US3682215A - Method and apparatus for effecting the actuating and non-actuation of a responsive instrumentality - Google Patents

Method and apparatus for effecting the actuating and non-actuation of a responsive instrumentality Download PDF

Info

Publication number
US3682215A
US3682215A US140822A US3682215DA US3682215A US 3682215 A US3682215 A US 3682215A US 140822 A US140822 A US 140822A US 3682215D A US3682215D A US 3682215DA US 3682215 A US3682215 A US 3682215A
Authority
US
United States
Prior art keywords
timer
slicing
period
condition
timing period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US140822A
Inventor
Frank S Kasper
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Amtron Inc
Original Assignee
Amtron Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Amtron Inc filed Critical Amtron Inc
Application granted granted Critical
Publication of US3682215A publication Critical patent/US3682215A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26DCUTTING; DETAILS COMMON TO MACHINES FOR PERFORATING, PUNCHING, CUTTING-OUT, STAMPING-OUT OR SEVERING
    • B26D7/00Details of apparatus for cutting, cutting-out, stamping-out, punching, perforating, or severing by means other than cutting
    • B26D7/27Means for performing other operations combined with cutting
    • B26D7/30Means for performing other operations combined with cutting for weighing cut product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/04Processes
    • Y10T83/0448With subsequent handling [i.e., of product]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/525Operation controlled by detector means responsive to work
    • Y10T83/527With means to control work-responsive signal system
    • Y10T83/528To delay response to work-senser
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/525Operation controlled by detector means responsive to work
    • Y10T83/531With plural work-sensing means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T83/00Cutting
    • Y10T83/525Operation controlled by detector means responsive to work
    • Y10T83/541Actuation of tool controlled in response to work-sensing means
    • Y10T83/543Sensing means responsive to work indicium or irregularity

