator means including oscillator control means for producing a control voltage having an excursion rate which determines the frequency of the cranking pulses, the oscillator control means including voltage detector means connected with the power source for regulating the excursion rate of the control voltage such that the frequency of the cranking pulses is inversely related to the supply voltage when the energy capacity of the power source is below normal; and means connected with the timing generator means and the cranking oscillator means and connected between the fuel injector and the power source for energizing the fuel injector with the supply voltage for a predetermined time period in response to each of the timing pulses'and each'of the cranking pulses so that the amount of fuel applied to the-engine during cranking is compensated for variations in the supply voltage.
5. In an internal combustion engine, the combination comprising: a power source for providing electrical energy at a supply voltage; means including at least one voltage responsive fuel injector connected with the engine for applying fuel to the engine at a substantially constant rate when energized by the supply voltage; starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source; means including a starter switch connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine; timing generator means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine; cranking oscillator means connected with the starter means for producing cranking pulses when the starter means is in the actuated condition, the cranking oscillator means including oscillator control means for producing a control voltage which alternately varies at a first excursion rate to a first control level and at a second excursion rate to a second control level, the oscillator control means including voltage detector means connected with the power source for regulating at least one of the first and second excursion rates as an inverse function of the supply voltage when the energy capacity of the power source is below normal, the control voltage defining the frequency of the cranking pulses as a direct function of the first and second excursion rates so that the frequency of the cranking pulses is inversely related to the supply voltage; and means connected with the timing generator means and the crank ing oscillator means and connected between the fuel injector and the power source for energizing the fuel injector with the supply voltage for a predetermined time period in response to each of the timing pulses and each of the cranking pulses so that the amount of fuel applied to the engine during cranking is compensated for variations in the supply voltage.
6. In an internal combustion engine, the combination comprising: a power source for providing electrical energy at a supply voltage; means including at least one voltage responsive fuel injector connected with the engine for applying fuel to the engine at a substantially constant rate when energized by the supply voltage; starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source; means including a starter switch connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine; timing generator means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine; cranking oscillator means connected with the starter means for producing cranking pulses when the starter means is actuated, the cranking oscillator means including oscillator control means for producing a control voltage which alternately increases to an upper control level at a positive excursion rate and decreases to a lower control level at a negative excursion rate, the oscillator control means including voltage detector means connected with the power source for increasing at least one of the positive and negative excursion rates when the supply voltage decreases below a minimum acceptable level which indicates that the energy capacity of the power source is below normal, the control voltage defining the frequency of the cranking pulses in direct relation to the positive and negative excursion rates so as to increase the frequency of the cranking pulses when the supply voltage decreases below the minimum acceptable level; and means connected with the timing generator means and the cranking oscillator means and connected between the fuel injector and the power source for energizing the fuel injector with the supply voltage for a predetermined tirne period in response to each of the timing pulses and each of the cranking pulses so that the amount of fuel applied to the engine during cranking is compensated for variations in the supply voltage.
7. In an internal combustion engine system, the combination comprising: a power source for providing a supply voltage; fuel injection means connected withlthe engine for applying fuel to the engine at a substantially constant rate when energized from the power source; starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source; means including a starter switch connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to A inga frequency directly related to the output speed of the engine; cranking pulse generating means connected with the starter means for producing cranking pulses when the starter means is in the actuated condition, the cranking pulse generating means including control voltage generating means for producing a control voltage which alternately increases to an upper control level at a positive excursion rate and decreases to a lower control level at a negative excursion rate, the control voltage generating means including voltage detector means connected with the power source for increasing at least one of the positive and negative excursion rates when the supply voltage decreases below a minimum acceptable level which indicates that the energy capacity of .the power source is below nonnal, the control voltage defining the frequency of the cranking pulses in direct relation to the positive and negative excursion rates to-as tovincrease the frequency of the cranking pulses when the supply voltage decreases below the minimum acceptable level; control pulse generating means connected with the timing pulse generating means and with the cranking pulse generating means for producing control pulses in response to the occurrence of the timing pulses and the cranking pulses, the control pulse generating means including transducer means connected with the engine for determining the duration of the control pulses as a function of at least one engine operating parameter; and means connected with the control pulse generating means and connected between the fuel injection means and the power source for energizing the fuel injection means from the power source for the duration of each of the control pulses so that the amount of fuel applied to the engine during cranking and is compensated for variations in the supply voltage.
