US3682544A - Electronic controller for copying machine - Google Patents

Electronic controller for copying machine Download PDF

Info

Publication number
US3682544A
US3682544A US83742A US3682544DA US3682544A US 3682544 A US3682544 A US 3682544A US 83742 A US83742 A US 83742A US 3682544D A US3682544D A US 3682544DA US 3682544 A US3682544 A US 3682544A
Authority
US
United States
Prior art keywords
counter
count
copy
output
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US83742A
Inventor
David Glaser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unisys Corp
Original Assignee
Burroughs Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Burroughs Corp filed Critical Burroughs Corp
Application granted granted Critical
Publication of US3682544A publication Critical patent/US3682544A/en
Assigned to BURROUGHS CORPORATION reassignment BURROUGHS CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). DELAWARE EFFECTIVE MAY 30, 1982. Assignors: BURROUGHS CORPORATION A CORP OF MI (MERGED INTO), BURROUGHS DELAWARE INCORPORATED A DE CORP. (CHANGED TO)
Assigned to UNISYS CORPORATION reassignment UNISYS CORPORATION MERGER (SEE DOCUMENT FOR DETAILS). Assignors: BURROUGHS CORPORATION
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41LAPPARATUS OR DEVICES FOR MANIFOLDING, DUPLICATING OR PRINTING FOR OFFICE OR OTHER COMMERCIAL PURPOSES; ADDRESSING MACHINES OR LIKE SERIES-PRINTING MACHINES
    • B41L39/00Indicating, counting, warning, control, or safety devices
    • B41L39/16Programming systems for automatic control of sequence of operations
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G21/00Arrangements not provided for by groups G03G13/00 - G03G19/00, e.g. cleaning, elimination of residual charge
    • G03G21/14Electronic sequencing control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F7/00Methods or arrangements for processing data by operating upon the order or content of the data handled
    • G06F7/60Methods or arrangements for performing computations using a digital non-denominational number representation, i.e. number representation without radix; Computing devices using combinations of denominational and non-denominational quantity representations, e.g. using difunction pulse trains, STEELE computers, phase computers
    • G06F7/62Performing operations exclusively by counting total number of pulses ; Multiplication, division or derived operations using combined denominational and incremental processing by counters, i.e. without column shift
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/02Marketing; Price estimation or determination; Fundraising
    • G06Q30/0283Price estimation or determination