Definitions

  • the apparatus comprises a firsttimer having a timing period and a non-timing period, a second timer connected to the first timer also having a timing period and a non-timing period wherein the first timer is adapted to switch to the non-timing period after the timing period is completed and upon switching to the non-timing period actuates the second timer into its timing period.
  • the second timer is connected to the instrumentality to be actuated and the instrumentality is actuated whenever the second timer is in its timing period and is not actuated when the second timer is in its non-timing period.
  • Sensing means are connected to the second timer for continuously sensing a predetermined system condition and wherein the duration of the timing period of the second timer is responsive to the sensing means.
  • Control means are connected in circuit with the instrumentality to be actuated as well as to the first and second timer wherein the control means is adapted to initially place the first timer to its timing period and the second timer into its non-timing period wherein after the timing period of the first timer is completed, the first timer switches to its nontiming period thereby placing the second timer into its timing period and thereby causing the instrumentality to be actuated, this actuation continuing until the second timer switches into its non-timing period whereby the first timer again switches to its timing period thereby efi'ecting the alternate actuation and non-actuation of the instrumentality.
  • the present invention relates to a method and apparatus for controlling the alternate actuation and nonactuation of a movable instrument.
  • One industry which has a great need for an invention such as that disclosed in the instant disclosure is the meat industry.
  • bacon and other meats have been sliced on high-speed slicing machines and segregated into correct weight groups by manual or automatic techniques.
  • One automatic technique includes the counting out of a given number of slices to the approximate desired weight.
  • a second technique is to slice the bacon onto a scale until the correct weight is reached and then stop slicing for a short, predetermined time interval.
  • Recently, even more sophisticated techniques have been developed wherein the amount of sliced bacon is weighted and where there is a slight discrepancy in the weight, small amounts of bacon are added to make up the desired weight.
  • the present invention contemplates a unique timer control system utilizing two timer controls, a slice timer and a space timer.
  • the slice timer times for a predetermined period of time so that the desired approximate weight of sliced material is reached.
  • the time duration of the slice timer contains a manual control whereby the operator may make small adjustments if the weight tendency of the sliced material is over or under the weight.
  • the space timer is triggered.
  • the space timer provides a gap between groups of sliced material.
  • the adjustment of the space timer may be altered by another manual control.
  • the output of the space timer is fed through a gating circuit which triggers the slice timer again and the cycle is repeated.
  • the output of the slice timer feeds a control circuit which operates a control valve for starting and stopping the feed of the product to be sliced which is normally placed on a movable carrier means and which is fed into a rotatable blade for slicing.
  • a valve When the slice timer is operative in its timing period, a valve is energized causing the movable carrier to feed the product into the rotating knife blade. The two timers then alternately operate to cause a slicing period and a non-slicing period of the product.
  • the slice timer normally triggers the space timer which in turn triggers the slice timer again.
  • a sensing means is placed in contact with the unsliced product. This sensing means measures the cross-sectional area of the uncut product and based upon this measurement, changes the timing period of the slice timer thereby allowing for a longer or shorter timing period. This timing period is inversely related to the cross-sectional area of the product to be sliced. In this manner, the proper amount of sliced product may be obtained very economically without the use of any weighing device on the output of the slicer.
  • an object of the present invention to provide an improved method of and apparatus for controlling the operation of a system instrumentality in a reliable and efficient manner.
  • Another object is the provision of a method of and apparatus .for accurately slicing a product into preselected and predetermined weight groups without the use of a weighing scale.
  • a further object is the provision of a method of and an apparatus for the automatic slicing of bacon into preselected and predetermined weight groups without the use of weighing scales.
  • Still another object is to provide a method and an apparatus which has the necessary versatility to be adapted for a variety of applications at relatively low cost and without substantial modification in the basic functional characteristics thereof.
  • FIG. I is a block diagram of a timer control circuit which constitutes the preferred embodiment of the invention.
  • FIG. 2 is a perspective view of the sensor circuit utilized in conjunction with the timer control circuit.
  • FIG. 3 is a schematic view of the sensor circuit shown in FIG. 2.
  • DESCRIPTION OF THE PREFERRED EMBODIMENT Broadly, there is disclosed a method for automatically slicing a product and collecting the sliced product in weight groups of preselected magnitude in the absence of weighing.
  • the invention achieves these weight groups of essentially identical weight, automatically, even though the product is sliced.
  • First the product to be sliced is placed in contact with the slicing instrument thereby initiating the start of a slicing period.
  • the cross-sectional area of the product to be sliced is continuously sensed. Based on the varying cross-sectional area of the product, the timing period of a slicing cycle is varied.
  • the timing cycle of the slicing period is determined by the preselected amount of the sliced product required and by the crosssectional area of the unsliced product. Thirdly, a nonwhen the non-slicing period is terminated thereby causing an automatic sequential operation of slicing and non-slicing of the product.
  • FIG. 1 illustrates a preferred embodiment, a timer control circuit which is used to control the alternate actuation and non-actuation of a carrier means 16 (shown in H68. 2 and 3).
  • the timer control circuit 10 is utilized with a meat cutting machine. The timer control alternatively feeds a reciprocal meat carrier towards a constantly rotating blade and then removes the meat carrier from the constantly rotating blade.
  • a conventional I meat cutting machine comprises a constantly rotating knife blade 14 and a responsive carrier means 16 upon which is carried the product 12 to be sliced.
  • timing control which may be utilized is described in US. Pat. No. 3,350,688 issued on Oct. 31, 1967, to Frank S. Kasper et al.; however, other timing devices may be employed.
  • the operation of the timer control circuit 10 is used to actuate a control valve which in turn moves a carrier means 16 into contact with the rotating knife 14.
  • the slice timer 30 will time for a predetermined period of time so that the desired approximate weight of sliced product is reached. This assumes that the rotating knife is rotating in a constant RPM so that reproducible results can be obtained.
  • the time duration of slice timer 30 is controlled by a manual potentiometer 34 whereby the operator can make small adjustments if the weight tendency of the sliced product is over or underweight.
  • space timer 20 is triggered. Space timer 20 provides a gap between the groups of product being sliced.
  • space timer 20 When space timer 20 is triggered, the carrier means 16 is stopped so that no further product is sliced.
  • the timing period of space timer 20 may be ad justed by another manual potentiometer 24. After the space timer timing period times out, the output of the space timer 20 is fed through an AND gate 44 which triggers the slice timer 30 again and the cycle is repeated.
  • slice timer 30 feeds a carrier control circuit 56 which operates a control valve forresponsively feeding the carrier means 16, having the product 12 upon it, towards the rotating knife blade 14.
  • a valve (not shown) is energized causing the product to be fed into the knife.
  • a synchronizing switch 58 indicative of the position of the knife blade is electrically connected to the carrier control circuit 56. This provides a means for insuring that the first slice-is of proper thickness and that the last slice is of proper thickness as desired.
  • the sequencing of the cycling of slice timer 30 and space timer 20 can be interrupted by a gate control circuit which is under the control of a gating means, control flip-flop circuit 48.
  • the slice timer 30 will normally trigger the space timer 20 which in turn triggers the slice timer 30 again providing that the gate control circuit is appropriately energized.
  • the gate control circuit broadly comprises an OR gate 42 'connected between slice timer 30 and space timer 20 and an AND gate 44 connected between space timer 20 and slice timer 30.
  • an OR gate 54 is included between slice timer 30 and carrier control circuit 56.
  • the control gate circuit comprises three logic means, OR gates 42 and 54 and AND gate 44 which thus control the operation of slice timer 30 and space timer 20.
  • Control flipflop 48 which acts as a gating means and which operates OR gate 54 and AND gate 44, receives inputs from trim switch 50 and limit switch 52. In operation, slice timer 30 and space timer 20 continue cycling until. limit switch 52 activates control flip-flop circuit 48 which in turn energizes gate 54 and the cycling stops.
  • Control flip-flop 48 also provides an input to carrier control circuit 56 through OR gate 54 which operates the control valve which in turn activates the carrier means so that the slicer may beoperated.
  • trim switch 50 is closed which in turn operates control flip-flop 48 to produce a signal to the input of AND gate 44 through a delay circuit 46 which causes timers 20 and 30 to begin their sequential operation.
  • a last feature provided by timer control circuit 10 is a sensor means which senses the cross-sectional area of the product to be sliced.
  • sensor 70 adjusts the duration of the timer period of slice timer 30 in inverse re-lationship to the cross-sectional area of the product to be sliced.
  • sensor 70 comprises a potentiometer 82. The setting of this potentiometer is varied by the movement of a plurality of sensing fingers 72 shown in FIG. 3. While only three sensing fingers 72 are shown, it will be recognized that any number can be used and the greater the number of fingers, the greater the accuracy of the sensing means.
  • time control circuit 10 will be explained in more detail.
  • timer control system 10 operation of timer control system 10 is initiated when the operator adjusts the product carrier means 16 (shown in FIG. 3) so that the product to be sliced is manually fed into rotating knife 14 until several slices are cut. This manual slicing evens the edge of the product so that a fixed reference edge may be established.