8. in an internal combustion engine, the combination comprising: a power source for providing electrical energy at a supply voltage; means including at least one voltage responsive fuel injector connected with the engine for applying fuel to the engine at a substantially constant rate when energized by the supply voltage; starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source;
means including a starter switch connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine; timing generator means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine; cranking oscillator means including oscillator control means and oscillator switching means connected with the starter means, the oscillator control means developing a control voltage which varies in a first directional sense at a first excursion rate while the oscillator switching means is in a first state and which varies in a second directional sense at a second excursion rate while the oscillator switching means is in a second state, the oscillator switching means assuming the second state when the control voltage reaches a first control level in the first directional sense and assuming the first state when the control voltage reaches a second control level in the second directional sense,
the oscillator switching means producing cranking pulses which are initiated when the oscillator switching means assumes one of the first and second states and which are terminated when the oscillator switching means assumes the other of the first and second states thereby to define the frequency of the cranking pulses as a direct function of the first and second excursion rates of the control voltage, the oscillator control means including voltage detector means connected with the power source for regulating at least one of the first and second excursion rates of the control voltage as an inverse function of the supply voltage so that the frequency of the cranking pulses is inversely related to the supply voltage when the energy capacity of the power source is below normal; and means connected with the timing generator means and the cranking oscillator means and connected between the fuel injector and the power source for energizing the fuel injector with the supply voltage for a predetermined time period 'in response to each of the timing pulses and each of the cranking pulses so that the amount of fuel applied to the engine during cranking is compensated for variations in the supply voltage.
9. In an internal combustion engine, the combination comprising: a power source for providing electrical energy at a supply voltage; means including at least one voltage responsive fuel injector connected with the engine for applying fuel to the engine at a substantially constant rate when energized by the supply voltage; starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source; means including a starter switch connected between the starter means and the power source for selectively energizing the starter means to crank the engine; timing generator means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine; cranking oscillator means connected with the starter means, the cranking oscillator means including oscillator switching means responsive to a control voltage when the starter means is actuated to switch to a set state as the control voltage decreases to a lower control level and to switch to a reset state as the control voltage increases to an upper control level, the oscillator switching means producing cranking pulses which are initiated when the oscillator switching means assumes one of the set and reset states and which are terminated when the oscillator switching means assumes the other of the set and reset states, the cranking oscillator means further including oscillator control means for applying a control voltage to the oscillator switching means, the oscillator control means including a capacitor for defining the control voltage thereacross, charging means connected to the capacitor for charging the capacitor at a charge rate when the oscillator switching means is in the reset state, and discharging means connected to the capacitor for discharging the capacitor at a discharge rate when the oscillator switching means is in both the set and reset states, the charge rate greater than the discharge rate so that the control voltage increases at a positive excursion rate when the oscillator switching means is in the reset state and decreases at a negative excursion rate when the oscillator switching means is in the set state, the positive excursion rate determined by the charge rate less the discharge rate and the negative excursion rate determined by the discharge rate thereby to define the frequency of the cranking pulses as a direct function of the positive and negative excursion rates of the control voltage, the discharging means including voltage detector means connected with' the power source for regulating the discharge rate as an inverse function of the supply voltage so that the frequency of the cranking pulses is inversely related to the supply voltage; and means connected with the timing generator means and with the cranking oscillator means and connected between the fuel injector and the power source for energizing the fuel injector with the supply voltage for a predetermined time period in response to each of the timing pulses and each of the cranking pulses so that the amount of fuel applied to the engine during cranking is compensated for variations in the supply voltage. I
