US3676735A - Resonator ballast for arc discharge lamps - Google Patents

Resonator ballast for arc discharge lamps Download PDF

Info

Publication number
US3676735A
US3676735A US860985A US3676735DA US3676735A US 3676735 A US3676735 A US 3676735A US 860985 A US860985 A US 860985A US 3676735D A US3676735D A US 3676735DA US 3676735 A US3676735 A US 3676735A
Authority
US
United States
Prior art keywords
lamp
capacitive means
inductor
supply
capacitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US860985A
Inventor
William J Roche
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GTE Sylvania Inc
Original Assignee
Sylvania Electric Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sylvania Electric Products Inc filed Critical Sylvania Electric Products Inc
Application granted granted Critical
Publication of US3676735A publication Critical patent/US3676735A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B41/00Circuit arrangements or apparatus for igniting or operating discharge lamps
    • H05B41/02Details
    • H05B41/04Starting switches
    • H05B41/042Starting switches using semiconductor devices

Definitions

  • An alternating current electronic ballast for an arc discharge lzo'o :6 lamp has two sets of capacitors and diodes arranged so that each set of capacitors can be charged and discharged only I during opposite polarities of an AC supply.
  • the ballast can [56] R CM develop a high voltage for starting the lamp and also can effi- UMTED ATES PATENTS ciently regulate the current flow through the lamp.
  • Arc discharge lamps usually have a so-called negative resistance and hence require a current-limiting device in series with them. This regulates the current flowing through the lamp, thereby preventing run-away of the current or extinguishing of the arc as a result of normal fluctuation in the supply of AC electrical power.
  • this current-regulating ballast has been primarily an inductance coil or a resistance, with or without a capacitor, the leakage reactance of a transformer some-times being used as the inductance.
  • Ballasts of such types generally require a considerable amount of iron and copper to operate on the usual Gil-Hertz power line, and are accordingly bulky, expensive and inefficient.
  • the capacitors used are generally of the oil-filled type because of the AC charge impressed on them, and are also bulky and expensive.
  • the highest voltage obtainable from such a transformer is generally not high enough to restm a high pressure mercury vapor lamp within a very few minutes afier the lamp has been extinguished.
  • Warm-up time is the length of time required for a cold lamp to heat up to about its normal operating temperature and emit its rated amount of light energy. In the tuna] high pressure mercury vapor ballasts the warm-up time is quite long since the starting current is usually quite low.
  • An electronic ballast for arc discharge devices in accordance with this invention, comprises simple, compact and inexpensive components and is smaller, less expensive and more efficient than the prior art ballasts mentioned above.
  • the instant ballast also provides higher open circuit voltages, thereby reducing lamp hot restart time, and higher starting currents, thereby reducing warm-up time.
  • capacitors used in this invention store charge in only one direction, the use of dry electrolytic capacitors is permitted. Such capacitors are more compact and less expensive than the oil-filled capacitors used in the prior art ballasts.
  • a ballast in accordance with this invention has a plurality of capacitors, each capacitor being in parallel and in series with diodes that permit the capacitor to be charged and discharged in one direction only.
  • the ballast When the ballast is energized, such as by, for example, the usual line power supply of 60 Hertz, 120 volts, a set of one or more capacitors develops a charge thereacross during a one-half cycle of the supply voltage equivalent to the peak voltage thereof.
  • a second set of one or more capacitors develops a similar charge thereacross.
  • the first set of capacitors is prevented from discharging during this interval by the above mentioned series-connected diodes on theonehand,and,ontheotherhand,bythefactthatthearc discharge lamp, which is in a dhcharge path of the capacitors, is unignited and non-conducting.
  • the second set of capacitors can be made to transfer its charge to the capacitors in the first set, so that the charge thereacroas is doubled.
  • theopencircuitvoltageacroaathelampcanbeuptos times the peak supply voltage depending on the number of diodes and capacitors und in each polarity set, which will depend on the lamp type being used. In this way a proper ignition voltage is generated for the particular lamp type concerned herewith.
  • the capacitors After the lamp has ignited, the capacitors, together with a small inductance in series with the lamp, effectively regulate and limit the current flow through the lamp.
  • the capacitors alternately charge from the supply voltage and discharge through the lamp at a frequency greater than the line frequency.
  • the current flow through the lamp is controlled to a large degree by the amount of energy stored in the capacitors at the time they discharge through the lamp; thus, the need for a power-consuming, current-limiting, high impedance in the circuit is eliminated.
  • the construction of the circuit permits current flow through the lamp in one direction only.
  • the capacitors that control the lamp current difler according to the polarity of the line voltage That is to say, when the line voltage is, say, positive with respect to ground, one set of capacitors charges from the supply and discharges through the lamp. And when the line voltage is negative, the other set of capacitors charges from the supply and discharges through the lamp.
  • the rate at which the capacitors charge and discharge is approximately equal to the characteristic frequency of the circuit itself.
  • FIG. 1 is a circuit diagram of a ballast in accordance with this invention.
  • FIG. 2 shows waveforms of the rectified supply current, the modulating voltage developed by the resonant circuit, and the resulting lamp current for a ballast circuit embodying the invention.
  • a ballast l in accordance with this invention can be energized by connecting it across an AC power supply 2, which can be the usual 60-l-Iertz, l20-volt line supply.
  • An arc discharge lamp 3 can be connected across the output end of ballast I.
  • the electronic ballast circuit includes a full wave bridge rectifier comprising diodes 7, 8, II and I2.
  • the bridge input terminals represented by nodes 20 and 21, are coupled across AC supply 2, with node 21 being connected to the power supply through a current limiting inductor 6.
  • Diodes l2 and 8 are shunted by polarised capacitors 4 and 10, respectively.
  • a blocking diode 9, lamp 3, and inductor 13 are serially connected across the bridge output terminals, represented by nodes 22 and 23.
  • a third polarized capacitor 5 is connected between node 21 and the junction of diode 9 and lamp 3. The diodes are all oriented to provide unidirectional charging of each of the capacitors.
  • Capacitors 4, 5 and I0 serve a dual purpose. Firstly, they generate the high voltage required to initially ignite lamp 3 and to re-ignlte the lamp at the beginning of each new half cycle of lamp operation, corresponding to the cyclic frequency of the AC power supply 2. Secondly, they form a resonant switching circuit in conjunction with inductor l3 and lamp 3.
  • the build up of the lamp ignition voltage can be described by the following sequence of events.
  • capacitors 4 and 5 become charged to the l70-volt peak value of the supply voltage and retain this charge until the lamp becomes ignited.
  • the current path for charging capacitor 4 consists of capacitor 4, diode 7 and inductor 6.
  • the path for charging capacitor consists of diode 8, diode 9, capacitor 5 and inductor 6.
  • capacitor When the supply voltage reverses polarity and becomes negative relative to ground, capacitor becomes charged to the l70-volt peak value of the supply.
  • the path for charging capacitor 10 consists of inductor 6, diode l1 and capacitor 10.
  • each capacitor (4, 5 and 10) When the supply voltage returns through zero each capacitor (4, 5 and 10) will be charged to 170 volts according to their polarity as indicated in the circuit diagram.
  • capacitor 10 When supply voltage 2 again becomes positive relative to ground, capacitor 10 transfers a portion of its voltage (113 volts) to capacitor 5.
  • the transfer current path consists of capacitor 10, diode 9, capacitor 5 and inductor 6.
  • capacitor 4 When the supply voltage 2 returns through zero, capacitor 4 is charged to 170 volts, capacitor 10 retains a charge of 57 volts and capacitor 5 will then be charged to 283 volts.
  • capacitor 10 When the supply voltage 2 again reverses polarity and becomes negative relative to ground, capacitor 10 again charges to the one hundred seventy peak voltage of the supply. As supply voltage 2 again becomes positive relative to ground, a portion of the 170 volts on capacitor 10 will again transfer to capacitor 5.