  • the carrier means in the ANCO slicer consists of a set of fingers or grippers (shown in FIG. 3) which dig into the end of the product and firmly push the product into the knife. These grippers are connected to a rod and piston which are hydraulically operated. HOwever, it will be recognized by one skilled in the art that any means may be used to move the product into the knife. At this time, the operator closes trim switch 50 which causes an output signal on lead 47.
  • This signal passes through differentiator 40 along lead 41, through OR gate 42, to space timer 20. This initiates the timing period of space timer 20. No further slicing occurs at this point, thereby allowing the manually sliced portion of the product to be removed. While space timer is in its timing period, an indication is given by indicator 26. Indicator 26 may be a simple light bulb or any other conventional indicating means.
  • the time duration of space timer 20 is determined and set by manual potentiometer 24 which is connected to the timing capacitor 22 of the timer control circuit. As mentioned above, one such timer control circuit is disclosed in US. Pat. No. 3,350,688. In this patent, the timing capacitor which is connected to the potentiometer would be capacitor 54 of the patent.
  • space timer 20 When space timer 20 is in its ambient non-timing period, or, in other words, its idle condition, it produces a low output. This low output from space timer 20 is applied to an input of AND gate 44.
  • control flip-flop 48 When control flip-flop 48 is set by the actuation of trim switch 50, space timer 20 is triggered through differentiator 40 and OR gate 42. This causes space timer 20 to move into its timing cycle and thus, a high output signal occurs on the output of space timer 20. This high output signal is then applied to the circled input of AND gate 44. Another high input signal is applied to the other side of AND gate 44 by the control flip-flop 48 through delay circuit 46.
  • Delay circuit 46 may be any conventional delay circuit such as an RC circuit. If delay network 46 were not in the timer circuit, a possibility would exist that there would be an output at AND gate 44 since the upper input of AND gate 44 is changing from a low to a high input. If this occurred, then the slice timer 30 would also be triggered at this time and both timers would then time simultaneously, rather than alternately as is required.
  • control flip-flop circuit 48 is energized when trim switch 50 is closed by the operator. This energizes one input of AND gate 44 after being delayed by delay circuit 46 as explained above.
  • slice timer 30 When this occurs, the output from space timer 20 will be permitted to pass through AND gate 44 when the space timer completes its timing period and thereby produces a low output. This then causes slice timer 30 to switch from its ambient non-timing period to its timing period. Indicator 36 then indicates to the operator that slice timer 30 is in its timing period. When slice timer 30 is in its timing period, the product to be sliced which is on the carrier 16 is then brought into engagement with the rotating knife blade 14 and slicing begins. When slice timer 30 furnishes its timing period, its associated indicator 36 is extinguished and space timer 20 is then triggered via difierentiator 38 and OR gate 42. Specifically, when slice timer 30 completes its timing period, its output goes from high to low.
  • Differentiator 38 then produces a differentiated pulse to the circle input of OR gate 42. This causes a high output signal at the output of OR gate 42 which then triggers the space timer 20 into its timing period from its ambient non-timing period. This cycle is continued, space-slice-space, etc., until limit switch 52 is closed. It will be noted that differentiators 38 and 40 at the input of OR gate 42 are utilized so that the OR gate is responsive to an instantaneous signal rather than being continuously responsive.
  • the timing period of slice timer 30 is determined by a potentiometer 34 connected to the timing capacitor of the timing circuit and by sensor 70.
  • the potentiometer 34 is a manual potentiometer which sets the nominal timing period of slice timer 30.
  • the combination of the average setting of fingers 72 of sensor (FIGS. 2 and 3) determines the average cross-sectional area of the product to be sliced. These fingers control the setting of potentiometer 82 of sensor 70 which also effects the slice timer time period duration as will be explained below.
  • the output of slice timer 30 controls the carrier control circuit 56 through OR gate 54.
  • the carrier control circuit 56 accepts an input from OR gate 54 and from the synchronizing switch 58 so as to provide an output signal to power amplifier 60 at the correct time to synchronize the starting of the movement of the carrier means with the knife position to produce an acceptable first and last slice.
  • the purpose of power amplifier 60 is simply to amplify the output from the carrier control circuit 56 and provide the power necessary to operate the control valve which operates the carrier means 16.
  • a limit switch 52 is operated which ends the timing cycle and turns off the timer control circuit 10.
  • Limit switch 52 operates control flip-flop circuit 48 so as to produce a high output on lead 45 and a low output on lead 47. With a low signal on lead 47 which feeds one input of AND gate 44, AND gate 44 will then have a low output, hence, no start signal will occur to trigger slice timer 30; therefore, the cycling is stopped.
  • the high output of flip-flop 48 on lead 45 is then applied to one input lead of OR gate 54.
  • the output of OR gate 54 then energizes carrier control circuit 56. This causes the control valve to move into a run position causing the carrier to retract and permitting only manual operation of the slicer.
  • trim switch 50 is then actuated as previously described and the space-slice-space-slice alternate cycle is again begun.
  • sensor 70 is utilized to control the time duration of slice timer 30 in an inverse relation to the cross-sectional area of the product to be sliced.
  • Conventional meat slicer machines such as the ANCO MOdel 827 described above, contain hold-down fingers 72 which are used to hold the product to be sliced in position while being sliced and when the product is almost completely sliced, the last little piece is not pulled into the rotating knife.
  • These hold-down fingers 72 may be modified as will now be described to act as a sensor means to determine the cross-sectional area of the product to be sliced.
  • One each of the sensor fingers 72 may be connected to a small cylinder piston 73 as will be recognized by one skilled in the art, anysuitable connecting means may be utilized.
  • Each small cylinder 74 in which the pistons 73 as confined is coupled to a large cylinder 78 by a tube 76.
  • the associated pistons 73 in each of the small cylinders 74 also move up and down.
  • Oil or any other suitable fluid or gas isthen moved in or out of the large cylinder 78 thereby moving piston .79 which movesarm 80.
  • Wiper arm 80 isconnected to a potentiometer 82 so that wiper arm 80 may act as a potentiometer wiper thereby changing the resistance setting and, hence, changing the timing period of slice timer 30.
  • the movement of piston 79 of cylinder 78 is indicative of the average cross-sectional area of the product to be sliced. This can easily be seen by the following calculation:
  • V the incremental change in volume of cylinder 78 when piston 79 moves v the incremental change in volume of each small cylinder 74 when each piston 73 moves
  • a area of piston head 79 a area of each small piston head 73 D displacement of piston head 79 d displacement of each small piston head 73 therefore:
  • each sensing finger 72 may be connected individually to its own potentiometer and that these potentiometers could then be connected in series to achieve an equivalent result to the use of a master cylinder and a single potentiometer. It is also interesting to note that the movement of the sensing fingers is made continuously as the product is being sliced.
  • the time period of slice timer 30 is inversely related to the charging current and this means that the variation of the sectional volume will be taken into ac-v count by the variation in the charging current as the product is being sliced.
  • timercontrol circuit 10 may be utilized in any environment wherein it is necessary to effect the actuation and non-actuation of 'a responsive instrumentality and wherein Y a varying system condition must be accounted for during at least a portion of the actuated period of the instrumentalitymade therein without departing from the spirit and the scope of the invention as set forth inthe appended claims.
  • first timer means having a first condition and a second condition, said first condition representing a timing period and said second condition representing an ambient non-timing period' wherein said first timer means is adapted to switch to said second condition after said timing period is completed;
  • a second timer means connected in circuit with said first timer means and said movable meat carrier, having a first condition and a second condition, said first condition representing a timing period and said second condition representing an ambient non-timing period wherein said second timer means is placed in said first condition when said first timer means switches from said first condition to said second condition and wherein said meat on said movable meat carrier is placed in engagement with said blade thereby slicing said meat whenever said second timer means is in said timing period and said meat on said meat carrier is placed out of engagement from said blade when said second timer is in said second condition;
  • sensing means connected to said second timer means for continuously sensing the cross-sectional area of said unsliced meat and wherein the duration of said timing period of said second timer means is responsive to said sensing means;
  • control means connected in circuit to said first timer means, said second timer means and said movable meat carrier wherein said control means is adapted to place said first timer means into said timing period and said second timer means into said second condition wherein after said timing cycle of said first timer means is completed, said second time means switches to said first condition, thereby causing said meat to be sliced and wherein after said timing cycle of said second timer means is completed said first timer means switches to said first condition thereby ending said slicing action until said second timer means again switches to said first condition.
  • control means further comprises means to synchronize said engagement of said meat with the position of said rotatable blade.
  • a synchronizing switch connected between said rotatable knife blade and the output of said OR gate wherein said synchronizing means provides a signal to said movable meat carrier so as to synchronize the starting movement of said carrier with the position of said rotatable blade.
  • a method for automatically slicing a product and collecting said sliced product into preselected measured weight groups comprising the steps of:
  • timing said slicing period wherein the duration of said slicing period is variable and is determined by the preselected amount of said product required and by said cross-sectional area of said unsliced product;