10. In an internal combustion engine system, the combination comprising: a power source for providing a supply voltage; fuel injection means connected with the engine for applying fuel to the engine at a substantially constant rate when energized from the power source; starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source; means including a starter switch connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine; timing pulse generating means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine; cranking pulse generating means connected with the starter means, the cranking pulse generating means including switching means responsive to a control voltage when the starter means is in the actuated condition to switch to a set state as the control voltage decreases to a lower control level and to switch to a reset state as the control voltage increases to an upper control level, the switching means producing cranking pulses which are initiated when the switching means assumes one of the set and reset states and which are terminated when the switching means assumes the other of the set andreset states, the cranking pulse generating means further including control means for applying a control voltage to the switching means, the control means including a capacitor for defining the control voltage thereacross, charging means connected to the capacitor for charging the capacitor at a constant charge rate when the switching means is in the reset state, and discharging means connected to the capacitor for discharging the capacitor at a constant discharge rate when the switching means is in both the set and reset states, the charge rate greater than the discharge rate so that the control voltage increases at a positive excursion rate when the switching means is in the reset state and decreases at a negative excursion rate when the switching means is in the set state, the positive excursion rate defined by the charge rate less the discharge rate and the negative excursion rate defined by the discharge rate thereby to define the frequency of the cranking pulses as a direct function of the positive and negative excursion rates of the control voltage, the discharging means including voltage detector means connected with the power source for regulating the discharge rate as an inverse function of the supply voltage so that the frequency of the cranking pulses is inversely related to the supply voltage; control pulse generating means connected with the timing pulse generating means and with the cranking pulse generating means for producing control pulses in response to the occurrence of the timing pulses and the cranking pulses, the control pulse generating means including transducer means connected with the engine for determining the duration of the control pulses as a function of at least one engine operating parameter;
27 3 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. ]j t d August 15, 1972 lnventorKs) Paul N. Barr et a1 It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Signed and" Sealed this 8th day of May 1973 (SEAL) Attest:
EDWARD M.PLETCHER,JR. ROBERT GOTTSCHALK Attesting Officer v Commissioner of Patents
Claims (10)
1. In an internal combustion engine system, the combination comprising: a power source for providing a supply voltage; starter means connected with the engine for cranking the engine at a speed determined as a direct function of the supply voltage when energized by the power source; means connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine; cranking generator means connected with the starter means for producing cranking pulses when the starter means is energized, the cranking generator means including voltage detector means connected with the power source for defining the frequency of the cranking pulses as an inverse function of the supply voltage when the energy capacity of the power source is below normal; and means including fuel injection means for normally applying fuel to the engine in an amount directly related to the engine speed and for additionally applying a predetermined amount of fuel to the engine in response to each cranking pulse so that the quantity of fuel delivered to the engine during cranking is compensated for variAtions in the supply voltage of the power source.
2. In an internal combustion engine system, the combination comprising: a power source for providing a supply voltage; means including at least one voltage responsive fuel injector connected with the engine for applying fuel to the engine at a substantially constant rate when energized by the supply voltage; starter means connected with the engine for cranking the engine at an output speed determined as a direct function of the supply voltage when energized by the supply voltage; means connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine; timing generator means connected with the engine for producing timing pulses having a frequency determined as a direct function of the output speed of the engine; cranking generator means connected with the starter means for producing cranking pulses having a given frequency when the starter means is energized, the cranking generator means including voltage detector means connected to the power source for increasing the frequency of the cranking pulses when the supply voltage falls below a minimum acceptable level which indicates that the energy capacity of the power source is below normal; and means connected with the timing generator means and the cranking generator means and connected between the fuel injector and the power source for energizing the fuel injector with the supply voltage for a predetermined time period in response to each of the timing pulses and each of the cranking pulses so that the amount of fuel applied to the engine during cranking is compensated for variations in the supply voltage.
3. In an internal combustion engine system, the combination comprising: a power source for providing a supply voltage; means including at least one fuel injector connected with the engine for applying fuel to the engine at a substantially constant rate when energized by the supply voltage from the power source; starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source; means connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine; timing generator means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine; cranking generator means connected with the starter means for producing cranking pulses when the starter means is energized, the cranking generator means including voltage detector means connected with the power source for defining the frequency of the cranking pulses in inverse relation to the supply voltage when the energy capacity of the power source is below normal, the cranking generator means further including heat sensor means connected with the engine for defining the frequency of the cranking pulses in inverse relation to the temperature of the engine; and means connected with the timing generator means and the cranking generator means and connected between the fuel injector and the power source for energizing the fuel injector with the supply voltage for a predetermined time period in response to each of the timing pulses and each of the cranking pulses so that the amount of fuel applied to the engine during cranking is compensated for variations in the supply voltage of the power source and for variations in the temperature of the engine.
