US3683035A - Process for manufacturing alcohols by oxidation of hydrocarbons - Google Patents
Process for manufacturing alcohols by oxidation of hydrocarbons Download PDFInfo
- Publication number
- US3683035A US3683035A US729035A US3683035DA US3683035A US 3683035 A US3683035 A US 3683035A US 729035 A US729035 A US 729035A US 3683035D A US3683035D A US 3683035DA US 3683035 A US3683035 A US 3683035A
- Authority
- US
- United States
- Prior art keywords
- oxidation
- hydrocarbon
- phase
- pipe
- percent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 229930195733 hydrocarbon Natural products 0.000 title claims abstract description 26
- 150000002430 hydrocarbons Chemical class 0.000 title claims abstract description 26
- 238000000034 method Methods 0.000 title claims abstract description 13
- 230000003647 oxidation Effects 0.000 title abstract description 28
- 238000007254 oxidation reaction Methods 0.000 title abstract description 28
- 150000001298 alcohols Chemical class 0.000 title abstract description 6
- 238000004519 manufacturing process Methods 0.000 title abstract description 5
- 239000004215 Carbon black (E152) Substances 0.000 claims abstract description 21
- 229910052500 inorganic mineral Inorganic materials 0.000 claims abstract description 9
- 239000011707 mineral Substances 0.000 claims abstract description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical group [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 22
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 6
- 239000002253 acid Substances 0.000 claims description 6
- 150000007513 acids Chemical class 0.000 claims description 6
- 238000007127 saponification reaction Methods 0.000 abstract description 10
- 239000007791 liquid phase Substances 0.000 abstract description 9
- 230000008016 vaporization Effects 0.000 abstract description 6
- 125000004432 carbon atom Chemical group C* 0.000 abstract description 4
- 150000001639 boron compounds Chemical class 0.000 abstract description 3
- 229930195734 saturated hydrocarbon Natural products 0.000 abstract description 3
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 abstract description 2
- 229910001882 dioxygen Inorganic materials 0.000 abstract description 2
- 238000004064 recycling Methods 0.000 abstract description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 12
- 239000008346 aqueous phase Substances 0.000 description 11
- 230000007062 hydrolysis Effects 0.000 description 11
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 9
- 235000010338 boric acid Nutrition 0.000 description 9
- 229960002645 boric acid Drugs 0.000 description 9
- 238000006386 neutralization reaction Methods 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- 239000002585 base Substances 0.000 description 8
- 239000004327 boric acid Substances 0.000 description 8
- 239000012071 phase Substances 0.000 description 8
- 238000005406 washing Methods 0.000 description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 7
- 239000012074 organic phase Substances 0.000 description 6
- 238000004821 distillation Methods 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 4
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 4
- 150000002148 esters Chemical class 0.000 description 4
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000009834 vaporization Methods 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000012808 vapor phase Substances 0.000 description 3
- XDVOLDOITVSJGL-UHFFFAOYSA-N 3,7-dihydroxy-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound O1B(O)OB2OB(O)OB1O2 XDVOLDOITVSJGL-UHFFFAOYSA-N 0.000 description 2
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N cycloheptane Chemical compound C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 2
- HPXRVTGHNJAIIH-UHFFFAOYSA-N cyclohexanol Chemical compound OC1CCCCC1 HPXRVTGHNJAIIH-UHFFFAOYSA-N 0.000 description 2
- PWVHLUKAENFZIA-UHFFFAOYSA-N cyclohexanol;cyclohexanone Chemical compound OC1CCCCC1.O=C1CCCCC1 PWVHLUKAENFZIA-UHFFFAOYSA-N 0.000 description 2
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 2
- 235000019253 formic acid Nutrition 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- QEGNUYASOUJEHD-UHFFFAOYSA-N 1,1-dimethylcyclohexane Chemical class CC1(C)CCCCC1 QEGNUYASOUJEHD-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- NHTMVDHEPJAVLT-UHFFFAOYSA-N Isooctane Chemical compound CC(C)CC(C)(C)C NHTMVDHEPJAVLT-UHFFFAOYSA-N 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003637 basic solution Substances 0.000 description 1
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 1
- 239000000920 calcium hydroxide Substances 0.000 description 1
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- -1 cyclohexyl organic esters Chemical class 0.000 description 1
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 1
- 239000004914 cyclooctane Substances 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- JVSWJIKNEAIKJW-UHFFFAOYSA-N dimethyl-hexane Natural products CCCCCC(C)C JVSWJIKNEAIKJW-UHFFFAOYSA-N 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- VGTPKLINSHNZRD-UHFFFAOYSA-N oxoborinic acid Chemical compound OB=O VGTPKLINSHNZRD-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- BOOITXALNJLNMB-UHFFFAOYSA-N tricyclohexyl borate Chemical compound C1CCCCC1OB(OC1CCCCC1)OC1CCCCC1 BOOITXALNJLNMB-UHFFFAOYSA-N 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C29/00—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
- C07C29/48—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups
- C07C29/50—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups with molecular oxygen only
- C07C29/52—Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by oxidation reactions with formation of hydroxy groups with molecular oxygen only in the presence of mineral boron compounds with, when necessary, hydrolysis of the intermediate formed
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
Definitions
- BY (4, 9 47m14' ATTORNEYS PROCESS FOR MANUFACTURING ALCOHOLS BY OXIDATION OFHYDROCARBONS It is known to oxidize linear or cyclic saturated hydrocarbons, in a liquid phase, in the presence of a boric acid (for example ortho-, metaor pyroboric acid), boric anhydride or a boric ester, or any other equivalent boron compound, to obtain boric esters of the alcohols corresponding to said hydrocarbons.