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Meat, Egg Or Seafood Products (AREA)

Abstract

There is disclosed a method and an apparatus for alternately effecting the actuation and non-actuation of a responsive instrumentality in a manner such that during actuation of the instrumentality, cooperation can be effected for a variable system condition. The apparatus comprises a first timer having a timing period and a non-timing period, a second timer connected to the first timer also having a timing period and a non-timing period wherein the first timer is adapted to switch to the nontiming period after the timing period is completed and upon switching to the non-timing period actuates the second timer into its timing period. The second timer is connected to the instrumentality to be actuated and the instrumentality is actuated whenever the second timer is in its timing period and is not actuated when the second timer is in its non-timing period. Sensing means are connected to the second timer for continuously sensing a predetermined system condition and wherein the duration of the timing period of the second timer is responsive to the sensing means. Control means are connected in circuit with the instrumentality to be actuated as well as to the first and second timer wherein the control means is adapted to initially place the first timer to its timing period and the second timer into its non-timing period wherein after the timing period of the first timer is completed, the first timer switches to its non-timing period thereby placing the second timer into its timing period and thereby causing the instrumentality to be actuated, this actuation continuing until the second timer switches into its non-timing period whereby the first timer again switches to its timing period thereby effecting the alternate actuation and nonactuation of the instrumentality.