  • the value of the voltage transferred from capacitor 10 to capacitor 5 during each cycle of the AC supply is given by the expression AV, W V, where:
  • V 170 volts (the peak value of the l-volt, GO-Hertz pp y).
  • n the number of cycles incurred by the circuit.
  • This additive combination of voltages results from the series circuit arrangement of the elements which may be traced from node 24, through capacitor 5, inductor 6, supply 2, and capacitor 4 to node 23.
  • the open circuit voltage (V,,,.) at nodes 23 and 24, and hence across lamp 3 may be expressed as:
  • the resulting peak open circuit voltage of 680 volts is more than sufficient to ignite lamp 3.
  • Reignition of the lamp at the commencement of a particular half cycle of operation is accomplished in a somewhat similar manner.
  • capacitor 4 charges through diode 7 and inductor 6, and capacitor 5 charges through diodes 8 and 9 and inductor 6, as before.
  • Capacitor 10 will have retained a residual voltage with the indicated polarity. This residual voltage corresponds to the extinction voltage of the lamp following the previous half cycle of operation and will add with the voltage across capacitor 4 to produce a voltage which is positive at node 24 and negative at node 23.
  • the voltage necessary to re-start the lamp on each half cycle is always less than the original ignition voltage of the lamp due to the residual charge remaining in the lamp between half cycles of operation.
  • This residual charge occurs as a result of the lamp wall current (charge moving outward to the wall of the lamp, perpendicular to the axis of the lamp) decaying to zero at a slower rate than the axial lamp current which goes to zero between half cycles.
  • This persistent wall current assures that there will be free charge present in the lamp at the commencement of each half cycle of lamp operation.
  • the value of the reignition voltage will be determined by the peculiar characteristics of the lamp being operated in the circuit. These peculiarities, such as mercury vapor pressure, fill gas pressure, and tube diameter and length, will determine the initial voltage across capacitor 10. The voltage buildup across capacitor 4 will continue until the voltage appearing between nodes 23 and 24 reaches the reignition voltage required for a particular lamp.
  • the remaining 50 percent of the energy delivered to the lamp is supplied through a higher frequency pulsating D.C. current wave having a frequency that depends on the resonant characteristic of the inductive-capacitive circuit comprising inductor l3, and the equivalent inductive element in the lamp.
  • This formation of a resonant switching circuit comprises the second function of capacitors 4, 5 and 10.
  • the capacitors alternate in this function on every half cycle of supply 2 by the discharge of stored energy following lamp reignition. More specifically, when the supply voltage is positive at node 20 with respect to ground, the resonant switching circuit comprises lamp 3, inductor l3, and the parallel combination of capacitors 4 and 5.
  • the discharge path of capacitor 4 comprises: capacitor 4, diode 8, diode 9, node 24, lamp 3, inductor l3, and node 23'
  • the discharge path of capacitor 5 comprises: capacitor 5, node 24, lamp 3, inductor l3, node 23, diode 7 and node 21.
  • the resonant switching circuit comprises lamp 3, inductor l3, and capacitor 10.
  • the discharge path of capacitor I0 comprises: node 22, diode 9, node 24, lamp 3, inductor l3, node 23, and diode 12.
  • the parallel capacitance of capacitors 4 and 5 is made equal to the value of capacitor 10.
  • the resonant frequency is preferably several times that of the supply frequency, as illustrated in FIG. 2, where curve V, represents the resonant frequency signal as obtained by observing the voltage across inductor 13.
  • the exponentially damped sinusoid appearing every half cycle of the supply represents the ringing voltage across the inductor 13 during discharge of one of said capacitor sets.
  • the l20-l-lertz frequency (curve I.) and the resonant frequency (curve V,,,) have opposing polarities and therefore the resulting lamp current waveform will consist of the difference in their magnitudes.
  • the effect of this modulation process on the lamp discharge characteristic is one of alternately switching the discharge mode from a positive to a negative characteristic (i.e. from a low to a high conducting state).
  • the peaks of the curve and the zero crosings of the curve V represent the points at which the lamp is switched.
  • the lamp in going from a positive to a negative discharge characteristic (i.e. from a low to high conduction), the lamp can be thought of as representing an ON-OFF switch in the circuit of P10. 2.
  • the switch When the lamp discharge characteristic is negative i.e. conductance is high), the switch is turning ON, in that the rate of ionization in the lamp is increasing, causing the lamp current to increase also, as illustrated by each positive-going slope of the curve I
  • the lamp discharge characteristic is positive (i.e.
  • the switch is turning OFF since the rate of ionization within the lamp is decreasing with the lamp current likewise decreasing, as illustrated by each negative-going slope of the curve I It is this switching action within the lamp that generates the circuit perturbations which are tuned by the resonant circuit, composed of inductor 13 and the appropriate capacitors (as described above), to produce the lamp current modulation.
  • the modulation in turn switches the lamp.
  • the process is seen to be regenerative in nature with inductor 13, the appropriate capacitors (i.e. parallel capacitors 4 and 5 on the positive half cycle, and capacitor 10 on the negative half cycle) and lamp 3 constituting a selfsustaining oscillator circuit.
  • capacitors 4, 5 and [0 were dry, electrolytic capacitors having ratings of l microfarad 200 volts, l microfarad 400 volts and 2 microfarads 200 volts, respectively.
  • Diode 7, 8, 9, I1 and 12 each had ratings of 1.0 ampere, 200 peak inverse volts.
  • Inductors 6 and [3 had iron cores and were rated at 220 and ll millihenries, respectively.
  • Supply 3 was a 60-l-lertz, l20-volt AC supply.
  • the current and voltage crest factors refer to the ratio of the peak values thereof to the average values.
  • the lamp crest factor is preferably less than 2. Said crest factor can be reduced by increasing the inductance of inductor 13, but the impedance losses therein will be increased.
  • the equivalent inductance for a 40-watt lamp of this type is about 25 millihenries.
  • the resonant characteristics of the ballast then are based on the inductance of lamp 3 (25 millihenties), the inductance of inductor 13 (ll millihenries) and the capacitance of the parallel combination of capacitors 4 and 5 on the positive half cycle and of capacitor 10 on the negative half cycle (2C 2Q C 2 rnicrofarads).
  • the resonant frequency of the ballast is Hertz and the power supplied to the lamp comists of the difi'erence in magnitude between the SQS-Hertz waveform and the l20-l-lertz pulsating DC waveform.
  • curve I being the l20-l-lertz output of the full wave rectifier
  • curve V being the 595-l-lertz resonant frequency signal as represented by the voltage across inductor l3
  • curve being the modulatedlamp current were obtained from this ballast circuit, curve I, being the l20-l-lertz output of the full wave rectifier, curve V. being the 595-l-lertz resonant frequency signal as represented by the voltage across inductor l3, and curve being the modulatedlamp current.
  • a ballast circuit for operating an arc discharge lamp from an AC power supply comprising:
  • a first capacitive means means coupling said AC power supply to said first capacitive means for charging said first capacitive means with energy in half cycles of a first polarity of said AC supply;
  • first rectifying means shunting said first capacitive means for restricting the charging thereof to one direction of said first polarity a second capacitive means
  • said lamp, second inductor and first capacitive means comprising a resonant circuit operative during each discharge of said first capacitive means through the conducting lamp and second inductor to produce a signal having a resonant frequency greater than twice the frequency of said AC supply;
  • said lamp, second inductor and second capacitive means comprising a resonant circuit operative during each discharge of said second capacitive means through the conducting lamp and second inductor to produce a signal having said resonant frequency greater than twice the frequency of said AC supply.
  • the ballimt circuit of claim I further including means interconnecting said first and second capacitive means for transferring a portion of the stored energy charge from said second second capacitive means, and said means coupling each of said first and second capacitive means across the series combination of said lamp and second inductor includes means for providing unidirectional current flow through said lamp and second inductor during half cycles of both said first and second polarity of said supply during normal lamp operation.

