US3675243A - Electronic drip timing device - Google Patents

Electronic drip timing device Download PDF

Info

Publication number
US3675243A
US3675243A US4967A US3675243DA US3675243A US 3675243 A US3675243 A US 3675243A US 4967 A US4967 A US 4967A US 3675243D A US3675243D A US 3675243DA US 3675243 A US3675243 A US 3675243A
Authority
US
United States
Prior art keywords
capacitor
resistance
circuit
reset
drip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US4967A
Inventor
John F Landuyt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Illinois Tool Works Inc
Original Assignee
Illinois Tool Works Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Illinois Tool Works Inc filed Critical Illinois Tool Works Inc
Application granted granted Critical
Publication of US3675243A publication Critical patent/US3675243A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/02Metronomes
    • G04F5/025Electronic metronomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/16886Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body for measuring fluid flow rate, i.e. flowmeters
    • A61M5/1689Drip counters
    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/02Metronomes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2209/00Ancillary equipment
    • A61M2209/02Equipment for testing the apparatus

Definitions

  • ABSTRACT Electronic timing device for timing drips in intravenous feeding and similar systems can be adjusted to provide an audible or visible signal in accordance with any desired drip rate between about 4 and 300 drips per minute.
  • the device overcomes the inherent deficiency of conventional electronic metronomes which are unsuitable for adjusting drip rates since they have a first pulse period different from the remainder.
  • the first pulse period is of the exact length of the remaining pulse periods due to the presence of a circuit which can be maintained in a standby condition with its capacitor partially charged.
  • the pulse producing circuit to be actuated simultaneously with the visual observance by an operator of a drip passing a predetermined point. If the actual drop rate is different from the desired rate, the operator adjusts it and again actuates the timing device. This operation is repeated until the timing rate and the drip rate are synchronized.
  • the device is battery operated and sufficiently small as to be easily carried around the neck or in the pocket of the person using it,
  • This invention relates to timing devices and particularly to timing devices used to adjust the rate of flow of fluid to a patient such as in blood transfusions or intravenous feeding.
  • a patient such as in blood transfusions or intravenous feeding.
  • devices Although there are fairly sophisticated devices known in the prior art for automatically regulating the flow of fluid or for indicating the rate of flow, such devices would be almost prohibitively expensive to use since a complete device would have to be provided at each location where fluids were being fed. It is the usual practice in the vast majority of hospitals for the drip rate to be adjusted by a doctor or a nurse who uses a stop watch to time the drip rate. Since different fluids being administered require different drip rates varying over a substantial range such as from 4 to 300 drips per minute, one can readily appreciate that it would be physically impossible to count very high drip rates and very time consuming to count and adjust low drip rates.
  • such a device could not be operated to produce a pulse period starting with a particular drip and thus, in order to time the drip rate one would have to set the metronome to the desired rate and then observe the exact position of a drip relative to the walls of a drip tube which contains it at the time of a pulse and then observe whether or not the next drip is above or below the point where the first one was observed at a time when the next pulse or beat is heard.
  • a metronome could only be used with very high drip rates and/or long drip tubes to insure that a drip would be in motion in the tube at all times.
  • the device would have to be continually set and reset until a drip was visible at the time of a pulse. The setting and resetting would have to be continually repeated until the actual drip rate was correctly adjusted.
  • the device For the usual use of a metronome, this is of no particular importance since the device is merely used to provide a continuing beat of a desired frequency.
  • an electronic metronome or pulse producing device As a drip timer, it would appear to be desirable to be able to set the beat rate and then keep the device from pulsing or beating until a drop is observed hitting or passing a given point. Such operation would result in easier synchronization and determination of the correct rate.
  • the first pulse period is very important and has to have the same duration as the remainder.
  • Electronic metronomes commonly include a resistancecapacitance network wherein the capacitor is alternately charged and discharged to provide a series of pulses.
  • the time to charge the capacitor in such a circuit (the factor determining the duration of a pulse period) can be found from the following equation:
  • the various elements are housed in a small case which can be easily supported by a cord placed around the neck of the nurse.
  • the device includes a combination on-off and rate setting switch which connects an enclosed battery to a relaxation oscillator circuit, and also adjusts the circuit to change the beat rate of the device.