Definitions

  • the controller in i 15/00 00% 27/06 cludes various machine synchronizing circuits and, in l 1 0 c h addition, a first counter for counting copies made, a CA second counter for registering copies to be made, and [56] References Cited third counter, all of the counters being interrelated to control the making of copies, detecting when the UNI E STATES PATENTS desired number of copies have been made, and turn- 3 51 2 885 5/1970 Osborne et al 355/14 ing off the machine at the end of a copying cycle.
  • FIGS. 1 To 7 are schematic representations of separate portions of the system of the invention.
  • the apparatus of the invention 10 comprises, essentially, an electronic system for' operation with a copying machine represented schematically by block 20.
  • the machine is adapted to perform a plurality of functions including, for example, turning on motors, engaging clutches, setting a printing master in place, feeding paper, making copies, discharging copies made, etc., and in most cases, the performance of each of these functions is accompanied by the generation of an output pulse on selected leads 30.
  • the machine includes, for this purpose, apparatus called a machine clock 40 which comprises, essentially, a rotating member such as a cog wheel or a rotating optical apparatus or the like adapted to energize portions of the machine or to deliver pulses to the electronic circuits at various ones of its angular positions as it rotates.
  • the machine clock is represented schematically within the machine block 20, with tabs representing its contact elements or apparatus-energizing elements.
  • the system 10 includes suitable means for applying power to the system and its various component parts and thus turning them on.
  • the circuit includes an inhibit or reset circuit represented by block and shown in detail in FIG. 2, which is energized when power is turned on and which inhibits generation of pulses by the machine clock 40; however, it does not prevent rotation of the machine clock.
  • the reset circuit 60 also resets all counters to zero condition representing the beginning of a machine cycle. Other operations may also be performed by this circuit, if required.
  • the leads 30 as noted represent output connections from each of the functional portions of the machine 20.
  • one may be coupled to apparatus for sensing the presence of a master to be printed; one may sense the physical orientation of the master; one may represent the condition of the printing mechanism; one may represent the making of a copy; one, 308, may also represent the rotation of the machine clock 40 to a known starting position, at which time a synch pulse is generated to permit a desired sequence of operations, including printing, to take place.
  • the synch pulse through lead 308 is coupled to the reset circuit 60 to remove its inhibiting influence on the machine clock so that the machine clock can rotate and cause the desired sequence of events to occur.
  • the machine cycle portion of the system which prepares the machine for printing as the machine clock 40 rotates, it generates pulses which are fed by lead MC into a multiple-decade counter (FIG. 3), the outputs of which are connected by leads 1 10 to a first diode matrix in which they are decoded to produce output pulses which represent time intervals during which various operations are to be performed.
  • a multiple-decade counter FIG. 3
  • the outputs of the diode matrix 120 are coupled to a bus which is connected by lead 141 (FIG. 1) to a distributor circuit which includes a flip-flop 154 and two decade counters 156 and 158 connected to operate in flip-flop fashion.
  • the decade counters feed into a second diode matrix 170, the outputs of which are connected to the various functioning elements of the machine 20 which must be cycled through before a printing operation takes place.
  • each pulse generated by the machine clock produces an output from the diode matrix 120 (FIG. 3) which, in turn, acts through distributor 150 and the second diode matrix 170 to energize each component of the machine, in turn, for a specific period of time.
  • diode matrices 120 FIG. 3 and 170 FIG. 1 include the necessary inverters, buffers, amplifiers, etc., as required, although they are not shown.
  • one of the outputs 30CC from the machine 20 represents a copy made and includes apparatus, a portion of which is shown for producing an output pulse for each copy made.
  • a lead CC from this apparatus is coupled through suitable circuitry to a flip-flop and to a printing clock circuit 200 which, when turned on, runs freely and generates pulses until it is turned off.
  • the printing clock circuit is designed to have a time delay from the time it' receives a pulse from the flip-flop 190 to the time it begins to produce output pulses. A 0.5 usec. delay is suitable for purposes of the invention.
  • the flip-flop 190 (FIG. 6) includes a lead 192 which couples a disabling pulse CE to distributor 150 FIG. 1, as shown, to disable the distributor when it is desired to use the counter 100 for a second operation other than running through the machine cycle.
  • the circuit of the invention includes a first multi-decade presettable counter 220 including a suitable display device 230 such as a NIXIE tube for each decade of the counter and suitable switches 140 for setting the counter.
  • This counter is known as the CTBM or copies to be made counter.
  • the system also includes a second counter 250 (FIG. 4) known as the CM or copies made counter which also includes four decades and associated display devices 160.
  • the counter 100 is operated in conjunction with the counters 220 and 250 in the printing portion of the system and is known as a CB or coincidence billing counter, and it also includes four decades.
  • the counters 100, 220 and 250 are shown as including four decades each, and, in addition, the decades are connected to provide a maximum count of 2000 since that is determined to be the maximum number of copies the machine is to be permitted to make from one master. Those skilled in the art will understand that counters can be connected to provide a different total count and that the system can be made to operate with any other total number of counts.
  • the output of the printing clock 200 (FIG. 6) is suitably coupled by lead 260 to the inputs of each of the three counters as shown.
  • the output of the CTBM counters 220 is coupled by a lead 270 (FIGS. 2 and 3) through an inverter 280 to one input 290 of a two-part AND gate 320.
  • the putput of the CB counter 100 is coupled by lead 330 to one side of a flip-flop 340, the output of which is coupled by lead 350 to the second input 360 of AND gate 320, and the output of the CM counter 250 is coupled by output line or lead 370 (CCC) FIGS. 2 and 4 to the second side of the flip-flop 340.
  • the output of counter 100 is connected through lead 380 to both inputs of an AND gate 390, the output of which is coupled to AND gate 400.
  • AND gate 320 is coupled by lead 410 to one portion of flip-flop 420, and the output of flip-flop 420 is coupled to AND gate 400.
  • the output of AND gate 400 is coupled by lead 413 to the distributor circuitry 150 (FIGS. 1 and 2) so that it can operate apparatus for turning off machine to represent the end of a printing cycle.
  • the output of the CB counter 100 is also coupled by lead 430 (FIGS. 3 and 6) to the printing clock flip-flop 190,- by which connection a carry pulse from the output of the CB counter 100 can be used to turn ofi the lock.
  • the switches 140 in counter 220 are set to the number of copies to be made and power is turned on.
  • the reset circuit 70 (FIG. 1) is operated to set all of the counters to zero position.
  • the machine clock rotates, but its output functions are inhibited by circuit 70.
  • the machine clock 40 generates a synch pulse is coupled on lead 305 and lead 443 through circuit 440 (FIG. 6) and gate 441 and lead 490 to switches 140 and counter 220 to cause the switch-set count to be transferred into the counter 220.
  • Counter 220 is nowset to the number of copies to be made.
  • the machine clock generates a pulse on line 308 (FIG. 1), and this removes the reset or inhibit circuit 70 from the machine clock which is thereby freed to operate (FIGS. 1, 5 and 6.
  • each pulse generated by it and its associated circuitry is fed into counter 100 on lead MC (FIGS. 3 and 5), and, as each position of the counter is energized, a pulse operates through the diode matrix 120 (FIG. 3), distributor 150, and diode matrix 170, to cause machine 20 to cycle through the various mechanical features of the machine which must be checked before a copying operation is carried out.
  • the clock is set into operation and it generates a sufficient number of pulses to drive the counters and 220 from one end to the other, in this case 2,000 pulses or counts, at which time a pulse appears at the output of counter 100 on output line 380 and is fed on line 430 therefrom to the flip-flop 190 (FIG. 6), which is thereby flipped and set to receive the next copy count pulse.
  • This also turns ofi clock 200.
  • An output also appears from counter 220 on output line or lead 270. However, it has no effect on the circuitry to which it is connected because the copies made do not yet equal in number the number of copies to be made.
  • the counters are all connected for a maximum count of 2,000 pulses which is set as the maximum number of copies to be made from one master. However, any other total number could be used.
  • the next print made generates a CC pulse which causes the machine and circuit to execute the same cycle, with a second increment being entered in the CM counter 250.
  • the carry pulses which appear on output leads 270 (FIG. 3) 370 (FIG. 4), and 380 (FIG. 3) appear simultaneously, electrically, and operate the various flipflops and AND gates 320 and 400 (FIG. 2) to produce an output pulse at AND gate 400, and this is used on lead 410 to operate the distributor 150 and associated apparatus (FIG. 1) which now run the machine through its shut-down cycle.
  • the system also includes two arrangements for stopping the printing operation at any desired time.