Landscapes

  • Circuit Arrangements For Discharge Lamps (AREA)

Abstract

An alternating current electronic ballast for an arc discharge lamp has two sets of capacitors and diodes arranged so that each set of capacitors can be charged and discharged only during opposite polarities of an AC supply. The ballast can develop a high voltage for starting the lamp and also can efficiently regulate the current flow through the lamp.

Description

United States Patent Roche 1 1 July 11, 1972 [54] RESONATOR BALLAST FOR ARC 3,354,379 11/1967 Swain et al ..a1s/221 x DISCHARGE LAMPS 3,526,821 9/1970 Thomas ..3 15/241 X 3,527,982 9/1970 Lake ..3 15/200 R 1 1 Inventor William Memmac' 2,668,259 2/1954 Stutsman ..31s/97 mm Elem: Pmdum 3,235,769 2/1966 Wattenbach.... ...3l$/DIG. 2 [73] 3,525,901 8/1970 Sammis ..315/105 [22] Filed: Sept. 25, 1969 Primary Examiner-Nathan Kaufman 1 Appl' 860985 Attorney-Norman J. OMalley and James Theodosopoulos [52] 0.8. CI ..3l5/207, 315/241, 315/243 [57] ABSTRACT ag 2322 2; An alternating current electronic ballast for an arc discharge lzo'o :6 lamp has two sets of capacitors and diodes arranged so that each set of capacitors can be charged and discharged only I during opposite polarities of an AC supply. The ballast can [56] R CM develop a high voltage for starting the lamp and also can effi- UMTED ATES PATENTS ciently regulate the current flow through the lamp.
3,233,148 2/1966 Lake ..3l5/242 X 3Clalrns,2l)nwlngi1gures I I I PHENTEOJULH i912 3.676.735 sum 1 or 2 WILLIAM J. ROCHE INVENTOR BY Janna ATTORNEY RESONATOR BALLAST FOR ARC DISCHARGE LAMPS BACKGROUND OF THE INVENTION 1 Field of the Invention This invention relates to circuits for starting and operating gaseous discharge devices such as, for example, fluorescent lamps and high pressure mercury vapor lamps.
2. Description of the Prior Art Arc discharge lamps usually have a so-called negative resistance and hence require a current-limiting device in series with them. This regulates the current flowing through the lamp, thereby preventing run-away of the current or extinguishing of the arc as a result of normal fluctuation in the supply of AC electrical power. Previously, this current-regulating ballast has been primarily an inductance coil or a resistance, with or without a capacitor, the leakage reactance of a transformer some-times being used as the inductance. Ballasts of such types generally require a considerable amount of iron and copper to operate on the usual Gil-Hertz power line, and are accordingly bulky, expensive and inefficient. Also, the capacitors used are generally of the oil-filled type because of the AC charge impressed on them, and are also bulky and expensive.
In addition, a higher voltage than the usual I20 or 240 volts is usually necessary to ignite or start such lamps, especially high pressure mercury vapor lamps. This higher voltage is generally supplied by a bulky and expensive transformer, which undesirably dissipates large amounts of electrical power.
Furthermore, the highest voltage obtainable from such a transformer is generally not high enough to restm a high pressure mercury vapor lamp within a very few minutes afier the lamp has been extinguished. This refers to the so-called hot restart time and is the length of time required for a lamp to cool down sufficiently for restarting after the lamp has been switched off during operation and results from the fact that a higher voltage is needed to start a hot lamp than one that is cooler.
Warm-up time is the length of time required for a cold lamp to heat up to about its normal operating temperature and emit its rated amount of light energy. In the tuna] high pressure mercury vapor ballasts the warm-up time is quite long since the starting current is usually quite low.
Electronic ballasts, so called, have been developed for are discharge devices but these have generally required the use of gated, bidirectional, semiconductor devices. See, for example, U.S. Pat. No. 3,4l4,768 issued on Dec. 3, 1968 to S. C. Peek, .Ir. Such devices are generally more complex and expensive than the components used in the instant invention.
SUMMARY OF THE INVENTION An electronic ballast for arc discharge devices, in accordance with this invention, comprises simple, compact and inexpensive components and is smaller, less expensive and more efficient than the prior art ballasts mentioned above. The instant ballast also provides higher open circuit voltages, thereby reducing lamp hot restart time, and higher starting currents, thereby reducing warm-up time.
Because the capacitors used in this invention store charge in only one direction, the use of dry electrolytic capacitors is permitted. Such capacitors are more compact and less expensive than the oil-filled capacitors used in the prior art ballasts.
A ballast in accordance with this invention has a plurality of capacitors, each capacitor being in parallel and in series with diodes that permit the capacitor to be charged and discharged in one direction only. When the ballast is energized, such as by, for example, the usual line power supply of 60 Hertz, 120 volts, a set of one or more capacitors develops a charge thereacross during a one-half cycle of the supply voltage equivalent to the peak voltage thereof. During the next half cycle, which is of opposite polarity, a second set of one or more capacitors develops a similar charge thereacross. The first set of capacitors is prevented from discharging during this interval by the above mentioned series-connected diodes on theonehand,and,ontheotherhand,bythefactthatthearc discharge lamp, which is in a dhcharge path of the capacitors, is unignited and non-conducting.
During the succeeding cycles the second set of capacitors can be made to transfer its charge to the capacitors in the first set, so that the charge thereacroas is doubled. In th': manner theopencircuitvoltageacroaathelampcanbeuptostimes the peak supply voltage depending on the number of diodes and capacitors und in each polarity set, which will depend on the lamp type being used. In this way a proper ignition voltage is generated for the particular lamp type concerned herewith.