  • the output of the device is preferably audible in which case the sound is heard from a speaker enclosed in the device, or by means of an ear plug.
  • a visual signal such as a light could be used to provide a silent signal.
  • the basic operation of the circuit in the device is that when the on-off switch is turned on, a capacitor which is in parallel with a series connected transistor and speaker coil is subjected to a voltage across its terminals and initially resembles a short circuit. The voltage across the capacitor immediately starts to build up until it reaches the trigger voltage of the initially nonconducting transistor in parallel with it. At this point, the transistor becomes conductive and causes the capacitor to be discharged through the speaker. This cycle of alternate charging and discharging of the capacitor will then be repeated continually. The time period for charging and discharging the capacitor, and thus the time between pulses, can be varied by changing the resistance value in the R-C network.
  • the voltage at which the capacitor will discharge is determined by a plurality of resistors connected in series in a voltage divider network to a transistor.
  • a compensating resistor and a blocking diode in the circuit provide a temperature compensation network.
  • a normally open switch adapted to be closed by a spring loaded reset button on the outside of the case or housing permits a fixed, low value resistance to be selectively placed in the circuit in parallel with the capacitor.
  • the reset switch also electrically removes the relatively high value variable resistance used for changing the beat rate from the circuit. With the reset switch actuated, the reset resistance and the capacitor are each connected in series with a fixed resistance. The effect of the low value resistance which is inserted by the reset switch is to cause the capacitor to be charged to a voltage greater than zero and equal to the voltage which it assumes during normal operation of the device at the beginning of each charging cycle.
  • a normal operating sequence would be to turn the device on, set the rate, (beats will be produced) and then hold the circuit in a partially on condition but one wherein no pulses are produced by means of the reset button.
  • the reset hitting the bottom of a drip tube or some other point in a fluid dripping device such as an intravenous feeding apparatus. If the next drip observed comes either sooner or later than the first pulse or beat produced by the device, then the flow rate of the feeding apparatus is adjusted appropriately and the reset button is again held in until it is released when a drip is observed. This sequence of operations is then repeated until the actual drip rate corresponds to the desired drip rate.
  • FIG. 1 is a diagrammatic perspective view of a drip timing device in accordance with the invention
  • FIG. 2 is a graph showing capacitor voltage versus time for a capacitor in a prior art pulse producing relaxation oscillator circuit
  • FIG. 3 is a circuit diagram of the electronic circuit of the device.
  • FIG. 1 shows the drip timing device of the invention indicated generally at 10 and including case 11 comprising a pair of case halves l2, 14 held together by a fastener member 16.
  • the device can readily be stored in the pocket of an operator or may be hung around the operators neck by means of a pair of integral lug members 18 about which a carrying cord 20 may be attached.
  • a dial 22 is provided which includes a plurality of indicia thereon corresponding to the varying beat rates from 4-300 beats per minute which may be produced.
  • a rotary knob 24 having a pointer 26 overlies the dial 22 and is attached to an on-off switch S P and a variable resistance R, (FIG.
  • a reset button 32 on the side of the case I l is adapted to be depressed against the force of a spring (not shown) to operate a reset switch 8,, and hold the circuit of the device in a partially on" or standby condition as will be described more fully hereinafter.
  • FIG. 2 a graph of capacitor voltage versus time is plotted for a capacitor in a known relaxation oscillator circuit. Referring to the graph, one can see that the capacitor in the circuit will alternately charge and discharge and that initially the capacitor will build up a charge from an initial capacitor voltage equal to zero to a final voltage V which is the capacitor voltage at the instant prior to discharge. This increase in capacitor voltage with time as the circuit is first closed is illustrated by curve 40 while curve 48 represents the fall-off in voltage from value V to a value V,,, which is greater than zero, at the completion of discharge. The exact values of V and V depend upon the values of the various resistances in the circuit.
  • each remaining charging period can be presented by identical curves 42, 44 and 46 and each discharge period by identical curves 50, 52 and 54.
  • Identical time periods T T and T are of a duration equal to the total time required for the capacitor to charge and discharge (the horizontal components of the charging and discharging curves 42, 50 respectively).
  • a battery indicated generally at 34 having a voltage of 4.2 volts is connected between ground and a primary on-off switch S which opens and closes the battery circuit and connects the battery 34 by means of wires 60 to a common terminal point 62 connected to a resistance R, having a value of 5.6K and a parallel connected resistance R, having a value of IX.