  • One arrangement includes the eject circuit 450, shown in FIG. 2, Which is operated by pressing of the eject button 460 which, in turn, causes the emission of a pulse at AND gate 470. This pulse is applied to reset circuit 70 to disable the machine.
  • circuit 440 (FIG. 6) is used as follows. If, for example, 200 copies were set into the switches (FIG. 3) originally and copies have been made and it is decided to stop at 150, then the operator sets 150 or any smaller number into the switches, presses change button 480, and a shift pulse appears on line 490 which shifts the new number into counter 220. Then, when the next 2,000 pulses are applied to the counters, the carry output from the CM counter and the carry output from the CTBM counter operate as described above to disable the machine.
  • the carry pulse from the counter 250 energizes AND gate 320 and maintains this state until the carry output from the CTBM counter 220 arrives and the coincidence state exists and the machine is shut down as described above.
  • the system is also provided with a billing circuit 350 (FIG. 7) which includes a flip-flop 360 having an input coupled to the copy count line 30 CC from machine 20 (FIG. 1).
  • the flip-flop 360 is coupled to a first switching circuit 370 which in turn is coupled to a second flip-flop 380.
  • the second flip-flop circuit 380 is coupled (1) to a pulse counter 390 for counting billing counts, (2) to a second switching circuit 400, the output of which is coupled to the flip-flop 380, and (3) to the input of a presettable decade counter 410 having a carry output line 420 which is coupled to the input flipflop 360.
  • the decade counter 410 can be set to begin its count at any one of its ten positions so that the operator can vary the number of counts received before a carry pulse appears on output lead 420.
  • the billing circuit also includes a plurality of AND gates 423 (A,B,C,D), each having four input terminals 425 (A,B,C,D) by means of which each can be coupled to the decades of counter 100 so that each can sense a predetermined number of counts fed into counter 100.
  • the counters have outputs 427 which can be connected to different positions in decade counter 410 through terminals 429 to cause the billing count to begin at the selected position and terminate at the last position in the decade counter.
  • the number of counts thus fed into the decade counter in effect, represents a billing rate, and it can be changed as desired by the coupling of a selected AND gate 425 to the counter 100 and to the counter 410.
  • the billing circuit 350 also includes a flip-flop 433 which includes two two-part AND gates 435 and 437 connected as shown and including a connection from the copy count pulse (CC) generating circuit to one input of gate 435 and a connection (CCC) representing copy count carry from lead 370, the carry output lead from copies made counter 250.
  • the flip-flop 433 has an output lead 439 (BRC) which is connected to a common input line to all of the billing rate AND gates 423.
  • the billing counter 410 is set to a starting position other than its first position, for example position eight, then the entry of two counts into the counter would bring it to the end and would produce the tum-off carry output.
  • other settings of the counter may be made to vary the number of pulses required to turn off the billing counter, with each setting representing a different billing rate.
  • the billing rate may be changed automatically by connecting the billing gates 423 to different number positions in the counter 100, and the rate changes automatically in the counter 410 as copies are made by the machine.
  • AND gate 423A is set to enter the largest billing rate, and the rate decreases automatically as the other gates 423 B,C,D operate, each being connected to a different successively lower count position in the counter 100.
  • AND gate 423 sets the highest rate of counts for,
  • AND gate 423B might have its terminals 425 connected to the number 1990, AND gate 423 might have its terminals 425 connected to the number 1970, etc. with their respective outputs connected to a different starting position in counter 410.
  • control circuit 433 is required to make certain that, as each new lower rate comes into play, the proper AND gate 423 controls the billing operation, and the higher rate gates which follow it are prevented from operating. This is achieved by having a copy count pulse CC, generated when a copy is made, open the flip-flop gate 433 and thus energizes the gates 423 through lead 439.
  • a pulse CCC from counter 250 turns the gate 433 ofl and thus prevents operation of any subsequent gates 423 as the counter 100 completes its counting cycle.
  • Appropriate time delay is built into the circuit to permit the billing operation to be carried out before the gate 433 is closed.
  • the terminals 500 and 501 can be used after a large number of copies have been made and it is desired to set the billing rate to a minimal level.
  • the AND gates 423 and their connections may all be mounted on a removable billing board which can be specially designed for each customer, and, if the card is removed from the system, then the counter 410 automatically requires 10 counts to produce a carry output.
  • a copy-making machine and control system therefor including a plurality of operating mechanisms in said machine for performing a variety of functions including a copy-printing function
  • a copy-printing means for performing said copyprinting function and including copy count electronic means for generating a copy count pulse for each copy made
  • a copy count clock coupled to and turned on by each pulse from said copy count electronic means, said copy count clock being free-running when turned on,
  • said copy count electronic means being coupled to said third counter for entering therein a count for every copy made
  • said second counter being adapted to have a count preset therein representing copies to be made and including means for generating an output pulse when a number of copy count pulses corresponding to the copies to be made are entered therein,
  • a billing circuit having a decade counter coupled to means for generating one or more pulses in response to a copy printed, the decade counter being settable to receive a selected number of pulses before it produces a carry output, said number of pulses representing a billing rate.
  • a billing circuit comprising a plurality of AND gates each having input means selectively couplable to various counting positions of said first counter whereby each can be operated at a different counting position therein,
  • each of said AND gates having an output couplable to any one of the positions of said billing counter to set the counters count-starting position, said count-starting position determining the billing rate for said system.
  • a billing circuit comprising,
  • a billing circuit comprising a plurality of AND gates each having input means selectively couplable to various counting positions of said first counter, a settable billing counter having an input and an output,
  • a pulse generating circuit having its input coupled to said copy count electronic means and having its output coupled to the input of said billing counter, each said copy count pulse turning on said pulse generating circuit and causing it to drive said counter from a starting position to the end to produce an output signal at the output of said billing counter, said output signal de-energizing said pulse generating circuit, and
  • each of said AND gates having an output couplable to any one of the positions of said billing counter to select its count-starting position, said countstarting position determining the billing rate of said system.
  • said pulse generating circuit comprises a first flip-flop having one input coupled to said copy count electronic means and adapted to receive a copy count pulse to change its state and having its output coupled through a first pulse generator to a second flip-flop which has its output connected to a mechanical counter and to the input of said settable billing counter, the output of said second flip-flop also being connected through a second pulse generator to the input of said second flip-flop,
  • the output of said settable billing counter being coupled to said first flip-flop for returning said first flip-flop to the condition it has before it receives a copy count pulse.
  • a printing machine including a plurality of operating mechanisms
  • a machine clock associated with said machine for generating pulses and adapted to be energized by said start pulse
  • said machine clock being coupled to a circuit including cycling means including a first counter coupled to each of said operating mechanisms of said machine whereby each pulse from said machine clock causes each of said mechanisms to operate in turn,
  • copy printing means comprising one of said mechanisms and including copy count electronic means for generating a copy count pulse when a copy is made of a master print inserted in said machine,
  • a copy count clock coupled to and turned on by each pulse from said electronic means of said copy printing means, said copy count clock being freerunning when turned on,
  • said second counter being a presettable counter and adapted to have a count entered therein representing copies to be made
  • said third counter being adapted to enter a count representative of copies made and thus coupled to said copy count electronic means
  • said second counter generating an output pulse when a number of copying pulses corresponding to the copies to be made is entered therein
  • cycling means includes said first counter coupled to a diode matrix distributor which cycles each of said operating mechanisms in turn.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Theoretical Computer Science (AREA)
  • Strategic Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Economics (AREA)
  • Game Theory and Decision Science (AREA)
  • Marketing (AREA)
  • General Business, Economics & Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Computational Mathematics (AREA)
  • Computing Systems (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Or Security For Electrophotography (AREA)