After the lamp has ignited, the capacitors, together with a small inductance in series with the lamp, effectively regulate and limit the current flow through the lamp. The capacitors alternately charge from the supply voltage and discharge through the lamp at a frequency greater than the line frequency. The current flow through the lamp is controlled to a large degree by the amount of energy stored in the capacitors at the time they discharge through the lamp; thus, the need for a power-consuming, current-limiting, high impedance in the circuit is eliminated.
The construction of the circuit permits current flow through the lamp in one direction only. Thus the capacitors that control the lamp current difler according to the polarity of the line voltage. That is to say, when the line voltage is, say, positive with respect to ground, one set of capacitors charges from the supply and discharges through the lamp. And when the line voltage is negative, the other set of capacitors charges from the supply and discharges through the lamp.
The rate at which the capacitors charge and discharge, that is to say, the rate at which the circuit resonates, is approximately equal to the characteristic frequency of the circuit itself.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a circuit diagram of a ballast in accordance with this invention.
FIG. 2 shows waveforms of the rectified supply current, the modulating voltage developed by the resonant circuit, and the resulting lamp current for a ballast circuit embodying the invention.
DESCRIPTION OF THE PREFERRED EMBODIMENT As shown in FIG. I, a ballast l in accordance with this invention can be energized by connecting it across an AC power supply 2, which can be the usual 60-l-Iertz, l20-volt line supply. An arc discharge lamp 3 can be connected across the output end of ballast I.
The electronic ballast circuit, includes a full wave bridge rectifier comprising diodes 7, 8, II and I2. The bridge input terminals, represented by nodes 20 and 21, are coupled across AC supply 2, with node 21 being connected to the power supply through a current limiting inductor 6. Diodes l2 and 8 are shunted by polarised capacitors 4 and 10, respectively. A blocking diode 9, lamp 3, and inductor 13 are serially connected across the bridge output terminals, represented by nodes 22 and 23. A third polarized capacitor 5 is connected between node 21 and the junction of diode 9 and lamp 3. The diodes are all oriented to provide unidirectional charging of each of the capacitors.
Capacitors 4, 5 and I0 serve a dual purpose. Firstly, they generate the high voltage required to initially ignite lamp 3 and to re-ignlte the lamp at the beginning of each new half cycle of lamp operation, corresponding to the cyclic frequency of the AC power supply 2. Secondly, they form a resonant switching circuit in conjunction with inductor l3 and lamp 3.
With regard to the first function of the capacitors, the build up of the lamp ignition voltage can be described by the following sequence of events. When the l20-volt supply 2 is positive relative to ground, capacitors 4 and 5 become charged to the l70-volt peak value of the supply voltage and retain this charge until the lamp becomes ignited. The current path for charging capacitor 4 consists of capacitor 4, diode 7 and inductor 6. The path for charging capacitor consists of diode 8, diode 9, capacitor 5 and inductor 6.
When the supply voltage reverses polarity and becomes negative relative to ground, capacitor becomes charged to the l70-volt peak value of the supply. The path for charging capacitor 10 consists of inductor 6, diode l1 and capacitor 10.
When the supply voltage returns through zero each capacitor (4, 5 and 10) will be charged to 170 volts according to their polarity as indicated in the circuit diagram.
When supply voltage 2 again becomes positive relative to ground, capacitor 10 transfers a portion of its voltage (113 volts) to capacitor 5. The transfer current path consists of capacitor 10, diode 9, capacitor 5 and inductor 6. When the supply voltage 2 returns through zero, capacitor 4 is charged to 170 volts, capacitor 10 retains a charge of 57 volts and capacitor 5 will then be charged to 283 volts. When the supply voltage 2 again reverses polarity and becomes negative relative to ground, capacitor 10 again charges to the one hundred seventy peak voltage of the supply. As supply voltage 2 again becomes positive relative to ground, a portion of the 170 volts on capacitor 10 will again transfer to capacitor 5. The value of the voltage transferred from capacitor 10 to capacitor 5 during each cycle of the AC supply is given by the expression AV, W V,, where:
A V, the incremental voltage transfer from capacitor 10 to capacitor 5,
V, 170 volts (the peak value of the l-volt, GO-Hertz pp y).
k the cycle index number, and where the capacitive reactance of the circuit is at least about ten times the inductive reactance.
The cycle of capacitor 10 charging to 170 volts on one half cycle of AC supply 2 and then transferring a portion of this voltage to capacitor 5 on the following half cycle will cause the voltage across capacitor 5 to increase very rapidly according to the expression:
V, I V, 2 213%,.
where:
V the voltage across capacitor 5,
V, no volts (the peak value at the l20-volt, 60-l-iertz it the cycle index number, and
n the number of cycles incurred by the circuit.
After a total of five cycles of the AC supply (n=5), V, will attain 99 percent of its final value of 340 volts. At this time, the voltage across capacitor 5 (V,) will add with the alternating supply voltage V, sin ml) and the voltage across capacitor 4 V to yield an output voltage at nodes 23 and 24 which has a peak value of 680 volts, an average value of 510 volts, and a low value of 340 volts. This additive combination of voltages results from the series circuit arrangement of the elements which may be traced from node 24, through capacitor 5, inductor 6, supply 2, and capacitor 4 to node 23. Thus, the open circuit voltage (V,,,.) at nodes 23 and 24, and hence across lamp 3, may be expressed as:
V,,, V,,+ V,sinmr+ V. which after capacitor 5 builds up to full charge, using the above values, may be written V,,.= 340+ l70sin 101+ H0 The resulting peak open circuit voltage of 680 volts is more than sufficient to ignite lamp 3.