  • R Connected in series with resistance R, are two more resistances, R having a value of 2K, and R, having a value of 10K which form a voltage dividing network.
  • Resistance R is a trimmer resistance which is tapped at a point 64 along its length by a blocking diode 66 which may be of the type sold by General Electric Co.
  • the diode 66 is in series with a resistance R, having a resistance of l meg and coacts with resistance R, to form a temperature compensation network.
  • the diode 66 is also connected to the gate G of a transistor 70 of a type sold by General Electric Co. under the number D 13Tl which has its cathode K connected to ground through the coil 72 of a 3.2 ohm speaker 74.
  • the 5.6K resistance R is connected in series with a variable resistance R, having a maximum value of 420K which in turn is connected to the anode A of the transistor 70.
  • the variable resistance R provides the variation in beat rate of the circuit and is adjustable by means of the knob 24.
  • the basic relaxation oscillator circuit is completed by a capacitor C having a value of 22 mfd which is connected in parallel with transistor 70 and speaker coil 72 between the junction of resistors R, and R and ground.
  • the circuit as described to this point is known and will produce pulses or beats having a time for the first pulse longer than the time for the remaining pulses as described in connection with the graph in FIG. 2.
  • the remainder of the circuit to be described is the portion which permits the time period of the first pulse to be equal to the time period of the remaining pulses and includes the resistance R, having a value of 1.2K and the reset switch S which has a first set of contacts which can be closed to place the resistance R, in series with the resistance R, and in parallel with the capacitor C.
  • a second set of contacts 82 on the reset switch S electrically removes the large variable resistance R from the circuit and connects resistance R, directly to the transistor 70 and capacitor C. Since the resistance R, has a value 1.2K which is approximately 20 percent of the value of the 5.6K resistance R, it is readily apparent that the voltage across the capacitance C will be approximately 20 percent of the 4.2 volt battery voltage or approximately 0.9 volts.
  • the resistance R determines the shortest time period between pulses which the device can produce. In the present device, this shortest time period is 300 pulses per minute.
  • the point 64 at which the blocking diode 66 is tapped into the trimming resistor R determines the trigger voltage of the transistor 70 which in the present embodiment is approximately 3.4 volts.
  • a speaker 74 has been shown as a means of rendering the discharge of capacitor C audible, it is obvious that an earphone could be substituted for the speaker coil 74 if the device were to be used in a relatively noisy room or if it were desired that patients not be awakened.
  • an earphone can be inserted into the circuit by means of jack 30 shown in H0. 1.
  • a visual signal such as a flashing light could signal the beat rate if appropriate changes were made in the values of the various elements of the circuit.
  • a device for producing a plurality of pulses having a period between pulses of a selected predetermined length comprising a relaxation oscillator circuit including a capacitor and a plurality of resistance members in series in a signalling means which have a time period of a predetermined length in accordance with the equation:
  • reset resistance means and reset switch means operable for selectively connecting said reset resistance means in said closed circuit in parallel connection with said capacitor and shunting one of said plurality of resistance members which has a greater value of resistance, said reset resistance means having a resistance value sufficiently low to prevent said circuit from oscillating to produce pulses while maintaining the voltage across the capacitor at a constant value equal to the value V, which it has when the reset switch is open and the circuit is oscillating to produce pulses.
  • said one of said plurality of resistance members comprises variable resistance means for varying the value of the series resistance R and thus the time tin said equation.
  • said reset switch means comprises a momentary switch having a spring biased actuator witch is depressed to be actuated in said one mode and released to be actuated in said other mode.
  • said signalling means includes a speaker for producing an audible sound.
  • said oscillator circuit includes a transistor connected in fixed parallel relation to said capacitor and operative to trigger the discharge of said capacitor only when said reset switch is in said other mode and said transistor and capacitor are at a predetermined voltage in excess of said capacitor voltage V.