Abstract

The machine controller is adapted for use with a copying machine which is adapted to perform a plurality of functions including printing copies. The controller includes various machine synchronizing circuits and, in addition, a first counter for counting copies made, a second counter for registering copies to be made, and third counter, all of the counters being interrelated to control the making of copies, detecting when the desired number of copies have been made, and turning off the machine at the end of a copying cycle.

Description

United States Patent Glaser ELECTRONIC CONTROLLER FOR [151 3,682,544 [451 Aug. 8, 1972 3,492,071 1/1970 Limnios et al ..355/83 COPYING MACHIN [72] Inventor: David Glaser, Green Brook, NJ. Z mf' fg m: L
51s an ammerc ar oses Asslgneei Burroughs Corporation, Detfolt, AttmeyKennet.h L. Miller, Robert A. Green,
Mlch- George L. Kensinger and Charles S. Hall [22] Filed: Oct. 26, 1970 57 TRACT [2]] Appl. No.: 83,742 ABS The machine controller is adapted for use w1th a copy- 52 us. (:1. ..355/14, 235/92, 355/112 mg which adapted mPerfmm a f 51 I Cl functions 1nclud1ng pnntmg cop1es. The controller in i 15/00 00% 27/06 cludes various machine synchronizing circuits and, in l 1 0 c h addition, a first counter for counting copies made, a CA second counter for registering copies to be made, and [56] References Cited third counter, all of the counters being interrelated to control the making of copies, detecting when the UNI E STATES PATENTS desired number of copies have been made, and turn- 3 51 2 885 5/1970 Osborne et al 355/14 ing off the machine at the end of a copying cycle. 3:215:O56 11/1965 Campbell .......I...I.I.I 2I55/109 Claims, 7 Drawing Figures FL [54 I MAZEIL'RIX 20 E l T 411 55L 3- HQ m com 751 R Q P l H /RESET POWER 6 PAIENTEDnuc 8 van 3.682.544
' SHEEI 6 0f 7 J- he I 7 W INVENTOR.
lg? 6 DAV/D GLHSEI? ELECTRONIC CONTROLLER FOR COPYING MAC BACKGROUND OF THE INVENTION Although many different types of copying machines are available commercially and in the prior art, each is different, operates differently, and has different requirements of operation. The present invention satisfies the operating requirements of a copying machine not found in the prior art.
DESCRIPTION OF THE DRAWINGS FIGS. 1 To 7 are schematic representations of separate portions of the system of the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the following description of the electronic circuit of the invention and in the drawings, circuit features which would be obvious to those skilled in the art are omitted for purposes of simplifying the drawings and the description. Such elements include power supplies, ground connections, various resistors, inverters, buffers, amplifiers, or the like.
Referring to FIG. 1, the apparatus of the invention 10 comprises, essentially, an electronic system for' operation with a copying machine represented schematically by block 20. The machine is adapted to perform a plurality of functions including, for example, turning on motors, engaging clutches, setting a printing master in place, feeding paper, making copies, discharging copies made, etc., and in most cases, the performance of each of these functions is accompanied by the generation of an output pulse on selected leads 30. The machine includes, for this purpose, apparatus called a machine clock 40 which comprises, essentially, a rotating member such as a cog wheel or a rotating optical apparatus or the like adapted to energize portions of the machine or to deliver pulses to the electronic circuits at various ones of its angular positions as it rotates. The machine clock is represented schematically within the machine block 20, with tabs representing its contact elements or apparatus-energizing elements.
Continuing with FIG. 1, the system 10 includes suitable means for applying power to the system and its various component parts and thus turning them on. The circuit includes an inhibit or reset circuit represented by block and shown in detail in FIG. 2, which is energized when power is turned on and which inhibits generation of pulses by the machine clock 40; however, it does not prevent rotation of the machine clock. The reset circuit 60 also resets all counters to zero condition representing the beginning of a machine cycle. Other operations may also be performed by this circuit, if required.
The leads 30 as noted represent output connections from each of the functional portions of the machine 20. For example, one may be coupled to apparatus for sensing the presence of a master to be printed; one may sense the physical orientation of the master; one may represent the condition of the printing mechanism; one may represent the making of a copy; one, 308, may also represent the rotation of the machine clock 40 to a known starting position, at which time a synch pulse is generated to permit a desired sequence of operations, including printing, to take place. In operation of the apparatus, the synch pulse through lead 308 is coupled to the reset circuit 60 to remove its inhibiting influence on the machine clock so that the machine clock can rotate and cause the desired sequence of events to occur.
Considering, first, the machine cycle portion of the system which prepares the machine for printing as the machine clock 40 rotates, it generates pulses which are fed by lead MC into a multiple-decade counter (FIG. 3), the outputs of which are connected by leads 1 10 to a first diode matrix in which they are decoded to produce output pulses which represent time intervals during which various operations are to be performed.
The outputs of the diode matrix 120 (FIG. 3) are coupled to a bus which is connected by lead 141 (FIG. 1) to a distributor circuit which includes a flip-flop 154 and two decade counters 156 and 158 connected to operate in flip-flop fashion. The decade counters feed into a second diode matrix 170, the outputs of which are connected to the various functioning elements of the machine 20 which must be cycled through before a printing operation takes place. Thus, each pulse generated by the machine clock produces an output from the diode matrix 120 (FIG. 3) which, in turn, acts through distributor 150 and the second diode matrix 170 to energize each component of the machine, in turn, for a specific period of time.
It is noted that the diode matrices 120 FIG. 3 and 170 FIG. 1 include the necessary inverters, buffers, amplifiers, etc., as required, although they are not shown.
As noted, one of the outputs 30CC from the machine 20 represents a copy made and includes apparatus, a portion of which is shown for producing an output pulse for each copy made. Referring to FIGS. 1 and 6, a lead CC from this apparatus is coupled through suitable circuitry to a flip-flop and to a printing clock circuit 200 which, when turned on, runs freely and generates pulses until it is turned off. The printing clock circuit is designed to have a time delay from the time it' receives a pulse from the flip-flop 190 to the time it begins to produce output pulses. A 0.5 usec. delay is suitable for purposes of the invention.
The flip-flop 190 (FIG. 6) includes a lead 192 which couples a disabling pulse CE to distributor 150 FIG. 1, as shown, to disable the distributor when it is desired to use the counter 100 for a second operation other than running through the machine cycle.
Referring to FIG. 3, The circuit of the invention includes a first multi-decade presettable counter 220 including a suitable display device 230 such as a NIXIE tube for each decade of the counter and suitable switches 140 for setting the counter. This counter is known as the CTBM or copies to be made counter. The system also includes a second counter 250 (FIG. 4) known as the CM or copies made counter which also includes four decades and associated display devices 160. The counter 100 is operated in conjunction with the counters 220 and 250 in the printing portion of the system and is known as a CB or coincidence billing counter, and it also includes four decades.
The counters 100, 220 and 250 are shown as including four decades each, and, in addition, the decades are connected to provide a maximum count of 2000 since that is determined to be the maximum number of copies the machine is to be permitted to make from one master. Those skilled in the art will understand that counters can be connected to provide a different total count and that the system can be made to operate with any other total number of counts.
The output of the printing clock 200 (FIG. 6) is suitably coupled by lead 260 to the inputs of each of the three counters as shown.