Description

United States Patent [151 3,682,215 Kasper [4 1 Aug. 8, 1972 METHOD AND APPARATUS FOR l ABSTRACT EFFECTING THE ACTUATING AND NON-ACTUATION OF A RESPONSIVE INSTRUMENTALITY [72] Inventor: hank S. Kasper, Flossmoor, 111.
[73] Assignee: Amtron, Inc., Midlothian, Ill.
[22] Filed: May 6, 1971 [21] Appl. No.: 140,822
Related U.S. Applica' tion m [62] Division of Ser. No. 856,005, Sept. 8, 1969,
Pat. No. 3,634,741.
[52] US. Cl. ..l46/222, 146/94 R, 146/241 [51] Int. Cl ..B26d [58] Field of Search ..146/94, 95, 222, 241
[56] References Cited UNITED STATES PATENTS 2,620,440 12/ 1952 Baker et al. ..328/43 3,142,323 7/ 1964 Metzler ..146/94 R X 3,144,893 8/1964 Dahms ..l46/95 3,223,856 12/1965 Joy ..307/293 X 3,379,234 4/1968 Kasper ..146/94 R X 3,456,554 7/1969 Goodwin ..328/73 X 3,519,051 7/1970 Badgley et al 146/94 R X Primary Examiner-Willie G. Abercrombie Attorney-Hume, Clement, Hume & Lee
There is disclosed a method and an apparatus for alternately effecting the actuation and non-actuation of a responsive instrumentality in a manner such that during actuation of the instrumentality, cooperation can be efl'ected for a variable system condition. The apparatus comprises a firsttimer having a timing period and a non-timing period, a second timer connected to the first timer also having a timing period and a non-timing period wherein the first timer is adapted to switch to the non-timing period after the timing period is completed and upon switching to the non-timing period actuates the second timer into its timing period. The second timer is connected to the instrumentality to be actuated and the instrumentality is actuated whenever the second timer is in its timing period and is not actuated when the second timer is in its non-timing period. Sensing means are connected to the second timer for continuously sensing a predetermined system condition and wherein the duration of the timing period of the second timer is responsive to the sensing means. Control means are connected in circuit with the instrumentality to be actuated as well as to the first and second timer wherein the control means is adapted to initially place the first timer to its timing period and the second timer into its non-timing period wherein after the timing period of the first timer is completed, the first timer switches to its nontiming period thereby placing the second timer into its timing period and thereby causing the instrumentality to be actuated, this actuation continuing until the second timer switches into its non-timing period whereby the first timer again switches to its timing period thereby efi'ecting the alternate actuation and non-actuation of the instrumentality.
4 Claims, 3 Drawing Figures METHOD AND APPARATUS FOR EFFECTING ACTUATING AND NON-ACTUATION OF A RESPONSIVE INSTRUMENTALITY CROSS-REFERENCES TO RELATED APPLICATIONS This application is a divisional application of application Ser. No. 856,005, filed Sept. 8, 1969, now US. Pat. No. 3,634,74l, for Method and Apparatus For Effecting the Actuation and Non-Actuation of a Responsive instrumentality.
BACKGROUND OF THE INVENTION The present invention relates to a method and apparatus for controlling the alternate actuation and nonactuation of a movable instrument.
One industry which has a great need for an invention such as that disclosed in the instant disclosure is the meat industry. For many years bacon and other meats have been sliced on high-speed slicing machines and segregated into correct weight groups by manual or automatic techniques. One automatic technique includes the counting out of a given number of slices to the approximate desired weight. A second technique is to slice the bacon onto a scale until the correct weight is reached and then stop slicing for a short, predetermined time interval. Recently, even more sophisticated techniques have been developed wherein the amount of sliced bacon is weighted and where there is a slight discrepancy in the weight, small amounts of bacon are added to make up the desired weight.
In the meat cutting field, it has, therefore, been the general practice to employ various types of weighing devices which weigh the sliced meat to determine whether or not a proper amount has been sliced. After determining this weight, more or less meat is added to the sliced pile. Although such devices have served the purpose, they have not proved entirely satisfactory under all conditions of service.
SUMMARY OF THE INVENTION The present invention contemplates a unique timer control system utilizing two timer controls, a slice timer and a space timer. The slice timer times for a predetermined period of time so that the desired approximate weight of sliced material is reached. The time duration of the slice timer contains a manual control whereby the operator may make small adjustments if the weight tendency of the sliced material is over or under the weight. After the slice timer times out, the space timer is triggered. The space timer provides a gap between groups of sliced material. The adjustment of the space timer may be altered by another manual control. After the space timer times out, the output of the space timer is fed through a gating circuit which triggers the slice timer again and the cycle is repeated. The output of the slice timer feeds a control circuit which operates a control valve for starting and stopping the feed of the product to be sliced which is normally placed on a movable carrier means and which is fed into a rotatable blade for slicing.
When the slice timer is operative in its timing period, a valve is energized causing the movable carrier to feed the product into the rotating knife blade. The two timers then alternately operate to cause a slicing period and a non-slicing period of the product. The slice timer normally triggers the space timer which in turn triggers the slice timer again. To accurately control the amount of product being sliced, a sensing means is placed in contact with the unsliced product. This sensing means measures the cross-sectional area of the uncut product and based upon this measurement, changes the timing period of the slice timer thereby allowing for a longer or shorter timing period. This timing period is inversely related to the cross-sectional area of the product to be sliced. In this manner, the proper amount of sliced product may be obtained very economically without the use of any weighing device on the output of the slicer.
It is therefore, an object of the present invention to provide an improved method of and apparatus for controlling the operation of a system instrumentality in a reliable and efficient manner.
Another object is the provision of a method of and apparatus .for accurately slicing a product into preselected and predetermined weight groups without the use of a weighing scale.
A further object is the provision of a method of and an apparatus for the automatic slicing of bacon into preselected and predetermined weight groups without the use of weighing scales.
Still another object is to provide a method and an apparatus which has the necessary versatility to be adapted for a variety of applications at relatively low cost and without substantial modification in the basic functional characteristics thereof.
Other objects and many of the attendant advantages of this invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings and which like reference numerals designate like parts throughout the several views.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. I is a block diagram of a timer control circuit which constitutes the preferred embodiment of the invention.
FIG. 2 is a perspective view of the sensor circuit utilized in conjunction with the timer control circuit.
FIG. 3 is a schematic view of the sensor circuit shown in FIG. 2.
DESCRIPTION OF THE PREFERRED EMBODIMENT Broadly, there is disclosed a method for automatically slicing a product and collecting the sliced product in weight groups of preselected magnitude in the absence of weighing. The invention achieves these weight groups of essentially identical weight, automatically, even though the product is sliced. First the product to be sliced is placed in contact with the slicing instrument thereby initiating the start of a slicing period. Secondly, the cross-sectional area of the product to be sliced is continuously sensed. Based on the varying cross-sectional area of the product, the timing period of a slicing cycle is varied. The timing cycle of the slicing period is determined by the preselected amount of the sliced product required and by the crosssectional area of the unsliced product. Thirdly, a nonwhen the non-slicing period is terminated thereby causing an automatic sequential operation of slicing and non-slicing of the product.
This method of automatically slicing the product and collecting the sliced product into preselected measured weight groups will be more clearly understood when taken in conjunction with an apparatus for carrying out the method as shown in FIGS. 1-3.
Referring now to the drawingswherein like reference characters designate like or. corresponding parts throughoutthe several views, there is shown in FIG. 1, which illustrates a preferred embodiment, a timer control circuit which is used to control the alternate actuation and non-actuation of a carrier means 16 (shown in H68. 2 and 3). In a preferred embodiment, the timer control circuit 10 is utilized with a meat cutting machine. The timer control alternatively feeds a reciprocal meat carrier towards a constantly rotating blade and then removes the meat carrier from the constantly rotating blade.