  • a speaker is connected in series with said transistor, said capacitor being in parallel with said series connected transistor and speaker, said speaker producing an audible sound pulse when said capacitor discharges through said transistor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Hematology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Fluid Mechanics (AREA)
  • Multimedia (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)

Abstract

Electronic timing device for timing drips in intravenous feeding and similar systems can be adjusted to provide an audible or visible signal in accordance with any desired drip rate between about 4 and 300 drips per minute. The device overcomes the inherent deficiency of conventional electronic metronomes which are unsuitable for adjusting drip rates since they have a first pulse period different from the remainder. The first pulse period is of the exact length of the remaining pulse periods due to the presence of a circuit which can be maintained in a standby condition with its capacitor partially charged. This permits the pulse producing circuit to be actuated simultaneously with the visual observance by an operator of a drip passing a predetermined point. If the actual drop rate is different from the desired rate, the operator adjusts it and again actuates the timing device. This operation is repeated until the timing rate and the drip rate are synchronized. The device is battery operated and sufficiently small as to be easily carried around the neck or in the pocket of the person using it.

Description

United States Patent Landuyt I [54] ELECTRONIC DRIP TIMING DEVICE [72] Inventor: John F. Landuyt, Des Plaines', Ill.
[73] Assignee: Illinois Tool Works Inc., Chicago, Ill.
[22] Filed: Jan. 22, 1970 [21] Appl. No.: 4,967
[52] US. Cl ..340/384E,331/153 [51] Int. Cl ..G08b 3/00,H03k 3/31 [58] FieldofSeareh ..331/111, 131, 143, 153, 149,
J. V. Crowling, Modified UJT Oscillator, EEE- Circuit Design Engineering, Dec. 1966, pp 120- 121.
[ July4, 1972 Primary Examiner-Robert L. Griffin Assistant Examiner-John C. Martin AltorneyRobert W. Beart, Michael Kovac, Barry L. Clark and Jack R. Halvorsen [57] ABSTRACT Electronic timing device for timing drips in intravenous feeding and similar systems can be adjusted to provide an audible or visible signal in accordance with any desired drip rate between about 4 and 300 drips per minute. The device overcomes the inherent deficiency of conventional electronic metronomes which are unsuitable for adjusting drip rates since they have a first pulse period different from the remainder. The first pulse period is of the exact length of the remaining pulse periods due to the presence of a circuit which can be maintained in a standby condition with its capacitor partially charged. This permits the pulse producing circuit to be actuated simultaneously with the visual observance by an operator of a drip passing a predetermined point. If the actual drop rate is different from the desired rate, the operator adjusts it and again actuates the timing device. This operation is repeated until the timing rate and the drip rate are synchronized. The device is battery operated and sufficiently small as to be easily carried around the neck or in the pocket of the person using it,
8 Claims, 3 Drawing Figures P'A'TENTE'DJUL 4 m2 3, 675 243 A PRIQR ART y- V g 40 48 42 50 44 52 46 54 0.-
\ l N VEN TOR.
5 John F Landuyf His Arr'ys ELECTRONIC DRIP TIMING DEVICE BACKGROUND OF THE INVENTION This invention relates to timing devices and particularly to timing devices used to adjust the rate of flow of fluid to a patient such as in blood transfusions or intravenous feeding. Although there are fairly sophisticated devices known in the prior art for automatically regulating the flow of fluid or for indicating the rate of flow, such devices would be almost prohibitively expensive to use since a complete device would have to be provided at each location where fluids were being fed. It is the usual practice in the vast majority of hospitals for the drip rate to be adjusted by a doctor or a nurse who uses a stop watch to time the drip rate. Since different fluids being administered require different drip rates varying over a substantial range such as from 4 to 300 drips per minute, one can readily appreciate that it would be physically impossible to count very high drip rates and very time consuming to count and adjust low drip rates.
Since the drip rate'range is generally within the range of timing pulses produced by electronic metronomes, one might think that such a device could be used to aid in the detemtination of drip rates. However, certain problems are presented depending on which type of metronome is used. For example, in a metronome or beat producing device such as shown in U.S. Pat. No. 3,271,670, a single rotatably adjustable control member is used to turn on the device and then set the frequency to a desired rate. Obviously, such a device could not be operated to produce a pulse period starting with a particular drip and thus, in order to time the drip rate one would have to set the metronome to the desired rate and then observe the exact position of a drip relative to the walls of a drip tube which contains it at the time of a pulse and then observe whether or not the next drip is above or below the point where the first one was observed at a time when the next pulse or beat is heard. Obviously, such a metronome could only be used with very high drip rates and/or long drip tubes to insure that a drip would be in motion in the tube at all times. For lower drip rates, the device would have to be continually set and reset until a drip was visible at the time of a pulse. The setting and resetting would have to be continually repeated until the actual drip rate was correctly adjusted.