The output of the CTBM counters 220 is coupled by a lead 270 (FIGS. 2 and 3) through an inverter 280 to one input 290 of a two-part AND gate 320. The putput of the CB counter 100 is coupled by lead 330 to one side of a flip-flop 340, the output of which is coupled by lead 350 to the second input 360 of AND gate 320, and the output of the CM counter 250 is coupled by output line or lead 370 (CCC) FIGS. 2 and 4 to the second side of the flip-flop 340. The output of counter 100 is connected through lead 380 to both inputs of an AND gate 390, the output of which is coupled to AND gate 400. The output of AND gate 320 is coupled by lead 410 to one portion of flip-flop 420, and the output of flip-flop 420 is coupled to AND gate 400. The output of AND gate 400 is coupled by lead 413 to the distributor circuitry 150 (FIGS. 1 and 2) so that it can operate apparatus for turning off machine to represent the end of a printing cycle. v
The output of the CB counter 100 is also coupled by lead 430 (FIGS. 3 and 6) to the printing clock flip-flop 190,- by which connection a carry pulse from the output of the CB counter 100 can be used to turn ofi the lock.
in operation of the system 10 as described thus far, the switches 140 in counter 220 (FIG. 3) are set to the number of copies to be made and power is turned on. The reset circuit 70 (FIG. 1) is operated to set all of the counters to zero position. At the same time, the machine clock rotates, but its output functions are inhibited by circuit 70. At some point in its rotation, the machine clock 40 generates a synch pulse is coupled on lead 305 and lead 443 through circuit 440 (FIG. 6) and gate 441 and lead 490 to switches 140 and counter 220 to cause the switch-set count to be transferred into the counter 220. Counter 220 is nowset to the number of copies to be made. At another later time, the machine clock generates a pulse on line 308 (FIG. 1), and this removes the reset or inhibit circuit 70 from the machine clock which is thereby freed to operate (FIGS. 1, 5 and 6.
' As the machine clock rotates, each pulse generated by it and its associated circuitry is fed into counter 100 on lead MC (FIGS. 3 and 5), and, as each position of the counter is energized, a pulse operates through the diode matrix 120 (FIG. 3), distributor 150, and diode matrix 170, to cause machine 20 to cycle through the various mechanical features of the machine which must be checked before a copying operation is carried out.
At a selected time, print paper is fed and a first print is made and a copy count pulse CC is generated in the machine on the appropriate lead 30CC (FIG. 1), and this pulse is applied to flip-flop 190 (FIG. 6) and thus to printing clock 200. When the pulse is applied to flipflop 190, it operates to generate a pulse CE on line 192 which is applied to distributor 150 (FIG. 1) to disable it and to thus free counter 100 for use in the printing operation. When copy count pulse CC is applied to the flip-flop 190, it is also applied through lead 420 to the input of the copies made counter 250 (FIG. 4) where one count is thus registered. After the required delay time of clock 200 (FIG. 6) has passed, the clock is set into operation and it generates a sufficient number of pulses to drive the counters and 220 from one end to the other, in this case 2,000 pulses or counts, at which time a pulse appears at the output of counter 100 on output line 380 and is fed on line 430 therefrom to the flip-flop 190 (FIG. 6), which is thereby flipped and set to receive the next copy count pulse. This also turns ofi clock 200. An output also appears from counter 220 on output line or lead 270. However, it has no effect on the circuitry to which it is connected because the copies made do not yet equal in number the number of copies to be made.
It is to be noted that the counters are all connected for a maximum count of 2,000 pulses which is set as the maximum number of copies to be made from one master. However, any other total number could be used. The next print made generates a CC pulse which causes the machine and circuit to execute the same cycle, with a second increment being entered in the CM counter 250. When the machine has printed the desired number of copies set into the preset CTBM counter 220, the carry pulses which appear on output leads 270 (FIG. 3) 370 (FIG. 4), and 380 (FIG. 3) appear simultaneously, electrically, and operate the various flipflops and AND gates 320 and 400 (FIG. 2) to produce an output pulse at AND gate 400, and this is used on lead 410 to operate the distributor 150 and associated apparatus (FIG. 1) which now run the machine through its shut-down cycle.
The system also includes two arrangements for stopping the printing operation at any desired time. One arrangement includes the eject circuit 450, shown in FIG. 2, Which is operated by pressing of the eject button 460 which, in turn, causes the emission of a pulse at AND gate 470. This pulse is applied to reset circuit 70 to disable the machine.
In another arrangement, circuit 440 (FIG. 6) is used as follows. If, for example, 200 copies were set into the switches (FIG. 3) originally and copies have been made and it is decided to stop at 150, then the operator sets 150 or any smaller number into the switches, presses change button 480, and a shift pulse appears on line 490 which shifts the new number into counter 220. Then, when the next 2,000 pulses are applied to the counters, the carry output from the CM counter and the carry output from the CTBM counter operate as described above to disable the machine. With this arrangement of the counters, that is with CTBM counter set at a number equal to or smaller than the number set into the CM counter, the carry pulse from the counter 250 energizes AND gate 320 and maintains this state until the carry output from the CTBM counter 220 arrives and the coincidence state exists and the machine is shut down as described above.
The system is also provided with a billing circuit 350 (FIG. 7) which includes a flip-flop 360 having an input coupled to the copy count line 30 CC from machine 20 (FIG. 1). The flip-flop 360 is coupled to a first switching circuit 370 which in turn is coupled to a second flip-flop 380. The second flip-flop circuit 380 is coupled (1) to a pulse counter 390 for counting billing counts, (2) to a second switching circuit 400, the output of which is coupled to the flip-flop 380, and (3) to the input of a presettable decade counter 410 having a carry output line 420 which is coupled to the input flipflop 360. The decade counter 410 can be set to begin its count at any one of its ten positions so that the operator can vary the number of counts received before a carry pulse appears on output lead 420.
The billing circuit also includes a plurality of AND gates 423 (A,B,C,D), each having four input terminals 425 (A,B,C,D) by means of which each can be coupled to the decades of counter 100 so that each can sense a predetermined number of counts fed into counter 100. The counters have outputs 427 which can be connected to different positions in decade counter 410 through terminals 429 to cause the billing count to begin at the selected position and terminate at the last position in the decade counter. The number of counts thus fed into the decade counter, in effect, represents a billing rate, and it can be changed as desired by the coupling of a selected AND gate 425 to the counter 100 and to the counter 410.
The billing circuit 350 also includes a flip-flop 433 which includes two two-part AND gates 435 and 437 connected as shown and including a connection from the copy count pulse (CC) generating circuit to one input of gate 435 and a connection (CCC) representing copy count carry from lead 370, the carry output lead from copies made counter 250. The flip-flop 433 has an output lead 439 (BRC) which is connected to a common input line to all of the billing rate AND gates 423.
When a copy is made and a copy count comes in to the billing circuit 350, it sets billing flip-flop 360 and UJT 441 is turned on, and the circuit 370 generates an output pulse which sets billing rate flip-flop 380, and the output of 380 goes through lead 463 to an electromechanical counter 390 and to UJT 465 which is turned on, and circuit 400 then generates a pulse which resets flip-flop 380. The set and reset of flip-flop 380 enter one count in counter 390 and in counter 410. This operation continues until a carry pulse from counter 410 on line 420 turns ofi' the billing flip-flop 360. Thus, each copy count input to flip-flop 360 sets the circuit in operation, and it shuts off after the counter 410 has reached its last position and produces a carry output.
If the billing counter 410 is set to a starting position other than its first position, for example position eight, then the entry of two counts into the counter would bring it to the end and would produce the tum-off carry output. Similarly, other settings of the counter may be made to vary the number of pulses required to turn off the billing counter, with each setting representing a different billing rate.