Referring momentarily to FIG. 3, a conventional I meat cutting machine comprises a constantly rotating knife blade 14 and a responsive carrier means 16 upon which is carried the product 12 to be sliced. One such dicator 26 and 36, respectively, associated with it, so
that an observer or operator can detennine which timer is timing. One such timing control which may be utilized is described in US. Pat. No. 3,350,688 issued on Oct. 31, 1967, to Frank S. Kasper et al.; however, other timing devices may be employed.
Briefly, the operation of the timer control circuit 10 is used to actuate a control valve which in turn moves a carrier means 16 into contact with the rotating knife 14. In operation, the slice timer 30 will time for a predetermined period of time so that the desired approximate weight of sliced product is reached. This assumes that the rotating knife is rotating in a constant RPM so that reproducible results can be obtained. The time duration of slice timer 30 is controlled by a manual potentiometer 34 whereby the operator can make small adjustments if the weight tendency of the sliced product is over or underweight. After the slice timer times out, space timer 20 is triggered. Space timer 20 provides a gap between the groups of product being sliced. When space timer 20 is triggered, the carrier means 16 is stopped so that no further product is sliced. The timing period of space timer 20 may be ad justed by another manual potentiometer 24. After the space timer timing period times out, the output of the space timer 20 is fed through an AND gate 44 which triggers the slice timer 30 again and the cycle is repeated.
The output of slice timer 30 feeds a carrier control circuit 56 which operates a control valve forresponsively feeding the carrier means 16, having the product 12 upon it, towards the rotating knife blade 14. When the slice timer 30 is operative, a valve (not shown) is energized causing the product to be fed into the knife.- A synchronizing switch 58 indicative of the position of the knife blade is electrically connected to the carrier control circuit 56. This provides a means for insuring that the first slice-is of proper thickness and that the last slice is of proper thickness as desired.
The sequencing of the cycling of slice timer 30 and space timer 20 can be interrupted by a gate control circuit which is under the control of a gating means, control flip-flop circuit 48. The slice timer 30 will normally trigger the space timer 20 which in turn triggers the slice timer 30 again providing that the gate control circuit is appropriately energized.
The gate control circuit broadly comprises an OR gate 42 'connected between slice timer 30 and space timer 20 and an AND gate 44 connected between space timer 20 and slice timer 30. Lastly, an OR gate 54 is included between slice timer 30 and carrier control circuit 56. It can thusly be seen that the control gate circuit comprises three logic means, OR gates 42 and 54 and AND gate 44 which thus control the operation of slice timer 30 and space timer 20. Control flipflop 48 which acts as a gating means and which operates OR gate 54 and AND gate 44, receives inputs from trim switch 50 and limit switch 52. In operation, slice timer 30 and space timer 20 continue cycling until. limit switch 52 activates control flip-flop circuit 48 which in turn energizes gate 54 and the cycling stops. Control flip-flop 48 also provides an input to carrier control circuit 56 through OR gate 54 which operates the control valve which in turn activates the carrier means so that the slicer may beoperated. When the carrier means has been loaded with an unsliced product and it is desired to start the slicer machine in operation, trim switch 50 is closed which in turn operates control flip-flop 48 to produce a signal to the input of AND gate 44 through a delay circuit 46 which causes timers 20 and 30 to begin their sequential operation.
A last feature provided by timer control circuit 10 is a sensor means which senses the cross-sectional area of the product to be sliced. Basically, sensor 70 adjusts the duration of the timer period of slice timer 30 in inverse re-lationship to the cross-sectional area of the product to be sliced. Broadly, referring to FIGS. 2 and 3 as well as FIG. 1, sensor 70 comprises a potentiometer 82. The setting of this potentiometer is varied by the movement of a plurality of sensing fingers 72 shown in FIG. 3. While only three sensing fingers 72 are shown, it will be recognized that any number can be used and the greater the number of fingers, the greater the accuracy of the sensing means.
Now, referring to FIG. 1, the operation of time control circuit 10 will be explained in more detail. The
operation of timer control system 10 is initiated when the operator adjusts the product carrier means 16 (shown in FIG. 3) so that the product to be sliced is manually fed into rotating knife 14 until several slices are cut. This manual slicing evens the edge of the product so that a fixed reference edge may be established. The carrier means in the ANCO slicer consists of a set of fingers or grippers (shown in FIG. 3) which dig into the end of the product and firmly push the product into the knife. These grippers are connected to a rod and piston which are hydraulically operated. HOwever, it will be recognized by one skilled in the art that any means may be used to move the product into the knife. At this time, the operator closes trim switch 50 which causes an output signal on lead 47. This signal passes through differentiator 40 along lead 41, through OR gate 42, to space timer 20. This initiates the timing period of space timer 20. No further slicing occurs at this point, thereby allowing the manually sliced portion of the product to be removed. While space timer is in its timing period, an indication is given by indicator 26. Indicator 26 may be a simple light bulb or any other conventional indicating means. The time duration of space timer 20 is determined and set by manual potentiometer 24 which is connected to the timing capacitor 22 of the timer control circuit. As mentioned above, one such timer control circuit is disclosed in US. Pat. No. 3,350,688. In this patent, the timing capacitor which is connected to the potentiometer would be capacitor 54 of the patent.
When space timer 20 is in its ambient non-timing period, or, in other words, its idle condition, it produces a low output. This low output from space timer 20 is applied to an input of AND gate 44.
When control flip-flop 48 is set by the actuation of trim switch 50, space timer 20 is triggered through differentiator 40 and OR gate 42. This causes space timer 20 to move into its timing cycle and thus, a high output signal occurs on the output of space timer 20. This high output signal is then applied to the circled input of AND gate 44. Another high input signal is applied to the other side of AND gate 44 by the control flip-flop 48 through delay circuit 46. Delay circuit 46 may be any conventional delay circuit such as an RC circuit. If delay network 46 were not in the timer circuit, a possibility would exist that there would be an output at AND gate 44 since the upper input of AND gate 44 is changing from a low to a high input. If this occurred, then the slice timer 30 would also be triggered at this time and both timers would then time simultaneously, rather than alternately as is required.
Continuing with the explanation of the operation of timer control circuit 10, the control flip-flop circuit 48 is energized when trim switch 50 is closed by the operator. This energizes one input of AND gate 44 after being delayed by delay circuit 46 as explained above.
When this occurs, the output from space timer 20 will be permitted to pass through AND gate 44 when the space timer completes its timing period and thereby produces a low output. This then causes slice timer 30 to switch from its ambient non-timing period to its timing period. Indicator 36 then indicates to the operator that slice timer 30 is in its timing period. When slice timer 30 is in its timing period, the product to be sliced which is on the carrier 16 is then brought into engagement with the rotating knife blade 14 and slicing begins. When slice timer 30 furnishes its timing period, its associated indicator 36 is extinguished and space timer 20 is then triggered via difierentiator 38 and OR gate 42. Specifically, when slice timer 30 completes its timing period, its output goes from high to low. Differentiator 38 then produces a differentiated pulse to the circle input of OR gate 42. This causes a high output signal at the output of OR gate 42 which then triggers the space timer 20 into its timing period from its ambient non-timing period. This cycle is continued, space-slice-space, etc., until limit switch 52 is closed. It will be noted that differentiators 38 and 40 at the input of OR gate 42 are utilized so that the OR gate is responsive to an instantaneous signal rather than being continuously responsive.