4. In an internal combustion engine, the combination comprising: a power source for providing electrical energy at a supply voltage; means including at least one voltage responsive fuel injector connected with the engine for applying fuel to the engine at a substantially constant rate when energized by the supply voltage; starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source; meanS including a starter switch connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine; timing generator means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine; cranking oscillator means connected with the starter means for producing cranking pulses when the starter means is energized, the cranking oscillator means including oscillator control means for producing a control voltage having an excursion rate which determines the frequency of the cranking pulses, the oscillator control means including voltage detector means connected with the power source for regulating the excursion rate of the control voltage such that the frequency of the cranking pulses is inversely related to the supply voltage when the energy capacity of the power source is below normal; and means connected with the timing generator means and the cranking oscillator means and connected between the fuel injector and the power source for energizing the fuel injector with the supply voltage for a predetermined time period in response to each of the timing pulses and each of the cranking pulses so that the amount of fuel applied to the engine during cranking is compensated for variations in the supply voltage.
5. In an internal combustion engine, the combination comprising: a power source for providing electrical energy at a supply voltage; means including at least one voltage responsive fuel injector connected with the engine for applying fuel to the engine at a substantially constant rate when energized by the supply voltage; starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source; means including a starter switch connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine; timing generator means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine; cranking oscillator means connected with the starter means for producing cranking pulses when the starter means is in the actuated condition, the cranking oscillator means including oscillator control means for producing a control voltage which alternately varies at a first excursion rate to a first control level and at a second excursion rate to a second control level, the oscillator control means including voltage detector means connected with the power source for regulating at least one of the first and second excursion rates as an inverse function of the supply voltage when the energy capacity of the power source is below normal, the control voltage defining the frequency of the cranking pulses as a direct function of the first and second excursion rates so that the frequency of the cranking pulses is inversely related to the supply voltage; and means connected with the timing generator means and the cranking oscillator means and connected between the fuel injector and the power source for energizing the fuel injector with the supply voltage for a predetermined time period in response to each of the timing pulses and each of the cranking pulses so that the amount of fuel applied to the engine during cranking is compensated for variations in the supply voltage.
6. In an internal combustion engine, the combination comprising: a power source for providing electrical energy at a supply voltage; means including at least one voltage responsive fuel injector connected with the engine for applying fuel to the engine at a substantially constant rate when energized by the supply voltage; starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source; means including a starter switch connected between the starter means and the power source for selectively energiZing the starter means with the supply voltage to crank the engine; timing generator means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine; cranking oscillator means connected with the starter means for producing cranking pulses when the starter means is actuated, the cranking oscillator means including oscillator control means for producing a control voltage which alternately increases to an upper control level at a positive excursion rate and decreases to a lower control level at a negative excursion rate, the oscillator control means including voltage detector means connected with the power source for increasing at least one of the positive and negative excursion rates when the supply voltage decreases below a minimum acceptable level which indicates that the energy capacity of the power source is below normal, the control voltage defining the frequency of the cranking pulses in direct relation to the positive and negative excursion rates so as to increase the frequency of the cranking pulses when the supply voltage decreases below the minimum acceptable level; and means connected with the timing generator means and the cranking oscillator means and connected between the fuel injector and the power source for energizing the fuel injector with the supply voltage for a predetermined time period in response to each of the timing pulses and each of the cranking pulses so that the amount of fuel applied to the engine during cranking is compensated for variations in the supply voltage.
7. In an internal combustion engine system, the combination comprising: a power source for providing a supply voltage; fuel injection means connected with the engine for applying fuel to the engine at a substantially constant rate when energized from the power source; starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source; means including a starter switch connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine; timing pulse generating means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine; cranking pulse generating means connected with the starter means for producing cranking pulses when the starter means is in the actuated condition, the cranking pulse generating means including control voltage generating means for producing a control voltage which alternately increases to an upper control level at a positive excursion rate and decreases to a lower control level at a negative excursion rate, the control voltage generating means including voltage detector means connected with the power source for increasing at least one of the positive and negative excursion rates when the supply voltage decreases below a minimum acceptable level which indicates that the energy capacity of the power source is below normal, the control voltage defining the frequency of the cranking pulses in direct relation to the positive and negative excursion rates to as to increase the frequency of the cranking pulses when the supply voltage decreases below the minimum acceptable level; control pulse generating means connected with the timing pulse generating means and with the cranking pulse generating means for producing control pulses in response to the occurrence of the timing pulses and the cranking pulses, the control pulse generating means including transducer means connected with the engine for determining the duration of the control pulses as a function of at least one engine operating parameter; and means connected with the control pulse generating means and connected between the fuel injection means and the power source for energizing the fuel injection means from the power source for the duration of each of the control pulses so that the amount of fuel applied to the engine during cranking and is compensated for variations in the supply voltage.