The billing rate may be changed automatically by connecting the billing gates 423 to different number positions in the counter 100, and the rate changes automatically in the counter 410 as copies are made by the machine. With this arrangement, AND gate 423A is set to enter the largest billing rate, and the rate decreases automatically as the other gates 423 B,C,D operate, each being connected to a different successively lower count position in the counter 100. Thus, for example, if AND gate 423 sets the highest rate of counts for,
say, the first three copies made, then its terminals 425 are connected to the number 1997 in counter 100, and its output terminal 427 is connected to the first position in counter 410. Thus, for the first three copies made, each time counter reaches count 1997, AND gate 423 is energized, and the billing circuit 350 is operated with ten counts entered in counter 410 for each copy.
AND gate 423B might have its terminals 425 connected to the number 1990, AND gate 423 might have its terminals 425 connected to the number 1970, etc. with their respective outputs connected to a different starting position in counter 410. However, in this case, control circuit 433 is required to make certain that, as each new lower rate comes into play, the proper AND gate 423 controls the billing operation, and the higher rate gates which follow it are prevented from operating. This is achieved by having a copy count pulse CC, generated when a copy is made, open the flip-flop gate 433 and thus energizes the gates 423 through lead 439. Then, when a low rate gate 423, which is set to a position in counter 120, is energized, the billing operation is carried out, and at the same time but with some delay, a pulse CCC from counter 250 turns the gate 433 ofl and thus prevents operation of any subsequent gates 423 as the counter 100 completes its counting cycle. Appropriate time delay is built into the circuit to permit the billing operation to be carried out before the gate 433 is closed.
The terminals 500 and 501 can be used after a large number of copies have been made and it is desired to set the billing rate to a minimal level. The AND gates 423 and their connections may all be mounted on a removable billing board which can be specially designed for each customer, and, if the card is removed from the system, then the counter 410 automatically requires 10 counts to produce a carry output.
What is claimed is:
1. A copy-making machine and control system therefor including a plurality of operating mechanisms in said machine for performing a variety of functions including a copy-printing function,
a copy-printing means for performing said copyprinting function and including copy count electronic means for generating a copy count pulse for each copy made,
a copy count clock coupled to and turned on by each pulse from said copy count electronic means, said copy count clock being free-running when turned on,
first, second, and third counters,
said copy count electronic means being coupled to said third counter for entering therein a count for every copy made,
said copy count clock being coupled into said first,
second and third counters,
said second counter being adapted to have a count preset therein representing copies to be made and including means for generating an output pulse when a number of copy count pulses corresponding to the copies to be made are entered therein,
the output of said first counter being coupled to said copy count clock to turn it off when an output pulse is generated thereby, and
and third counters whereby, when the counts in said second and third counters are equal or the count in said third counter is larger than that in said second counter, then the outputs of said second and third counters operate said AND gate and transmit a signal to said machine to turn it off.
2. The system defined in claim 1 and including a billing circuit having a decade counter coupled to means for generating one or more pulses in response to a copy printed, the decade counter being settable to receive a selected number of pulses before it produces a carry output, said number of pulses representing a billing rate.
3. The system defined in claim 1 wherein said counters are connected to have 'a selected maximum count capacity, said first counter being adapted to have a preset count entered therein, said first counter producing an output carry pulse when the number of copies made equals said preset count, said second counter entering a count for each copy made, and said third counter not accumulating counts but receiving in each cycle the maximum number of counts it can contain from said clock before it generates an output pulse on its carry line to turn off said clock.
4. The system defined in claim 1 and including a billing circuit comprising a plurality of AND gates each having input means selectively couplable to various counting positions of said first counter whereby each can be operated at a different counting position therein,
a settable billing counter having its input coupled through circuit means to said copy count electronic means whereby each copy count pulse enters one count therein,
each of said AND gates having an output couplable to any one of the positions of said billing counter to set the counters count-starting position, said count-starting position determining the billing rate for said system. 5. The system defined in claim 1 and including a billing circuit comprising,
a plurality of AND gates each having input means selectively couplable to various counting positions ing position determining the billing rate for said system.
6. The system defined in claim 1 and including a billing circuit comprising a plurality of AND gates each having input means selectively couplable to various counting positions of said first counter, a settable billing counter having an input and an output,
a pulse generating circuit having its input coupled to said copy count electronic means and having its output coupled to the input of said billing counter, each said copy count pulse turning on said pulse generating circuit and causing it to drive said counter from a starting position to the end to produce an output signal at the output of said billing counter, said output signal de-energizing said pulse generating circuit, and
each of said AND gates having an output couplable to any one of the positions of said billing counter to select its count-starting position, said countstarting position determining the billing rate of said system.
7. The circuit defined in claim 6 wherein said pulse generating circuit comprises a first flip-flop having one input coupled to said copy count electronic means and adapted to receive a copy count pulse to change its state and having its output coupled through a first pulse generator to a second flip-flop which has its output connected to a mechanical counter and to the input of said settable billing counter, the output of said second flip-flop also being connected through a second pulse generator to the input of said second flip-flop,
the output of said settable billing counter being coupled to said first flip-flop for returning said first flip-flop to the condition it has before it receives a copy count pulse.
8. A printing machine including a plurality of operating mechanisms,
means in said machine for generating a start pulse to initiate a cycle of operation thereof and of its operating mechanisms,
a machine clock associated with said machine for generating pulses and adapted to be energized by said start pulse,
said machine clock being coupled to a circuit including cycling means including a first counter coupled to each of said operating mechanisms of said machine whereby each pulse from said machine clock causes each of said mechanisms to operate in turn,
copy printing means comprising one of said mechanisms and including copy count electronic means for generating a copy count pulse when a copy is made of a master print inserted in said machine,
a copy count clock coupled to and turned on by each pulse from said electronic means of said copy printing means, said copy count clock being freerunning when turned on,
second and third counters, said second counter being a presettable counter and adapted to have a count entered therein representing copies to be made,
said third counter being adapted to enter a count representative of copies made and thus coupled to said copy count electronic means,
said second counter generating an output pulse when a number of copying pulses corresponding to the copies to be made is entered therein,
the output of said copy count clock being coupled to said first, second, and third counters,
the output of said first counter being coupled to said copy count clock to turn it off when an output pulse is generated thereby, and
cycling means includes said first counter coupled to a diode matrix distributor which cycles each of said operating mechanisms in turn.
10. The machine defined in claim 8 wherein said first counter has a count capacity equal to the total number of copies to be made from a single master.