Reignition of the lamp at the commencement of a particular half cycle of operation is accomplished in a somewhat similar manner. When the supply voltage is positive at node 20 with respect to ground, capacitor 4 charges through diode 7 and inductor 6, and capacitor 5 charges through diodes 8 and 9 and inductor 6, as before. Capacitor 10 will have retained a residual voltage with the indicated polarity. This residual voltage corresponds to the extinction voltage of the lamp following the previous half cycle of operation and will add with the voltage across capacitor 4 to produce a voltage which is positive at node 24 and negative at node 23.
The voltage necessary to re-start the lamp on each half cycle is always less than the original ignition voltage of the lamp due to the residual charge remaining in the lamp between half cycles of operation. This residual charge occurs as a result of the lamp wall current (charge moving outward to the wall of the lamp, perpendicular to the axis of the lamp) decaying to zero at a slower rate than the axial lamp current which goes to zero between half cycles. This persistent wall current assures that there will be free charge present in the lamp at the commencement of each half cycle of lamp operation. Hence, the value of the reignition voltage will be determined by the peculiar characteristics of the lamp being operated in the circuit. These peculiarities, such as mercury vapor pressure, fill gas pressure, and tube diameter and length, will determine the initial voltage across capacitor 10. The voltage buildup across capacitor 4 will continue until the voltage appearing between nodes 23 and 24 reaches the reignition voltage required for a particular lamp.
The above discussion refers to the reignition process when the supply voltage is positive at node 20 with respect to ground. A similar process occurs when the supply voltage is negative at node 20 with respect to ground. This time, however, capacitor 4 will contain the residual lamp extinction voltage and capacitor 10 will charge through inductor 6 and diode II from supply 2 to produce the required reignition voltage appearing between nodes 23 and 24.
Once the lamp reignites, energy will be supplied to the lamp at two distinct pulse frequencies. Approximately 50 percent of the energy delivered to the lamp is suppiied through a Hertz pulsating DC current wave, illustrated by curve I, in FIG. 2. This pulse train is the result of the rectification process performed on the 60-Hertz AC input current by the full wave bridge comprising diodes 7, 8, II and 12. Specifically, when AC supply 2 is positive with reference to ground the lam is supplied current through diode 8, diode 9, lamp 3, inductor l3, diode 7 and inductor 6. On the alternate AC half cycle the current path consists of inductor 6, diode ll, diode 9, lamp 3, inductor l3 and diode 12. Although the current in inductor 6 is seen to reverse polarity every half cycle of the AC supply, the lamp current remains unidirectional and has a pulse frequency of 120 Hertz.
The remaining 50 percent of the energy delivered to the lamp is supplied through a higher frequency pulsating D.C. current wave having a frequency that depends on the resonant characteristic of the inductive-capacitive circuit comprising inductor l3, and the equivalent inductive element in the lamp.
This formation of a resonant switching circuit comprises the second function of capacitors 4, 5 and 10. The capacitors alternate in this function on every half cycle of supply 2 by the discharge of stored energy following lamp reignition. More specifically, when the supply voltage is positive at node 20 with respect to ground, the resonant switching circuit comprises lamp 3, inductor l3, and the parallel combination of capacitors 4 and 5. in particular, the discharge path of capacitor 4 comprises: capacitor 4, diode 8, diode 9, node 24, lamp 3, inductor l3, and node 23', and the discharge path of capacitor 5 comprises: capacitor 5, node 24, lamp 3, inductor l3, node 23, diode 7 and node 21. When the supply voltage is negative at node 20 with respect to ground, the resonant switching circuit comprises lamp 3, inductor l3, and capacitor 10. In particular, the discharge path of capacitor I0 comprises: node 22, diode 9, node 24, lamp 3, inductor l3, node 23, and diode 12. For symmetrical lamp operation during both half cycles of the supply voltage, the parallel capacitance of capacitors 4 and 5 is made equal to the value of capacitor 10.
In other words 2C, 2C, C where C Q and C are the values of capacitors 4, 5 and 10, respectively.
The characteristic or resonant frequency of the circuit is (2 1r LC), where L= the inductance of lamp 3 plus that of inductor l3 and C the capacitance of the parallel combination of capacitors 4 and 5 during the half cycle that the supply voltage is positive at node 20 with respect to ground, and the capacitance of capacitor during the half cycle that the supply voltage is negative at node with respect to ground. The resonant frequency is preferably several times that of the supply frequency, as illustrated in FIG. 2, where curve V, represents the resonant frequency signal as obtained by observing the voltage across inductor 13. The exponentially damped sinusoid appearing every half cycle of the supply represents the ringing voltage across the inductor 13 during discharge of one of said capacitor sets.
The l20-l-lertz frequency (curve I.) and the resonant frequency (curve V,,,) have opposing polarities and therefore the resulting lamp current waveform will consist of the difference in their magnitudes. This produces a lamp current comprised of a l20-Hertz pulsating DC waveform modulated by the resonant circuit frequency signal, as illustrated by curve I in FIG. 2. The effect of this modulation process on the lamp discharge characteristic is one of alternately switching the discharge mode from a positive to a negative characteristic (i.e. from a low to a high conducting state). The peaks of the curve and the zero crosings of the curve V, represent the points at which the lamp is switched.