Other electronic metronome devices, such as, for example, the device such as in US. Pat. No. 2,522,492, utilize separate controls for setting the beat rate and for turning the device on and off. Theoretically, it would seem that such a device could be used for timing drip rates since a user could set the metronome to beat at a rate equal to the required drip rate and then simply turn the device on when the drip is observed at a particular location such as the bottom of the drip tube. It has been found, however, that such a proposed method of operation of a metronome as a drip timer is not suitable since the very nature of electronic pulse producing circuits provides for a first pulse which is of longer duration than the remaining pulses. For the usual use of a metronome, this is of no particular importance since the device is merely used to provide a continuing beat of a desired frequency. In order, however, to utilize an electronic metronome or pulse producing device as a drip timer, it would appear to be desirable to be able to set the beat rate and then keep the device from pulsing or beating until a drop is observed hitting or passing a given point. Such operation would result in easier synchronization and determination of the correct rate. Obviously, if such a means of determining drip rates is to be useful, the first pulse period is very important and has to have the same duration as the remainder.
Electronic metronomes commonly include a resistancecapacitance network wherein the capacitor is alternately charged and discharged to provide a series of pulses. The time to charge the capacitor in such a circuit (the factor determining the duration of a pulse period) can be found from the following equation:
t time R series resistance C capacitance V, battery voltage V capacitor voltage just prior to discharge V initial capacitor voltage It can be readily seen from the equation that the first pulse period will be longer than the remaining ones when the circuit is turned on since the capacitor has to start charging from an initial voltage, V,, 0 rather than the higher initial voltage which it' would have at the beginning of each following time period. It is thus apparent that trying to start synchronization with the capacitor at zero volts, such as would be the case if the capacitor were shorted out or the circuit closed. by an onofi" switch, would be unsatisfactory and would result in the first between drops and beats.
SUMMARY Among the objects of this invention are to provide a simple, effective, economical, and compact device for aiding a nurse or other person in quickly and accurately adjusting the drip rate of a fluid feeding apparatus.
These and other objects are obtained by the present invention. In the preferred embodiment of the invention, the various elements are housed in a small case which can be easily supported by a cord placed around the neck of the nurse. The device includes a combination on-off and rate setting switch which connects an enclosed battery to a relaxation oscillator circuit, and also adjusts the circuit to change the beat rate of the device. The output of the device is preferably audible in which case the sound is heard from a speaker enclosed in the device, or by means of an ear plug. Alternatively, a visual signal such as a light could be used to provide a silent signal.
The basic operation of the circuit in the device is that when the on-off switch is turned on, a capacitor which is in parallel with a series connected transistor and speaker coil is subjected to a voltage across its terminals and initially resembles a short circuit. The voltage across the capacitor immediately starts to build up until it reaches the trigger voltage of the initially nonconducting transistor in parallel with it. At this point, the transistor becomes conductive and causes the capacitor to be discharged through the speaker. This cycle of alternate charging and discharging of the capacitor will then be repeated continually. The time period for charging and discharging the capacitor, and thus the time between pulses, can be varied by changing the resistance value in the R-C network. Obviously, when the R-C value is increased, it will take a longer time for the capacitor to charge and the beat rate will be slower. Conversely, decreasing the R-C value will cause the capacitor to discharge sooner and thus have a higher beat frequency. The voltage at which the capacitor will discharge, its trigger voltage, is determined by a plurality of resistors connected in series in a voltage divider network to a transistor. A compensating resistor and a blocking diode in the circuit provide a temperature compensation network.