Claims (10)

1. A copy-making machine and control system therefor including a plurality of operating mecHanisms in said machine for performing a variety of functions including a copy-printing function, a copy-printing means for performing said copy-printing function and including copy count electronic means for generating a copy count pulse for each copy made, a copy count clock coupled to and turned on by each pulse from said copy count electronic means, said copy count clock being free-running when turned on, first, second, and third counters, said copy count electronic means being coupled to said third counter for entering therein a count for every copy made, said copy count clock being coupled into said first, second and third counters, said second counter being adapted to have a count preset therein representing copies to be made and including means for generating an output pulse when a number of copy count pulses corresponding to the copies to be made are entered therein, the output of said first counter being coupled to said copy count clock to turn it off when an output pulse is generated thereby, and an AND gate coupled to the outputs of said second and third counters whereby, when the counts in said second and third counters are equal or the count in said third counter is larger than that in said second counter, then the outputs of said second and third counters operate said AND gate and transmit a signal to said machine to turn it off.
2. The system defined in claim 1 and including a billing circuit having a decade counter coupled to means for generating one or more pulses in response to a copy printed, the decade counter being settable to receive a selected number of pulses before it produces a carry output, said number of pulses representing a billing rate.
3. The system defined in claim 1 wherein said counters are connected to have a selected maximum count capacity, said first counter being adapted to have a preset count entered therein, said first counter producing an output carry pulse when the number of copies made equals said preset count, said second counter entering a count for each copy made, and said third counter not accumulating counts but receiving in each cycle the maximum number of counts it can contain from said clock before it generates an output pulse on its carry line to turn off said clock.
4. The system defined in claim 1 and including a billing circuit comprising a plurality of AND gates each having input means selectively couplable to various counting positions of said first counter whereby each can be operated at a different counting position therein, a settable billing counter having its input coupled through circuit means to said copy count electronic means whereby each copy count pulse enters one count therein, each of said AND gates having an output couplable to any one of the positions of said billing counter to set the counter''s count-starting position, said count-starting position determining the billing rate for said system.
5. The system defined in claim 1 and including a billing circuit comprising, a plurality of AND gates each having input means selectively couplable to various counting positions of said first counter, and a settable billing counter having an input and an output and having its input coupled through circuit means to said copy count electronic means whereby each copy count pulse energizes said circuit means and drives said counter from a starting position to the end to produce an output signal at the output of said billing counter, said output signal de-energizing said circuit means, each of said AND gates having an output couplable to any one of the positions of said billing counter to select a count-starting position, said count-starting position determining the billing rate for said system.
6. The system defined in claim 1 and including a billing circuit comprising a plurality of AND gates each having input means selectively couplable to various counting positions of said first counter, a settable billing counter haviNg an input and an output, a pulse generating circuit having its input coupled to said copy count electronic means and having its output coupled to the input of said billing counter, each said copy count pulse turning on said pulse generating circuit and causing it to drive said counter from a starting position to the end to produce an output signal at the output of said billing counter, said output signal de-energizing said pulse generating circuit, and each of said AND gates having an output couplable to any one of the positions of said billing counter to select its count-starting position, said count-starting position determining the billing rate of said system.
7. The circuit defined in claim 6 wherein said pulse generating circuit comprises a first flip-flop having one input coupled to said copy count electronic means and adapted to receive a copy count pulse to change its state and having its output coupled through a first pulse generator to a second flip-flop which has its output connected to a mechanical counter and to the input of said settable billing counter, the output of said second flip-flop also being connected through a second pulse generator to the input of said second flip-flop, the output of said settable billing counter being coupled to said first flip-flop for returning said first flip-flop to the condition it has before it receives a copy count pulse.
8. A printing machine including a plurality of operating mechanisms, means in said machine for generating a start pulse to initiate a cycle of operation thereof and of its operating mechanisms, a machine clock associated with said machine for generating pulses and adapted to be energized by said start pulse, said machine clock being coupled to a circuit including cycling means including a first counter coupled to each of said operating mechanisms of said machine whereby each pulse from said machine clock causes each of said mechanisms to operate in turn, a copy printing means comprising one of said mechanisms and including copy count electronic means for generating a copy count pulse when a copy is made of a master print inserted in said machine, a copy count clock coupled to and turned on by each pulse from said electronic means of said copy printing means, said copy count clock being free-running when turned on, second and third counters, said second counter being a presettable counter and adapted to have a count entered therein representing copies to be made, said third counter being adapted to enter a count representative of copies made and thus coupled to said copy count electronic means, said second counter generating an output pulse when a number of copying pulses corresponding to the copies to be made is entered therein, the output of said copy count clock being coupled to said first, second, and third counters, the output of said first counter being coupled to said copy count clock to turn it off when an output pulse is generated thereby, and an AND gate coupled to the outputs of said second, and third counters whereby, when simultaneous outputs are generated by said second and third counters when the desired number of copies have been made, said AND gate is operated to couple a signal to said machine to turn it off.
9. The machine defined in claim 8 wherein said cycling means includes said first counter coupled to a diode matrix distributor which cycles each of said operating mechanisms in turn.
10. The machine defined in claim 8 wherein said first counter has a count capacity equal to the total number of copies to be made from a single master.
US83742A 1970-10-26 1970-10-26 Electronic controller for copying machine Expired - Lifetime US3682544A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US8374270A 1970-10-26 1970-10-26

Publications (1)

Publication Number Publication Date
US3682544A true US3682544A (en) 1972-08-08

Family

ID=22180396

Family Applications (1)

Application Number Title Priority Date Filing Date
US83742A Expired - Lifetime US3682544A (en) 1970-10-26 1970-10-26 Electronic controller for copying machine

Country Status (1)