in going from a positive to a negative discharge characteristic (i.e. from a low to high conduction), the lamp can be thought of as representing an ON-OFF switch in the circuit of P10. 2. When the lamp discharge characteristic is negative i.e. conductance is high), the switch is turning ON, in that the rate of ionization in the lamp is increasing, causing the lamp current to increase also, as illustrated by each positive-going slope of the curve I When the lamp discharge characteristic is positive (i.e. low conductance), the switch is turning OFF since the rate of ionization within the lamp is decreasing with the lamp current likewise decreasing, as illustrated by each negative-going slope of the curve I It is this switching action within the lamp that generates the circuit perturbations which are tuned by the resonant circuit, composed of inductor 13 and the appropriate capacitors (as described above), to produce the lamp current modulation. The modulation in turn switches the lamp. The process is seen to be regenerative in nature with inductor 13, the appropriate capacitors (i.e. parallel capacitors 4 and 5 on the positive half cycle, and capacitor 10 on the negative half cycle) and lamp 3 constituting a selfsustaining oscillator circuit.
There is a distinct advantage in generating a lamp current waveform of this type. By supplying a significant portion of the energy to the lamp at a higher frequency, a portion of the inductive ballasting element can be reduced in both size and cost. Since the inductive ballast impedance is directly proportional to frequency (210 a small inductance, (inductor 13) can exercise a proportionately greater degree of current control at a higher frequency than the larger inductive element, (inductor 6) operating at a lower frequency.
In one specific example of an electronic ballast of this invention used to operate a 40-watt high pressure mercury vapor lamp, capacitors 4, 5 and [0 were dry, electrolytic capacitors having ratings of l microfarad 200 volts, l microfarad 400 volts and 2 microfarads 200 volts, respectively. Diode 7, 8, 9, I1 and 12 each had ratings of 1.0 ampere, 200 peak inverse volts. Inductors 6 and [3 had iron cores and were rated at 220 and ll millihenries, respectively. Supply 3 was a 60-l-lertz, l20-volt AC supply.
Electrical measurements made during operation of the ballast were as follows:
Line Lamp- Voltage 120 v., AC 89.5 v., DC
Current 0.5! ampere 0.54 ampere Power 47.0 watts 42.5 watts Power Factor 0.79
Open Circuit Voltage 680 v., DC Current cm: Factor 1.65 1.93 Voltage Crest Factor [.41 1.73 Starting Current 1.0 ampere Power Transfer EEiciency 0.9l
The current and voltage crest factors refer to the ratio of the peak values thereof to the average values. For the purpose of lamp efliciency, the lamp crest factor is preferably less than 2. Said crest factor can be reduced by increasing the inductance of inductor 13, but the impedance losses therein will be increased.
The equivalent inductance for a 40-watt lamp of this type is about 25 millihenries. The resonant characteristics of the ballast then are based on the inductance of lamp 3 (25 millihenties), the inductance of inductor 13 (ll millihenries) and the capacitance of the parallel combination of capacitors 4 and 5 on the positive half cycle and of capacitor 10 on the negative half cycle (2C 2Q C 2 rnicrofarads). Thus, the resonant frequency of the ballast is Hertz and the power supplied to the lamp comists of the difi'erence in magnitude between the SQS-Hertz waveform and the l20-l-lertz pulsating DC waveform. The waveforms of FIG. 2 were obtained from this ballast circuit, curve I, being the l20-l-lertz output of the full wave rectifier, curve V. being the 595-l-lertz resonant frequency signal as represented by the voltage across inductor l3, and curve being the modulatedlamp current.
I claim: 1. A ballast circuit for operating an arc discharge lamp from an AC power supply, said circuit comprising:
a first capacitive means; means coupling said AC power supply to said first capacitive means for charging said first capacitive means with energy in half cycles of a first polarity of said AC supply;
first rectifying means shunting said first capacitive means for restricting the charging thereof to one direction of said first polarity a second capacitive means;
means coupling said AC power supply to said second capacitive means for charging said second capacitive means with energy in half cycles of a second polarity of said AC supply;
second rectifying means shunting said second capacitive means for restricting the charging thereof to one direction of said second polarity a first inductor connected in series with each of said first and second capacitive means and said AC supply;
a second inductor connected in series with said lamp; and
means coupling each of said first and second capacitive means across the series combination of said lamp and second inductor for discharging said first and second capacitive means through the conducting lamp and second inductor in half cycles of said first and second polarity, respectively, of said AC supply during normal lamp operation;
said lamp, second inductor and first capacitive means comprising a resonant circuit operative during each discharge of said first capacitive means through the conducting lamp and second inductor to produce a signal having a resonant frequency greater than twice the frequency of said AC supply; and
said lamp, second inductor and second capacitive means comprising a resonant circuit operative during each discharge of said second capacitive means through the conducting lamp and second inductor to produce a signal having said resonant frequency greater than twice the frequency of said AC supply.
2. The ballimt circuit of claim I further including means interconnecting said first and second capacitive means for transferring a portion of the stored energy charge from said second second capacitive means, and said means coupling each of said first and second capacitive means across the series combination of said lamp and second inductor includes means for providing unidirectional current flow through said lamp and second inductor during half cycles of both said first and second polarity of said supply during normal lamp operation.
i Q i O O