8. In an internal combustion engine, the combination comprising: a power source for providing electrical energy at a supply voltage; means including at least one voltage responsive fuel injector connected with the engine for applying fuel to the engine at a substantially constant rate when energized by the supply voltage; starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source; means including a starter switch connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine; timing generator means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine; cranking oscillator means including oscillator control means and oscillator switching means connected with the starter means, the oscillator control means developing a control voltage which varies in a first directional sense at a first excursion rate while the oscillator switching means is in a first state and which varies in a second directional sense at a second excursion rate while the oscillator switching means is in a second state, the oscillator switching means assuming the second state when the control voltage reaches a first control level in the first directional sense and assuming the first state when the control voltage reaches a second control level in the second directional sense, the oscillator switching means producing cranking pulses which are initiated when the oscillator switching means assumes one of the first and second states and which are terminated when the oscillator switching means assumes the other of the first and second states thereby to define the frequency of the cranking pulses as a direct function of the first and second excursion rates of the control voltage, the oscillator control means including voltage detector means connected with the power source for regulating at least one of the first and second excursion rates of the control voltage as an inverse function of the supply voltage so that the frequency of the cranking pulses is inversely related to the supply voltage when the energy capacity of the power source is below normal; and means connected with the timing generator means and the cranking oscillator means and connected between the fuel injector and the power source for energizing the fuel injector with the supply voltage for a predetermined time period in response to each of the timing pulses and each of the cranking pulses so that the amount of fuel applied to the engine during cranking is compensated for variations in the supply voltage.
9. In an internal combustion engine, the combination comprising: a power source for providing electrical energy at a supply voltage; means including at least one voltage responsive fuel injector connected with the engine for applying fuel to the engine at a substantially constant rate when energized by the supply voltage; starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source; means including a starter switch connected between the starter means and the power source for selectively energizing the starter means to crank the engine; timing generator means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine; cranking oscillator means connected with the starter means, the cranking oscillator means including oscillator switching means responsive to a control voltage when the starter means is actuated to switch to a set state as the control voltage decreases to a lower control level and to switch to a reset state as the control voltage increases to an upper control level, the oscillator switching means producing cranking pulses which are initiated when the oscillator swItching means assumes one of the set and reset states and which are terminated when the oscillator switching means assumes the other of the set and reset states, the cranking oscillator means further including oscillator control means for applying a control voltage to the oscillator switching means, the oscillator control means including a capacitor for defining the control voltage thereacross, charging means connected to the capacitor for charging the capacitor at a charge rate when the oscillator switching means is in the reset state, and discharging means connected to the capacitor for discharging the capacitor at a discharge rate when the oscillator switching means is in both the set and reset states, the charge rate greater than the discharge rate so that the control voltage increases at a positive excursion rate when the oscillator switching means is in the reset state and decreases at a negative excursion rate when the oscillator switching means is in the set state, the positive excursion rate determined by the charge rate less the discharge rate and the negative excursion rate determined by the discharge rate thereby to define the frequency of the cranking pulses as a direct function of the positive and negative excursion rates of the control voltage, the discharging means including voltage detector means connected with the power source for regulating the discharge rate as an inverse function of the supply voltage so that the frequency of the cranking pulses is inversely related to the supply voltage; and means connected with the timing generator means and with the cranking oscillator means and connected between the fuel injector and the power source for energizing the fuel injector with the supply voltage for a predetermined time period in response to each of the timing pulses and each of the cranking pulses so that the amount of fuel applied to the engine during cranking is compensated for variations in the supply voltage.