A normally open switch adapted to be closed by a spring loaded reset button on the outside of the case or housing permits a fixed, low value resistance to be selectively placed in the circuit in parallel with the capacitor. The reset switch also electrically removes the relatively high value variable resistance used for changing the beat rate from the circuit. With the reset switch actuated, the reset resistance and the capacitor are each connected in series with a fixed resistance. The effect of the low value resistance which is inserted by the reset switch is to cause the capacitor to be charged to a voltage greater than zero and equal to the voltage which it assumes during normal operation of the device at the beginning of each charging cycle. A normal operating sequence would be to turn the device on, set the rate, (beats will be produced) and then hold the circuit in a partially on condition but one wherein no pulses are produced by means of the reset button. The reset hitting the bottom of a drip tube or some other point in a fluid dripping device such as an intravenous feeding apparatus. If the next drip observed comes either sooner or later than the first pulse or beat produced by the device, then the flow rate of the feeding apparatus is adjusted appropriately and the reset button is again held in until it is released when a drip is observed. This sequence of operations is then repeated until the actual drip rate corresponds to the desired drip rate.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagrammatic perspective view of a drip timing device in accordance with the invention;
FIG. 2 is a graph showing capacitor voltage versus time for a capacitor in a prior art pulse producing relaxation oscillator circuit; and
FIG. 3 is a circuit diagram of the electronic circuit of the device.
DESCRIPTION OF THE PREFERRED EMBODIMENT FIG. 1 shows the drip timing device of the invention indicated generally at 10 and including case 11 comprising a pair of case halves l2, 14 held together by a fastener member 16. The device can readily be stored in the pocket of an operator or may be hung around the operators neck by means of a pair of integral lug members 18 about which a carrying cord 20 may be attached. At one end of the device 10, a dial 22 is provided which includes a plurality of indicia thereon corresponding to the varying beat rates from 4-300 beats per minute which may be produced. A rotary knob 24 having a pointer 26 overlies the dial 22 and is attached to an on-off switch S P and a variable resistance R, (FIG. 3) mounted inside the case for turning the device on and off and setting the pulse or beat rate to any value throughout the range of 4-300 beats per minute. The audible signal produced by the device can be heard either through speaker openings 28 or by means of an ear phone (not shown) which may be connected to the device by means of jack 30. A reset button 32 on the side of the case I l is adapted to be depressed against the force of a spring (not shown) to operate a reset switch 8,, and hold the circuit of the device in a partially on" or standby condition as will be described more fully hereinafter.
In FIG. 2, a graph of capacitor voltage versus time is plotted for a capacitor in a known relaxation oscillator circuit. Referring to the graph, one can see that the capacitor in the circuit will alternately charge and discharge and that initially the capacitor will build up a charge from an initial capacitor voltage equal to zero to a final voltage V which is the capacitor voltage at the instant prior to discharge. This increase in capacitor voltage with time as the circuit is first closed is illustrated by curve 40 while curve 48 represents the fall-off in voltage from value V to a value V,,, which is greater than zero, at the completion of discharge. The exact values of V and V depend upon the values of the various resistances in the circuit. After the first capacitor charging period represented by the curve 40, each remaining charging period can be presented by identical curves 42, 44 and 46 and each discharge period by identical curves 50, 52 and 54. Identical time periods T T and T are of a duration equal to the total time required for the capacitor to charge and discharge (the horizontal components of the charging and discharging curves 42, 50 respectively). It will be readily appreciated that the time period T, corresponding to the first charging curve 40 and the discharge curve 48 will be longer than the remaining time periods T T and T., by the amount of time necessary for the capacitor to charge when turned on from a voltage value equal to zero to a voltage value equal to V Since it is necessary, in order for a pulse producing device to be useful in adjusting drip rates for the first time period T, to be equal in length to the remaining periods T T T the time period T, must be shortened. This can be accomplished by the circuit shown in FIG. 3 which permits the length of charging curve 40 to be shortened by an amount equal to the length of curve 56 between voltage V =0 and the value of V, which is greater than zero which is indicated by the lower dotted line in FIG. 2.
Referring to the circuit diagram of FIG. 3, a battery indicated generally at 34 having a voltage of 4.2 volts is connected between ground and a primary on-off switch S which opens and closes the battery circuit and connects the battery 34 by means of wires 60 to a common terminal point 62 connected to a resistance R, having a value of 5.6K and a parallel connected resistance R, having a value of IX. Connected in series with resistance R,, are two more resistances, R having a value of 2K, and R,, having a value of 10K which form a voltage dividing network. Resistance R, is a trimmer resistance which is tapped at a point 64 along its length by a blocking diode 66 which may be of the type sold by General Electric Co. under the number IN 4154. The diode 66 is in series with a resistance R,, having a resistance of l meg and coacts with resistance R,, to form a temperature compensation network. The diode 66 is also connected to the gate G of a transistor 70 of a type sold by General Electric Co. under the number D 13Tl which has its cathode K connected to ground through the coil 72 of a 3.2 ohm speaker 74.