The timing period of slice timer 30 is determined by a potentiometer 34 connected to the timing capacitor of the timing circuit and by sensor 70. The potentiometer 34 is a manual potentiometer which sets the nominal timing period of slice timer 30. The combination of the average setting of fingers 72 of sensor (FIGS. 2 and 3) determines the average cross-sectional area of the product to be sliced. These fingers control the setting of potentiometer 82 of sensor 70 which also effects the slice timer time period duration as will be explained below. The output of slice timer 30 controls the carrier control circuit 56 through OR gate 54. The carrier control circuit 56 accepts an input from OR gate 54 and from the synchronizing switch 58 so as to provide an output signal to power amplifier 60 at the correct time to synchronize the starting of the movement of the carrier means with the knife position to produce an acceptable first and last slice. The purpose of power amplifier 60 is simply to amplify the output from the carrier control circuit 56 and provide the power necessary to operate the control valve which operates the carrier means 16. When the product has been completely sliced, a limit switch 52 is operated which ends the timing cycle and turns off the timer control circuit 10.
Limit switch 52 operates control flip-flop circuit 48 so as to produce a high output on lead 45 and a low output on lead 47. With a low signal on lead 47 which feeds one input of AND gate 44, AND gate 44 will then have a low output, hence, no start signal will occur to trigger slice timer 30; therefore, the cycling is stopped. The high output of flip-flop 48 on lead 45 is then applied to one input lead of OR gate 54. The output of OR gate 54 then energizes carrier control circuit 56. This causes the control valve to move into a run position causing the carrier to retract and permitting only manual operation of the slicer. To start the cycle all over again, trim switch 50 is then actuated as previously described and the space-slice-space-slice alternate cycle is again begun.
As mentioned above, sensor 70 is utilized to control the time duration of slice timer 30 in an inverse relation to the cross-sectional area of the product to be sliced.
Referring now to FIGS. 2 and 3, the operation of sensor 70 will be explained. Conventional meat slicer machines such as the ANCO MOdel 827 described above, contain hold-down fingers 72 which are used to hold the product to be sliced in position while being sliced and when the product is almost completely sliced, the last little piece is not pulled into the rotating knife. These hold-down fingers 72 may be modified as will now be described to act as a sensor means to determine the cross-sectional area of the product to be sliced. One each of the sensor fingers 72 may be connected to a small cylinder piston 73 as will be recognized by one skilled in the art, anysuitable connecting means may be utilized. Each small cylinder 74 in which the pistons 73 as confined is coupled to a large cylinder 78 by a tube 76. As the sensing fingers under spring tension move up and down following the contour of the product to be sliced, the associated pistons 73 in each of the small cylinders 74 also move up and down. Oil or any other suitable fluid or gas isthen moved in or out of the large cylinder 78 thereby moving piston .79 which movesarm 80. Wiper arm 80 isconnected to a potentiometer 82 so that wiper arm 80 may act as a potentiometer wiper thereby changing the resistance setting and, hence, changing the timing period of slice timer 30. The movement of piston 79 of cylinder 78 is indicative of the average cross-sectional area of the product to be sliced. This can easily be seen by the following calculation:
. V;= AD,
V, a d '2 2 s a s where:
V= the incremental change in volume of cylinder 78 when piston 79 moves v the incremental change in volume of each small cylinder 74 when each piston 73 moves A area of piston head 79 a area of each small piston head 73 D displacement of piston head 79 d displacement of each small piston head 73 therefore:
V: V; v: V; AD =d d 02d dads assume that:
A=3a,=3a,=3a, then:
BAD ad, ad, ad, therefore:
1+ Therefore, it can be seen that the displacement of piston cylinder 79 of the large cylinder 78 can be made to .follow the average of the small piston motions represented by d,, a and d,. When this motion is coupled to potentiometer v82, an electronic signal is generated equal to the average position of the small pistons 73 (i.e., the position of the fingers 72). Thus, the cross-sectional area of the product to be sliced may always be detennined.
It should be understood, however, that while only three sensing fingers have been shown, any number of sensing fingers and any numbers of master cylinders may be utilized. It will be recognized that the greater the number of fingers, the more accurate the sensing will be. Furthermore, it will be recognized by one skilled in the art that each sensing fingers 72 may be connected individually to its own potentiometer and that these potentiometers could then be connected in series to achieve an equivalent result to the use of a master cylinder and a single potentiometer. It is also interesting to note that the movement of the sensing fingers is made continuously as the product is being sliced.
dication of the amount of product'beingsliced so that slice product groups of equal weight may be formed.-
Therefore, the time period of slice timer 30 is inversely related to the charging current and this means that the variation of the sectional volume will be taken into ac-v count by the variation in the charging current as the product is being sliced.
nwill be recognized by one skilled in the an that while the preferred embodiment was directed to a machine for slicing a product, it need not be limited as such. It will be recognized that timercontrol circuit 10 may be utilized in any environment wherein it is necessary to effect the actuation and non-actuation of 'a responsive instrumentality and wherein Y a varying system condition must be accounted for during at least a portion of the actuated period of the instrumentalitymade therein without departing from the spirit and the scope of the invention as set forth inthe appended claims. I
Whatisclaimed is:
l. A timer control circuit in combination with a meat slicing machine having a rotatable cutting blade and a movable meat carrier to feed said meat to the bladefor cutting, the improvement comprising:
first timer means having a first condition and a second condition, said first condition representing a timing period and said second condition representing an ambient non-timing period' wherein said first timer means is adapted to switch to said second condition after said timing period is completed; 7
a second timer means connected in circuit with said first timer means and said movable meat carrier, having a first condition and a second condition, said first condition representing a timing period and said second condition representing an ambient non-timing period wherein said second timer means is placed in said first condition when said first timer means switches from said first condition to said second condition and wherein said meat on said movable meat carrier is placed in engagement with said blade thereby slicing said meat whenever said second timer means is in said timing period and said meat on said meat carrier is placed out of engagement from said blade when said second timer is in said second condition;
sensing means connected to said second timer means for continuously sensing the cross-sectional area of said unsliced meat and wherein the duration of said timing period of said second timer means is responsive to said sensing means; and
control means connected in circuit to said first timer means, said second timer means and said movable meat carrier wherein said control means is adapted to place said first timer means into said timing period and said second timer means into said second condition wherein after said timing cycle of said first timer means is completed, said second time means switches to said first condition, thereby causing said meat to be sliced and wherein after said timing cycle of said second timer means is completed said first timer means switches to said first condition thereby ending said slicing action until said second timer means again switches to said first condition.
2. The combination of claim 1 wherein said control means further comprises means to synchronize said engagement of said meat with the position of said rotatable blade. I
3. The combination of claim 2 wherein said synchronizing means comprises:
an OR gate connected in circuit with said second timer means;
a synchronizing switch connected between said rotatable knife blade and the output of said OR gate wherein said synchronizing means provides a signal to said movable meat carrier so as to synchronize the starting movement of said carrier with the position of said rotatable blade.
4. A method for automatically slicing a product and collecting said sliced product into preselected measured weight groups comprising the steps of:
placing said product to be sliced in contact with a slicing instrument thereby initiating the start of a slicing period;
continuously sensing the cross-sectional area of said product to be sliced prior to said slicing of said product;
timing said slicing period wherein the duration of said slicing period is variable and is determined by the preselected amount of said product required and by said cross-sectional area of said unsliced product;
timing a non-slicing period wherein said non-slicing period is initiated when said slicing period is terminated; and
automatically reinitiating said slicing period when said non-slicing period is terminated thereby causing an automatic sequential operation of slicing and non-slicing of said product;
t t t