10. In an internal combustion engine system, the combination comprising: a power source for providing a supply voltage; fuel injection means connected with the engine for applying fuel to the engine at a substantially constant rate when energized from the power source; starter means connected with the engine for cranking the engine at an output speed directly related to the supply voltage when energized from the power source; means including a starter switch connected between the starter means and the power source for selectively energizing the starter means with the supply voltage to crank the engine; timing pulse generating means connected with the engine for producing timing pulses having a frequency directly related to the output speed of the engine; cranking pulse generating means connected with the starter means, the cranking pulse generating means including switching means responsive to a control voltage when the starter means is in the actuated condition to switch to a set state as the control voltage decreases to a lower control level and to switch to a reset state as the control voltage increases to an upper control level, the switching means producing cranking pulses which are initiated when the switching means assumes one of the set and reset states and which are terminated when the switching means assumes the other of the set and reset states, the cranking pulse generating means further including control means for applying a control voltage to the switching means, the control means including a capacitor for defining the control voltage thereacross, charging means connected to the capacitor for charging the capacitor at a constant charge rate when the switching means is in the reset state, and discharging means connected to the capacitor for discharging the capacitor at a constant discharge rate when the switching means is in both the set and reset states, the charge rate greater than the discharge rate so that the control voltage increases at a positive excursion rate when the switching means is in the reset state and decreases at a negaTive excursion rate when the switching means is in the set state, the positive excursion rate defined by the charge rate less the discharge rate and the negative excursion rate defined by the discharge rate thereby to define the frequency of the cranking pulses as a direct function of the positive and negative excursion rates of the control voltage, the discharging means including voltage detector means connected with the power source for regulating the discharge rate as an inverse function of the supply voltage so that the frequency of the cranking pulses is inversely related to the supply voltage; control pulse generating means connected with the timing pulse generating means and with the cranking pulse generating means for producing control pulses in response to the occurrence of the timing pulses and the cranking pulses, the control pulse generating means including transducer means connected with the engine for determining the duration of the control pulses as a function of at least one engine operating parameter; and means connected with the control pulse generating means and connected between the fuel injection means and the power source for energizing the fuel injection means from the power source for the duration of each of the control pulses so that the amount of fuel applied to the engine is increased during cranking and is compensated for variations in the supply voltage.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US5583170A | 1970-07-17 | 1970-07-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3683871A true US3683871A (en) | 1972-08-15 |
Family
ID=22000435
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US55831A Expired - Lifetime US3683871A (en) | 1970-07-17 | 1970-07-17 | Fuel supply system for an internal combustion engine providing voltage compensated cranking enrichment |
Country Status (2)
Country | Link |
---|---|
US (1) | US3683871A (en) |
CA (1) | CA933635A (en) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3771502A (en) * | 1972-01-20 | 1973-11-13 | Bendix Corp | Circuit for providing electronic warm-up enrichment fuel compensation which is independent of intake manifold pressure in an electronic fuel control system |
US3774821A (en) * | 1971-11-24 | 1973-11-27 | Westinghouse Electric Corp | Apparatus for the cold starting and warming run of spark plug-ignited internal combustion engines |
US3812830A (en) * | 1971-09-10 | 1974-05-28 | Sopromi Soc Proc Modern Inject | Electronic fuel injection control devices for internal combustion motors |
US3982519A (en) * | 1975-05-27 | 1976-09-28 | Ford Motor Company | Electronic-fuel-injection-system enrichment circuit for use during engine cranking |
USRE29060E (en) * | 1970-01-20 | 1976-12-07 | The Bendix Corporation | Circuit for providing electronic warm-up enrichment fuel compensation which is independent of intake manifold pressure in an electronic fuel control system |