- a boric acid for example ortho-, metaor pyroboric acid
- boric anhydride or a boric ester or any other equivalent boron compound
- Oxygen is usually employed in a concentration of l to 25 percent as a mixture with an inert gas such as nitrogen.
- oxidation of cyclohexane provides for a cyclohexyl borate.
- Other oxidizable hydrocarbons are those which contain from five to eight carbon atoms per molecule, for example hexane, heptane, octane, isooctane, cycloheptane, cyclooctane, methylcyclohexane and dimethylcyclohexanes (ortho-, metaor para-).
- the oxidation temperature is usually between 100 and 220 C., preferably between 140 and 190 C., with a pressure which is sufficient to maintain a liquid phase, for example between 1 and 40 atmospheres.
- boric acid may be recovered either directly in the solid state or as an aqueous solution which may be subjected to crystallization as well as an organic phase which contains the expected alcohol, usually together with a minor proportion of the corresponding ketone.
- water or the mother-waters of a prior crystallization of boric acid may be used as hydrolysis agent.
- the amount of water must be at least the stoichiometrical amount with respect to the hydrolysis reaction; usually 0.1 to 2 parts by volume of aqueous phase may be used for one part by volume of effluent from the oxidation zone, and the temperature is most often between 20 and 170 C.
- the recovered boric acid may be re-used in another oxidation operation, preferably after dehydration.
- the unconverted hydrocarbon may be recycled. lts recovery may be carried out by distillation of the organic phase after hydrolysis and saponification.
- this distillation will be preceded by a partial distillation of the hydrocarbon (for example to 90 percent of the present hydrocarbon) by release of pressure on the liquid efiluent from the oxidation zone, before saponification and preferably also before hydrolysis.
- a partial distillation of the hydrocarbon for example to 90 percent of the present hydrocarbon
- the thus obtained vapor phase, after condensation', will be sent back to the oxidation reactors, whereas the liquid phase will be subjected to hydroly sis, saponification and distillation.
- the object of this invention is to avoid the said inconvenience. It has been observed that a washing of the hydrocarbon contained in the vapors obtained during the release of pressure was necessary, said washing being carried out with a mineral base such as an oxide, a hydroxide or a carbonate of an alkali or alkali-earth metal, for example sodium hydroxide, ammonia, sodium carbonate, potassium carbonate, potassium hydroxide or calcium hydroxide, and followed by a washing with water. It appears that formic acid or any other light product separated during the release of pressure, if it is not rejected, results into a partial inhibition of the reaction.
- a mineral base such as an oxide, a hydroxide or a carbonate of an alkali or alkali-earth metal, for example sodium hydroxide, ammonia, sodium carbonate, potassium carbonate, potassium hydroxide or calcium hydroxide
- the excess of sodium hydroxide contained in the aqueous phase separated from the saponified liquid phase issuing from the release unit.
- This basic solution contains oxidation products of value, for example cyclohexanol and cyclohexanone, and the organic liquid phase newly extracts these products which otherwise would be lost, thus resulting into a substantial yield loss in the unit.
- the amount of mineral base will be advantageously at least that amount which would correspond to the neutralization of 50 percent of the acids present.
- this base is preferably used in an amount corresponding to 110-300 percent of the theoretical amount corresponding to the neutralization of the acids, in order to realize simultaneously a saponification of the esters present. It is of little importance that this base be in the form of a concentrated or diluted aqueous solution.
- the gaseous phase which is withdrawn through pipe 11 and condensed in the heat exchanger 4 is admixed in the neutralization column 5, with an alkaline solution from pipe 12.
- the aqueous phase is withdrawn from the column through pipe 13, and the organic phase through pipe 14. The latter is admixed with water issuing from pipe 15 and introduced into the washing column 6.
- the aqueous phase is withdrawn through pipe 16 and the organic phase through pipe 17.