Country Link
US (1) US3682544A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3813157A (en) * 1973-04-06 1974-05-28 Xerox Corp Control logic for trouble detection and recovery
US3831829A (en) * 1972-05-16 1974-08-27 Nashua Au Pty Ltd Copy machine feeding means
DE2412594A1 (en) * 1973-03-20 1974-10-03 Xerox Corp COPY COUNTING DEVICE FOR REPRODUCTION MACHINES
US3886329A (en) * 1973-01-18 1975-05-27 Konishiroku Photo Ind Preset counter apparatus
US3936182A (en) * 1974-08-12 1976-02-03 Xerox Corporation Control arrangement for an electrostatographic reproduction apparatus
US3940210A (en) * 1974-08-12 1976-02-24 Xerox Corporation Programmable controller for controlling reproduction machines
US3944360A (en) * 1974-08-12 1976-03-16 Xerox Corporation Programmable controller for controlling reproduction machines
US3944359A (en) * 1974-08-12 1976-03-16 Xerox Corporation Programmable controller for controlling reproduction machines
US3974363A (en) * 1973-04-06 1976-08-10 Xerox Corporation Programmable billing system
US3983367A (en) * 1974-02-14 1976-09-28 Glory Kogyo Kabushiki Kaisha Sheet counting machine
US4014609A (en) * 1974-08-12 1977-03-29 Xerox Corporation Programmable controller for controlling reproduction machines
US4019028A (en) * 1973-03-20 1977-04-19 Xerox Corporation Printing machine with variable counter control system
DE2654076A1 (en) * 1975-11-28 1977-06-02 Canon Kk Rotary charged image copier of printer - has scan signal system and control impulse production system to activate processing functions
US4035072A (en) * 1974-08-12 1977-07-12 Xerox Corporation Programmable controller for controlling reproduction machines
DE2724554A1 (en) * 1976-05-31 1977-12-15 Konishiroku Photo Ind COUNTER CONTROL UNIT
US4317629A (en) * 1980-02-04 1982-03-02 International Business Machines Corporation Job recovery method and system
US4383756A (en) * 1981-06-04 1983-05-17 Minolta Camera Kabushiki Kaisha Counter control in electrophotographic copier
US4384786A (en) * 1980-06-18 1983-05-24 Canon Kabushiki Kaisha Recording apparatus
US4417350A (en) * 1980-03-28 1983-11-22 Minolta Camera Kabushiki Kaisha Counter control in electrophotographic copier
US4907031A (en) * 1977-12-29 1990-03-06 Canon Kabushiki Kaisha Copy apparatus having a priority copy interrupt and malfunction detection system
US20040087996A1 (en) * 1999-07-30 2004-05-06 C. R. Bard, Inc. Catheter positioning systems
US20120212283A1 (en) * 2011-02-22 2012-08-23 Robert Rieger Combined digital output system

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3831829A (en) * 1972-05-16 1974-08-27 Nashua Au Pty Ltd Copy machine feeding means
US3886329A (en) * 1973-01-18 1975-05-27 Konishiroku Photo Ind Preset counter apparatus
DE2412594A1 (en) * 1973-03-20 1974-10-03 Xerox Corp COPY COUNTING DEVICE FOR REPRODUCTION MACHINES
US4019028A (en) * 1973-03-20 1977-04-19 Xerox Corporation Printing machine with variable counter control system
US3974363A (en) * 1973-04-06 1976-08-10 Xerox Corporation Programmable billing system
US3813157A (en) * 1973-04-06 1974-05-28 Xerox Corp Control logic for trouble detection and recovery
US3983367A (en) * 1974-02-14 1976-09-28 Glory Kogyo Kabushiki Kaisha Sheet counting machine
US4014609A (en) * 1974-08-12 1977-03-29 Xerox Corporation Programmable controller for controlling reproduction machines
US3944359A (en) * 1974-08-12 1976-03-16 Xerox Corporation Programmable controller for controlling reproduction machines
US3944360A (en) * 1974-08-12 1976-03-16 Xerox Corporation Programmable controller for controlling reproduction machines
US3940210A (en) * 1974-08-12 1976-02-24 Xerox Corporation Programmable controller for controlling reproduction machines
US3936182A (en) * 1974-08-12 1976-02-03 Xerox Corporation Control arrangement for an electrostatographic reproduction apparatus
US4035072A (en) * 1974-08-12 1977-07-12 Xerox Corporation Programmable controller for controlling reproduction machines
DE2654076A1 (en) * 1975-11-28 1977-06-02 Canon Kk Rotary charged image copier of printer - has scan signal system and control impulse production system to activate processing functions
DE2724554A1 (en) * 1976-05-31 1977-12-15 Konishiroku Photo Ind COUNTER CONTROL UNIT
US4907031A (en) * 1977-12-29 1990-03-06 Canon Kabushiki Kaisha Copy apparatus having a priority copy interrupt and malfunction detection system
US4317629A (en) * 1980-02-04 1982-03-02 International Business Machines Corporation Job recovery method and system
US4417350A (en) * 1980-03-28 1983-11-22 Minolta Camera Kabushiki Kaisha Counter control in electrophotographic copier
US4384786A (en) * 1980-06-18 1983-05-24 Canon Kabushiki Kaisha Recording apparatus
US4383756A (en) * 1981-06-04 1983-05-17 Minolta Camera Kabushiki Kaisha Counter control in electrophotographic copier
US20040087996A1 (en) * 1999-07-30 2004-05-06 C. R. Bard, Inc. Catheter positioning systems
US20120212283A1 (en) * 2011-02-22 2012-08-23 Robert Rieger Combined digital output system
US8593316B2 (en) * 2011-02-22 2013-11-26 Industrial Technology Research Institute Combined digital output system

Similar Documents

Publication Publication Date Title
US3682544A (en) Electronic controller for copying machine
US4128756A (en) Count control apparatus
US3123195A (en) figure
US3012230A (en) Computer format control buffer
US3094261A (en) Tape carriage control
GB772274A (en) Data processing apparatus
GB1463619A (en) High speed programmable counter
US4277191A (en) Printer system having microprocessor control
US2983357A (en) Electronic counter control for continuous forms feeding
GB1187841A (en) Rotary Processing Machine.
GB1024999A (en) Type selecting mechanism for high speed printers
US2244252A (en) Paper spacing mechanism for printing machines
US3652833A (en) Sheet counter control circuit
US2675961A (en) Electric calculating system
ES365058A1 (en) Key controlled setting apparatus for printing wheels in rotary duplicators
US3258747A (en) Control system for selective connection op business machines with an electronic computer
US2768786A (en) Decimal point mechanism
JP2694691B2 (en) Printer device
US4175488A (en) Printer
US3843917A (en) Form index pulse generator
US3184710A (en) Method and arrangement for checking the operative condition of a contact matrix
GB916267A (en) Electronic computers
US3680480A (en) Chain printer hammer control
GB1567937A (en) Printing machines
JPS6315241Y2 (en)

Legal Events

Date Code Title Description
AS Assignment

Owner name: BURROUGHS CORPORATION

Free format text: MERGER;ASSIGNORS:BURROUGHS CORPORATION A CORP OF MI (MERGED INTO);BURROUGHS DELAWARE INCORPORATEDA DE CORP. (CHANGED TO);REEL/FRAME:004312/0324

Effective date: 19840530

AS Assignment

Owner name: UNISYS CORPORATION, PENNSYLVANIA

Free format text: MERGER;ASSIGNOR:BURROUGHS CORPORATION;REEL/FRAME:005012/0501

Effective date: 19880509