US3999525A (en) * | 1970-11-25 | 1976-12-28 | Robert Bosch G.M.B.H. | Apparatus for the cold starting and warming run of spark plug-ignited internal combustion engines |
US4027641A (en) * | 1974-03-02 | 1977-06-07 | Robert Bosch G.M.B.H. | Control apparatus for starting internal combustion engines |
US4091773A (en) * | 1976-10-04 | 1978-05-30 | The Bendix Corporation | Frequency modulated single point fuel injection circuit with duty cycle modulation |
US4096831A (en) * | 1976-10-04 | 1978-06-27 | The Bendix Corporation | Frequency modulated fuel injection system |
US4100891A (en) * | 1974-08-07 | 1978-07-18 | Rockwell International Corporation | Electronic fuel injection control system |
US4148282A (en) * | 1975-03-19 | 1979-04-10 | Robert Bosch Gmbh | Method and apparatus for cold starting fuel injected internal combustion engines |
US4240383A (en) * | 1978-04-04 | 1980-12-23 | Robert Bosch Gmbh | Fuel metering device for an internal combustion engine |
US4245317A (en) * | 1978-06-22 | 1981-01-13 | The Bendix Corporation | Start and warm up features for electronic fuel management systems |
EP0027355A2 (en) * | 1979-10-09 | 1981-04-22 | Ford Motor Company Limited | Fuel injection control system |
US4519355A (en) * | 1984-04-24 | 1985-05-28 | Toyota Jidosha Kabushiki Kaisha | Method of control of internal combustion engine variable swirl air-fuel intake system with direct and helical intake passages |
US4643153A (en) * | 1984-09-19 | 1987-02-17 | Robert Bosch Gmbh | Electronic arrangement for generating a fuel metering signal for an internal combustion engine |
US4870932A (en) * | 1988-11-21 | 1989-10-03 | Chrysler Motors Corporation | Fuel injection heating system |
US5080288A (en) * | 1990-02-08 | 1992-01-14 | Lucas Industries Public Limited Company | Fuel injection nozzle |
ES2120876A1 (en) * | 1994-12-09 | 1998-11-01 | Bosch Gmbh Robert | Fuel feeder for internal combustion engine |
US20040050368A1 (en) * | 2002-09-17 | 2004-03-18 | Yuichi Kitagawa | Electronic control system for engine |
US20140288808A1 (en) * | 2013-03-20 | 2014-09-25 | Ford Global Technologies, Llc | Automatic engine de-choking |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3272187A (en) * | 1963-09-09 | 1966-09-13 | Ass Eng Ltd | Fuel injection systems for internal combustion engines |
US3429302A (en) * | 1966-08-24 | 1969-02-25 | Bosch Gmbh Robert | Arrangement for controlling the injection of fuel in engines |
US3435809A (en) * | 1965-04-29 | 1969-04-01 | Sopromi Soc Proc Modern Inject | Device for the control of fuel injection |
US3483851A (en) * | 1966-11-25 | 1969-12-16 | Bosch Gmbh Robert | Fuel injection control system |
US3504657A (en) * | 1967-05-24 | 1970-04-07 | Bosch Gmbh Robert | System for enriching the fuel mixture on cold starts in an electrically controlled injection system for an internal combustion engine |
US3566846A (en) * | 1968-02-23 | 1971-03-02 | Bosch Gmbh Robert | Electronically controlled fuel injection arrangement for internal combustion engines |
-
1970
- 1970-07-17 US US55831A patent/US3683871A/en not_active Expired - Lifetime
-
1971
- 1971-05-19 CA CA113366A patent/CA933635A/en not_active Expired
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3272187A (en) * | 1963-09-09 | 1966-09-13 | Ass Eng Ltd | Fuel injection systems for internal combustion engines |
US3435809A (en) * | 1965-04-29 | 1969-04-01 | Sopromi Soc Proc Modern Inject | Device for the control of fuel injection |
US3429302A (en) * | 1966-08-24 | 1969-02-25 | Bosch Gmbh Robert | Arrangement for controlling the injection of fuel in engines |
US3483851A (en) * | 1966-11-25 | 1969-12-16 | Bosch Gmbh Robert | Fuel injection control system |
US3504657A (en) * | 1967-05-24 | 1970-04-07 | Bosch Gmbh Robert | System for enriching the fuel mixture on cold starts in an electrically controlled injection system for an internal combustion engine |
US3566846A (en) * | 1968-02-23 | 1971-03-02 | Bosch Gmbh Robert | Electronically controlled fuel injection arrangement for internal combustion engines |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USRE29060E (en) * | 1970-01-20 | 1976-12-07 | The Bendix Corporation | Circuit for providing electronic warm-up enrichment fuel compensation which is independent of intake manifold pressure in an electronic fuel control system |
US3999525A (en) * | 1970-11-25 | 1976-12-28 | Robert Bosch G.M.B.H. | Apparatus for the cold starting and warming run of spark plug-ignited internal combustion engines |
US3812830A (en) * | 1971-09-10 | 1974-05-28 | Sopromi Soc Proc Modern Inject | Electronic fuel injection control devices for internal combustion motors |
US3774821A (en) * | 1971-11-24 | 1973-11-27 | Westinghouse Electric Corp | Apparatus for the cold starting and warming run of spark plug-ignited internal combustion engines |