Claims (3)

1. A timer control circuit in combination with a meat slicing machine having a rotatable cutting blade and a movable meat carrier to feed said meat to the blade for cutting, the improvement comprising: first timer means having a first condition and a second condition, said first condition representing a timing period and said second condition representing an ambient non-timing period wherein said first timer means is adapted to switch to said second condition after said timing period is completed; a second timer means connected in circuit with said first timer means and said movable meat carrier, having a first condition and a second condition, said first condition representing a timing period and said second condition representing an ambient non-timing period wherein said second timer meAns is placed in said first condition when said first timer means switches from said first condition to said second condition and wherein said meat on said movable meat carrier is placed in engagement with said blade thereby slicing said meat whenever said second timer means is in said timing period and said meat on said meat carrier is placed out of engagement from said blade when said second timer is in said second condition; sensing means connected to said second timer means for continuously sensing the cross-sectional area of said unsliced meat and wherein the duration of said timing period of said second timer means is responsive to said sensing means; and control means connected in circuit to said first timer means, said second timer means and said movable meat carrier wherein said control means is adapted to place said first timer means into said timing period and said second timer means into said second condition wherein after said timing cycle of said first timer means is completed, said second time means switches to said first condition, thereby causing said meat to be sliced and wherein after said timing cycle of said second timer means is completed said first timer means switches to said first condition thereby ending said slicing action until said second timer means again switches to said first condition. 2. The combination of claim 1 wherein said control means further comprises means to synchronize said engagement of said meat with the position of said rotatable blade.
3. The combination of claim 2 wherein said synchronizing means comprises: an OR gate connected in circuit with said second timer means; a synchronizing switch connected between said rotatable knife blade and the output of said OR gate wherein said synchronizing means provides a signal to said movable meat carrier so as to synchronize the starting movement of said carrier with the position of said rotatable blade.
4. A method for automatically slicing a product and collecting said sliced product into preselected measured weight groups comprising the steps of: placing said product to be sliced in contact with a slicing instrument thereby initiating the start of a slicing period; continuously sensing the cross-sectional area of said product to be sliced prior to said slicing of said product; timing said slicing period wherein the duration of said slicing period is variable and is determined by the preselected amount of said product required and by said cross-sectional area of said unsliced product; timing a non-slicing period wherein said non-slicing period is initiated when said slicing period is terminated; and automatically reinitiating said slicing period when said non-slicing period is terminated thereby causing an automatic sequential operation of slicing and non-slicing of said product.
US140822A 1971-05-06 1971-05-06 Method and apparatus for effecting the actuating and non-actuation of a responsive instrumentality Expired - Lifetime US3682215A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US14082271A 1971-05-06 1971-05-06

Publications (1)

Publication Number Publication Date
US3682215A true US3682215A (en) 1972-08-08

Family

ID=22492934

Family Applications (1)

Application Number Title Priority Date Filing Date
US140822A Expired - Lifetime US3682215A (en) 1971-05-06 1971-05-06 Method and apparatus for effecting the actuating and non-actuation of a responsive instrumentality

Country Status (1)

Country Link
US (1) US3682215A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4114492A (en) * 1977-01-31 1978-09-19 Armour And Company Method and machine for slicing materials

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2620440A (en) * 1949-10-29 1952-12-02 Northrop Aircraft Inc Electronic counting device
US3142323A (en) * 1961-08-22 1964-07-28 Swift & Co Method and apparatus for controlling the slicing operation
US3144893A (en) * 1957-09-23 1964-08-18 Emhart Mfg Co Bacon slicer having automatic feed adjustment
US3223856A (en) * 1963-08-20 1965-12-14 Ivan L Joy Wide range monostable multivibrator
US3379234A (en) * 1965-04-06 1968-04-23 Amtron Methods of effecting slicing operations
US3456554A (en) * 1968-01-02 1969-07-22 Gen Electric Pulse counter and burst limiter
US3519051A (en) * 1967-11-20 1970-07-07 Swift & Co Food slicing method and apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2620440A (en) * 1949-10-29 1952-12-02 Northrop Aircraft Inc Electronic counting device
US3144893A (en) * 1957-09-23 1964-08-18 Emhart Mfg Co Bacon slicer having automatic feed adjustment
US3142323A (en) * 1961-08-22 1964-07-28 Swift & Co Method and apparatus for controlling the slicing operation
US3223856A (en) * 1963-08-20 1965-12-14 Ivan L Joy Wide range monostable multivibrator
US3379234A (en) * 1965-04-06 1968-04-23 Amtron Methods of effecting slicing operations
US3519051A (en) * 1967-11-20 1970-07-07 Swift & Co Food slicing method and apparatus
US3456554A (en) * 1968-01-02 1969-07-22 Gen Electric Pulse counter and burst limiter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4114492A (en) * 1977-01-31 1978-09-19 Armour And Company Method and machine for slicing materials

Similar Documents

Publication Publication Date Title
US4379416A (en) Food-slicing machine and method
US4217650A (en) Automatic sausage slicing and weighing system
US5974925A (en) Continuous feed for food loaf slicing machine
WO1993022114A1 (en) Meat slicing machine and method of use thereof
US4112834A (en) Food processing apparatus
EP0127463B1 (en) Slicing machine
CA1010758A (en) Apparatus for weighing and segregating sliced bacon from a slicing machine
CA1006072A (en) Apparatus for weighing and segregating sliced bacon from a slicing machine
US4548107A (en) Meat slicing machine and method
GB1594101A (en) Meat cutting apparatus
US5186089A (en) Apparatus and process for cutting foodstuffs
US3379234A (en) Methods of effecting slicing operations
US5107731A (en) Automatic slicing system for slicing and uniformly stacking a comestible product
US3739677A (en) Slicing machine
US2695483A (en) Apparatus for packaging articles between two continuous sheets
US3762257A (en) Sensing mechanism for slicing machine control system
US3797343A (en) Rapid slicing machine
GB2139876A (en) Method and apparatus for trimming slices from a product
GB1465587A (en) Slicing machine
US4258530A (en) Automatic meat arranging device for automatic meat cutting machine
US3729774A (en) Apparatus and methods for preparing skewered food products
US3682215A (en) Method and apparatus for effecting the actuating and non-actuation of a responsive instrumentality
ES479823A1 (en) Machine for the automatic manufacture of mixtures of different kinds of caoutchouc intended to form part of a filler mixture
US3827319A (en) Weight controlled slicing system
US3634741A (en) Method and apparatus for effecting the actuation and nonactuation of a responsive instrumentality