Claims (3)

1. A ballast circuit for operating an arc discharge lamp from an AC power supply, said circuit comprising: a first capacitive means; means coupLing said AC power supply to said first capacitive means for charging said first capacitive means with energy in half cycles of a first polarity of said AC supply; first rectifying means shunting said first capacitive means for restricting the charging thereof to one direction of said first polarity; a second capacitive means; means coupling said AC power supply to said second capacitive means for charging said second capacitive means with energy in half cycles of a second polarity of said AC supply; second rectifying means shunting said second capacitive means for restricting the charging thereof to one direction of said second polarity; a first inductor connected in series with each of said first and second capacitive means and said AC supply; a second inductor connected in series with said lamp; and means coupling each of said first and second capacitive means across the series combination of said lamp and second inductor for discharging said first and second capacitive means through the conducting lamp and second inductor in half cycles of said first and second polarity, respectively, of said AC supply during normal lamp operation; said lamp, second inductor and first capacitive means comprising a resonant circuit operative during each discharge of said first capacitive means through the conducting lamp and second inductor to produce a signal having a resonant frequency greater than twice the frequency of said AC supply; and said lamp, second inductor and second capacitive means comprising a resonant circuit operative during each discharge of said second capacitive means through the conducting lamp and second inductor to produce a signal having said resonant frequency greater than twice the frequency of said AC supply.
2. The ballast circuit of claim 1 further including means interconnecting said first and second capacitive means for transferring a portion of the stored energy charge from said second capacitive means to said first capacitive means during each charging period of said first capacitive means prior to the starting of said lamp.
3. The ballast circuit of claim 1 wherein said means coupling said supply to said first capacitive means includes at least a first rectifier in series with said first capacitive means, said means coupling said supply to said second capacitive means includes at least a second rectifier in series with said second capacitive means, and said means coupling each of said first and second capacitive means across the series combination of said lamp and second inductor includes means for providing unidirectional current flow through said lamp and second inductor during half cycles of both said first and second polarity of said supply during normal lamp operation.
US860985A 1969-09-25 1969-09-25 Resonator ballast for arc discharge lamps Expired - Lifetime US3676735A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86098569A 1969-09-25 1969-09-25

Publications (1)

Publication Number Publication Date
US3676735A true US3676735A (en) 1972-07-11

Family

ID=25334559

Family Applications (1)

Application Number Title Priority Date Filing Date
US860985A Expired - Lifetime US3676735A (en) 1969-09-25 1969-09-25 Resonator ballast for arc discharge lamps

Country Status (3)