US3771502A (en) * | 1972-01-20 | 1973-11-13 | Bendix Corp | Circuit for providing electronic warm-up enrichment fuel compensation which is independent of intake manifold pressure in an electronic fuel control system |
US4027641A (en) * | 1974-03-02 | 1977-06-07 | Robert Bosch G.M.B.H. | Control apparatus for starting internal combustion engines |
US4100891A (en) * | 1974-08-07 | 1978-07-18 | Rockwell International Corporation | Electronic fuel injection control system |
US4148282A (en) * | 1975-03-19 | 1979-04-10 | Robert Bosch Gmbh | Method and apparatus for cold starting fuel injected internal combustion engines |
US3982519A (en) * | 1975-05-27 | 1976-09-28 | Ford Motor Company | Electronic-fuel-injection-system enrichment circuit for use during engine cranking |
US4091773A (en) * | 1976-10-04 | 1978-05-30 | The Bendix Corporation | Frequency modulated single point fuel injection circuit with duty cycle modulation |
US4096831A (en) * | 1976-10-04 | 1978-06-27 | The Bendix Corporation | Frequency modulated fuel injection system |
US4240383A (en) * | 1978-04-04 | 1980-12-23 | Robert Bosch Gmbh | Fuel metering device for an internal combustion engine |
US4245317A (en) * | 1978-06-22 | 1981-01-13 | The Bendix Corporation | Start and warm up features for electronic fuel management systems |
EP0027355A2 (en) * | 1979-10-09 | 1981-04-22 | Ford Motor Company Limited | Fuel injection control system |
EP0027355B1 (en) * | 1979-10-09 | 1984-09-26 | Ford Motor Company Limited | Fuel injection control system |
US4519355A (en) * | 1984-04-24 | 1985-05-28 | Toyota Jidosha Kabushiki Kaisha | Method of control of internal combustion engine variable swirl air-fuel intake system with direct and helical intake passages |
US4643153A (en) * | 1984-09-19 | 1987-02-17 | Robert Bosch Gmbh | Electronic arrangement for generating a fuel metering signal for an internal combustion engine |
US4870932A (en) * | 1988-11-21 | 1989-10-03 | Chrysler Motors Corporation | Fuel injection heating system |
US5080288A (en) * | 1990-02-08 | 1992-01-14 | Lucas Industries Public Limited Company | Fuel injection nozzle |
ES2120876A1 (en) * | 1994-12-09 | 1998-11-01 | Bosch Gmbh Robert | Fuel feeder for internal combustion engine |
US20040050368A1 (en) * | 2002-09-17 | 2004-03-18 | Yuichi Kitagawa | Electronic control system for engine |
US6854450B2 (en) * | 2002-09-17 | 2005-02-15 | Kokusan Denki Co., Ltd. | Electronic control system for engine |
US20140288808A1 (en) * | 2013-03-20 | 2014-09-25 | Ford Global Technologies, Llc | Automatic engine de-choking |
US9347390B2 (en) * | 2013-03-20 | 2016-05-24 | Ford Global Technologies, Llc | Engine de-choking in response to an engine flood event |
Also Published As
Publication number | Publication date |
---|---|
CA933635A (en) | 1973-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3683871A (en) | Fuel supply system for an internal combustion engine providing voltage compensated cranking enrichment | |
US3628510A (en) | Fuel supply system for an internal combustion engine providing timed cranking enrichment | |
US3483851A (en) | Fuel injection control system | |
US3812830A (en) | Electronic fuel injection control devices for internal combustion motors | |
US3616784A (en) | Fuel supply system for an internal combustion engine providing time and voltage compensated cranking enrichment | |
US3504657A (en) | System for enriching the fuel mixture on cold starts in an electrically controlled injection system for an internal combustion engine | |
US5191531A (en) | Fuel injection control system for a two-cycle engine | |
CA1106939A (en) | Modulation for fuel density in fuel injection system | |
US3272187A (en) | Fuel injection systems for internal combustion engines | |
US4148282A (en) | Method and apparatus for cold starting fuel injected internal combustion engines | |
US3734067A (en) | Fuel injection system for internal combustion engine | |
US3338221A (en) | Electrical control device | |
US4184460A (en) | Electronically-controlled fuel injection system | |
US3982519A (en) | Electronic-fuel-injection-system enrichment circuit for use during engine cranking | |
SU506313A4 (en) | Fuel injection system in an internal combustion engine | |
US3797465A (en) | Fuel injection system for internal combustion engines | |
US3566846A (en) | Electronically controlled fuel injection arrangement for internal combustion engines | |
GB1504721A (en) | Supplying fuel to internal combustion engines | |
US3470854A (en) | Fuel injection system for internal combustion engines | |
US3824967A (en) | Electronic fuel injection system | |
US3515104A (en) | Electromagnetically controlled fuel injection arrangement for internal combustion engines | |
US3747576A (en) | Electronic fuel injection system including transient power compensation | |
US3612013A (en) | Fuel supply control system for an internal combustion engine | |
US4096830A (en) | Control system for electrically energized engine fuel | |
GB1567041A (en) | Fuel injection system |