- This phase which consists essentially of unconverted hydrocarbon, is sent back to the oxidation step.
- the liquid phase from the vaporization vessel 3 is withdrawn through pipe 18, is subjected to the usual treatment, i.e., hydrolysis and washing in the vessel 7 by means of an aqueous solution of boric acid or water, or a mixture of both, fed through pipe 19.
- the aqueous phase which contains water-soluble components is sent through pipe 20 to the step wherein boric acid is recovered.
- the organic phase is withdrawn through pipe 21 and saponified in vessel 8, the sodium hydroxide solution being fed through pipe 22 and diluted with the aqueous phase of pipe 16, issuing from the washing step of column 6.
- the residual alkaline aqueous phase is withdrawn through pipe 12 and used to feed the neutralization column 5.
- the organic phase which contains the oxidation products and a part of the unconverted hydrocarbon, is sent through pipe 23 to the separation step 9, for example by distillation, where the unconverted hydrocarbon issues through pipe 24 to be sent back to the oxidation step, the alcohol-ketone mixture being extracted through pipe 25.
- Example 1 is given by way of comparison and forms no part of this invention.
- the liquid phase issuing from the last vessel, which contains the oxidation products as well as the excess of boric acid, is subjected to a release of pressure down to 5 atmospheres at 120 C., the latter temperature being maintained by means of a heat exchanger.
- the obtained vapor phase contains about 93 percent by weight of cyclohexane.
- a minor proportion of the oxidation products is carried away about 8 percent by weight of the organic acids (essentially formic acid) which are present in the effluent of the last vessel as well as 10 percent of the cyclohexyl organic esters.
- the total amount of vapor phase separated during this pressure release amounts to about 35 percent of the total effluent from the reaction vessels.
- the condensate is sent back to the reaction vessels in order to be subjected to another oxidation step.
- the aqueous phase from the saponification of the hydrolysis effluent is not used to carry out a neutralization of the condensate and thus is only rejected.
- Example 1 is repeated, except that the condensed hydrocarbon is neutralized by means of a 0.2N sodium hydroxide solution which is used in an amount of 120 percent with respect to the amount corresponding to the theoretical neutralization of the acids, then it is washed with water before being recycled to the oxidation vessels.
- the aqueous phase issued from the saponification of the hydrolysis effluent is not used, here again, to carry out the neutralization of the condensate. It is only rejected.
- the molar yield of cyclohexanol cyclohexanone is 89 percent and the conversion has attained l 1 percent.
- Example 1 is repeated, except that the condensed hydrocarbon is neutralized by means of the aqueous phase issued from the saponification of the hydrolysis efiluent.
- This aqueous phase contains an excess of sodium hydroxide, which has not been consumed during the saponification, in an amount equal to that defined in Example 2.
- the molar yield of cyclohexanol+cyclohexanone is 91 percent for a conversion rate of 1 1 percent.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR108317 | 1967-05-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3683035A true US3683035A (en) | 1972-08-08 |
Family
ID=8631877
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US729035A Expired - Lifetime US3683035A (en) | 1967-05-29 | 1968-05-14 | Process for manufacturing alcohols by oxidation of hydrocarbons |
Country Status (5)
Country | Link |
---|---|
US (1) | US3683035A (enrdf_load_html_response) |
BE (1) | BE715807A (enrdf_load_html_response) |
DE (1) | DE1768471A1 (enrdf_load_html_response) |
FR (1) | FR1559604A (enrdf_load_html_response) |
GB (1) | GB1200553A (enrdf_load_html_response) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3989763A (en) * | 1968-04-17 | 1976-11-02 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Method for recovering alcohols |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2557281A (en) * | 1951-06-19 | Oxidation op petroleum cyclohexane | ||
US2595786A (en) * | 1950-06-01 | 1952-05-06 | Standard Oil Dev Co | Treatment of topped oxo alcohol with molecular oxygen and caustic |
US2595763A (en) * | 1949-12-31 | 1952-05-06 | Standard Oil Dev Co | Treatment of oxo alcohols by caustic and air |
US2626284A (en) * | 1949-09-17 | 1953-01-20 | Standard Oil Dev Co | Aqueous caustic treat of iso-octyl alcohol |