Country Link
US (1) US3676735A (en)
AU (1) AU1947370A (en)
ZA (1) ZA706047B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787751A (en) * 1972-08-10 1974-01-22 Thorn Electrical Ind Ltd Ballast circuits for discharge lamps
US3857063A (en) * 1972-02-16 1974-12-24 Thorn Electrical Ind Ltd Ballast circuits for discharge lamps
US4260932A (en) * 1978-10-12 1981-04-07 Vance Johnson Method and circuit for facilitating the starting and steady state flickerless operation of a discharge lamp
EP0247218A1 (en) * 1985-03-11 1987-12-02 Lászlo Sebestyén Supply circuit for gaseous discharge lamps
GB2252687A (en) * 1991-02-11 1992-08-12 Teng Tien Ho Fluorescent lamp stabilizer circuit
US5936599A (en) * 1995-01-27 1999-08-10 Reymond; Welles AC powered light emitting diode array circuits for use in traffic signal displays
WO2001001385A1 (en) * 1999-06-29 2001-01-04 Welles Reymond Ac powered led circuits for traffic signal displays
US20030122502A1 (en) * 2001-12-28 2003-07-03 Bernd Clauberg Light emitting diode driver

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2668259A (en) * 1950-02-16 1954-02-02 Raytheon Mfg Co Electrical circuit
US3233148A (en) * 1961-04-25 1966-02-01 Gen Electric Discharge lamp ballasting circuit
US3235769A (en) * 1962-12-27 1966-02-15 Gen Electric Starting circuit for discharge lamps
US3354379A (en) * 1966-01-26 1967-11-21 Gen Electric Rectifier circuit with voltage multiplication
US3525901A (en) * 1968-02-13 1970-08-25 Microdot Inc Fluorescent lamp starting and operating circuit with a pulse starter
US3526821A (en) * 1967-09-20 1970-09-01 Frederick A Thomas Controlled circuitry for charging electrical capacitors
US3527982A (en) * 1968-07-31 1970-09-08 Gen Electric Discharge lamp ballasting

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2668259A (en) * 1950-02-16 1954-02-02 Raytheon Mfg Co Electrical circuit
US3233148A (en) * 1961-04-25 1966-02-01 Gen Electric Discharge lamp ballasting circuit
US3235769A (en) * 1962-12-27 1966-02-15 Gen Electric Starting circuit for discharge lamps
US3354379A (en) * 1966-01-26 1967-11-21 Gen Electric Rectifier circuit with voltage multiplication
US3526821A (en) * 1967-09-20 1970-09-01 Frederick A Thomas Controlled circuitry for charging electrical capacitors
US3525901A (en) * 1968-02-13 1970-08-25 Microdot Inc Fluorescent lamp starting and operating circuit with a pulse starter
US3527982A (en) * 1968-07-31 1970-09-08 Gen Electric Discharge lamp ballasting

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3857063A (en) * 1972-02-16 1974-12-24 Thorn Electrical Ind Ltd Ballast circuits for discharge lamps
US3787751A (en) * 1972-08-10 1974-01-22 Thorn Electrical Ind Ltd Ballast circuits for discharge lamps
US4260932A (en) * 1978-10-12 1981-04-07 Vance Johnson Method and circuit for facilitating the starting and steady state flickerless operation of a discharge lamp
EP0247218A1 (en) * 1985-03-11 1987-12-02 Lászlo Sebestyén Supply circuit for gaseous discharge lamps
GB2252687A (en) * 1991-02-11 1992-08-12 Teng Tien Ho Fluorescent lamp stabilizer circuit
US5936599A (en) * 1995-01-27 1999-08-10 Reymond; Welles AC powered light emitting diode array circuits for use in traffic signal displays
WO2001001385A1 (en) * 1999-06-29 2001-01-04 Welles Reymond Ac powered led circuits for traffic signal displays
US20030122502A1 (en) * 2001-12-28 2003-07-03 Bernd Clauberg Light emitting diode driver
US6853150B2 (en) 2001-12-28 2005-02-08 Koninklijke Philips Electronics N.V. Light emitting diode driver

Also Published As

Publication number Publication date
ZA706047B (en) 1971-05-27
AU1947370A (en) 1972-03-09

Similar Documents

Publication Publication Date Title
US4348615A (en) Discharge lamp operating circuit
US4958107A (en) Switching arrangement for HID lamps
US3917976A (en) Starting and operating circuit for gaseous discharge lamps
US4145638A (en) Discharge lamp lighting system using series connected starters
US3235769A (en) Starting circuit for discharge lamps
US4678968A (en) High intensity discharge lamp starting and operating apparatus
JPS6229096A (en) High pressure discharge lamp igniting/lighting apparatus
US3676735A (en) Resonator ballast for arc discharge lamps
US4959593A (en) Two-lead igniter for HID lamps
US3866088A (en) Discharge lamp starter device using a backswing voltage booster and characterized by the absence of a preheating function
US4323824A (en) Low voltage fluorescent operating circuit
US3731142A (en) High-frequency fluorescent tube lighting circuit with isolating transformer
US4117377A (en) Circuits for starting and operating ionized gas lamps
US4500812A (en) Electronic ballast circuit
CA1199961A (en) Electronic ballast system
US3626243A (en) Instantaneous starter device for a discharge lamp employing a diode thyristor
US4092564A (en) Discharge lamp operating circuit
US4045709A (en) Discharge lamp operating circuit
US4051412A (en) Discharge lamp operating circuit
US3463965A (en) Gas discharge lamp starting circuit with a pise generator control
US2870379A (en) Operating circuit for compact type arc lamps
US2938149A (en) Pulse circuit for arc lamp
JPH04212291A (en) Circuit layout proper for firing high voltage discharge lamp
US4048543A (en) Discharge lamp operating circuit
US3479558A (en) High voltage arc discharge lamp with low voltage control circuit