GB900627A (en) * | 1958-02-17 | 1962-07-11 | Bergwerksgesellschaft Hibernia | An improved method of producing highly purified ethyl alcohol and an apparatus for carrying out such method |
US3232704A (en) * | 1962-03-21 | 1966-02-01 | Exxon Research Engineering Co | Process for recovering boric acid |
US3287423A (en) * | 1961-12-21 | 1966-11-22 | Stamicarbon | Preparation of cyclic alcohols by oxidation in the presence of boric acid |
US3359335A (en) * | 1964-05-13 | 1967-12-19 | Exxon Research Engineering Co | Caustic scrubbing of aldox alcohols |
US3439041A (en) * | 1965-01-30 | 1969-04-15 | Vickers Zimmer Ag | Oxidation product separation |
US3442959A (en) * | 1964-08-06 | 1969-05-06 | Halcon International Inc | Oxidation of paraffins to provide alcohols |
-
1967
- 1967-05-29 FR FR108317A patent/FR1559604A/fr not_active Expired
-
1968
- 1968-05-14 US US729035A patent/US3683035A/en not_active Expired - Lifetime
- 1968-05-17 DE DE19681768471 patent/DE1768471A1/de active Pending
- 1968-05-28 GB GB25479/68A patent/GB1200553A/en not_active Expired
- 1968-05-28 BE BE715807D patent/BE715807A/xx unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2557281A (en) * | 1951-06-19 | Oxidation op petroleum cyclohexane | ||
US2626284A (en) * | 1949-09-17 | 1953-01-20 | Standard Oil Dev Co | Aqueous caustic treat of iso-octyl alcohol |
US2595763A (en) * | 1949-12-31 | 1952-05-06 | Standard Oil Dev Co | Treatment of oxo alcohols by caustic and air |
US2595786A (en) * | 1950-06-01 | 1952-05-06 | Standard Oil Dev Co | Treatment of topped oxo alcohol with molecular oxygen and caustic |
GB900627A (en) * | 1958-02-17 | 1962-07-11 | Bergwerksgesellschaft Hibernia | An improved method of producing highly purified ethyl alcohol and an apparatus for carrying out such method |
US3287423A (en) * | 1961-12-21 | 1966-11-22 | Stamicarbon | Preparation of cyclic alcohols by oxidation in the presence of boric acid |
US3232704A (en) * | 1962-03-21 | 1966-02-01 | Exxon Research Engineering Co | Process for recovering boric acid |
US3359335A (en) * | 1964-05-13 | 1967-12-19 | Exxon Research Engineering Co | Caustic scrubbing of aldox alcohols |
US3442959A (en) * | 1964-08-06 | 1969-05-06 | Halcon International Inc | Oxidation of paraffins to provide alcohols |
US3439041A (en) * | 1965-01-30 | 1969-04-15 | Vickers Zimmer Ag | Oxidation product separation |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3989763A (en) * | 1968-04-17 | 1976-11-02 | Nippon Shokubai Kagaku Kogyo Co., Ltd. | Method for recovering alcohols |
Also Published As
Publication number | Publication date |
---|---|
DE1768471A1 (de) | 1971-10-21 |
FR1559604A (enrdf_load_html_response) | 1969-03-14 |
BE715807A (enrdf_load_html_response) | 1968-10-16 |
GB1200553A (en) | 1970-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sheldon et al. | Pair production and cage reactions of alkyl radicals in solution | |
US3911003A (en) | Process for the production of glycolic acid and oxydiacetic acid | |
US3243449A (en) | Oxidation of hydrocarbons to borate esters | |
US2287803A (en) | Direct conversion of alcohols to acids | |
US3922314A (en) | Process for the preparation of ethylene glycol | |
US3683035A (en) | Process for manufacturing alcohols by oxidation of hydrocarbons | |
US2139179A (en) | Purification of alcohols | |
US3946077A (en) | Process for oxidating hydrocarbons | |
US3399035A (en) | Process for the recovery of boric acid from the oxidation mixtures of liquidphase oxidation of hydrocarbons | |
Jones et al. | Bridgehead functionalisation of saturated hydrocarbons with lead (IV) salts | |
US3524891A (en) | Boric acid oxidation process | |
US4322558A (en) | Oxidation process | |
Walling et al. | The Hydroperoxides from l-Bornyl Chloride Obtained by Oxidation of the Grignard Reagent1 | |
US3060228A (en) | Preparation of methyl acrylate | |
US3479394A (en) | Process for the oxidation of cycloalkanes | |
GB913000A (en) | Recovery of cyclohexan one from oxidation-mixtures by distillation | |
US2492983A (en) | Methanol production | |
US2969380A (en) | Acid production | |
US3346614A (en) | Preparation of alkyl metaborates | |
ES343836A1 (es) | Procedimiento para la oxidacion de un hidrocarburo en fase liquida con oxigeno molecular. | |
US3676489A (en) | Process for producing organic acids | |
US3459805A (en) | Hydrocarbon oxidation process | |
US3879446A (en) | Preparation of unsaturated organic compounds by oxidative dehydrogenation | |
US5026925A (en) | Method of producing catechol and hydroquinone | |
US3415621A (en) | Crystalline metaboric acid by hydrolysis of secondary alkyl borate ester |