The 5.6K resistance R, is connected in series with a variable resistance R, having a maximum value of 420K which in turn is connected to the anode A of the transistor 70. The variable resistance R provides the variation in beat rate of the circuit and is adjustable by means of the knob 24. The basic relaxation oscillator circuit is completed by a capacitor C having a value of 22 mfd which is connected in parallel with transistor 70 and speaker coil 72 between the junction of resistors R, and R and ground.
The circuit as described to this point is known and will produce pulses or beats having a time for the first pulse longer than the time for the remaining pulses as described in connection with the graph in FIG. 2.
The remainder of the circuit to be described is the portion which permits the time period of the first pulse to be equal to the time period of the remaining pulses and includes the resistance R, having a value of 1.2K and the reset switch S which has a first set of contacts which can be closed to place the resistance R, in series with the resistance R, and in parallel with the capacitor C. A second set of contacts 82 on the reset switch S electrically removes the large variable resistance R from the circuit and connects resistance R, directly to the transistor 70 and capacitor C. Since the resistance R, has a value 1.2K which is approximately 20 percent of the value of the 5.6K resistance R,, it is readily apparent that the voltage across the capacitance C will be approximately 20 percent of the 4.2 volt battery voltage or approximately 0.9 volts. Since this value is less than the trigger voltage of the transistor 70 which has a value of approximately 3.4 volts, it is obvious that the capacitor C cannot discharge through the transistor 70 and will retain its charge as long as the switch Sp is closed and the reset switch S is depressed by finger pressure on the reset push button 32. Since the values of the various resistances are chosen to cause the capacitor C to be charged to a voltage which is equal to the value V on the lower dotted line in FIG. 2, it will be readily apparent that releasing the reset switch S such as when a drip is observed in an intravenous feeding apparatus, will result in a first pulse having a duration of time equal to that of the remaining pulses which will be produced after the reset switch S R is released.
The resistance R, determines the shortest time period between pulses which the device can produce. In the present device, this shortest time period is 300 pulses per minute. The point 64 at which the blocking diode 66 is tapped into the trimming resistor R determines the trigger voltage of the transistor 70 which in the present embodiment is approximately 3.4 volts. Once the trimming resistor R is initially adjusted, to the remaining circuit components to provide an accurate beat rate, no further adjustment should be necessary in order to maintain the accuracy of the pulse rate produced by the device as long as the battery 34 is in good condition.
Although a speaker 74 has been shown as a means of rendering the discharge of capacitor C audible, it is obvious that an earphone could be substituted for the speaker coil 74 if the device were to be used in a relatively noisy room or if it were desired that patients not be awakened. For this purpose, an earphone can be inserted into the circuit by means of jack 30 shown in H0. 1. Alternatively, a visual signal such as a flashing light could signal the beat rate if appropriate changes were made in the values of the various elements of the circuit.
1 claim:
1. A device for producing a plurality of pulses having a period between pulses of a selected predetermined length comprising a relaxation oscillator circuit including a capacitor and a plurality of resistance members in series in a signalling means which have a time period of a predetermined length in accordance with the equation:
t= RC ln V, V,,/V V, where:
r time R series resistance C capacitance V,, battery voltage V capacitor voltage V initial capacitor voltage primary switch means for connecting the battery to close said oscillator circuit; reset resistance means and reset switch means operable for selectively connecting said reset resistance means in said closed circuit in parallel connection with said capacitor and shunting one of said plurality of resistance members which has a greater value of resistance, said reset resistance means having a resistance value sufficiently low to prevent said circuit from oscillating to produce pulses while maintaining the voltage across the capacitor at a constant value equal to the value V, which it has when the reset switch is open and the circuit is oscillating to produce pulses.
2. The device as described in claim 1 wherein said reset switch means is operative when actuated in one mode to connect said reset resistance in said circuit in parallel connection with said capacitor and to remove said one of said plurality of resistance members from series connection with said capacitor, said switch being operative when actuated in another mode to remove said reset resistance from said circuit and to restore said one of said plurality of resistance members to series connection with said capacitor.
3. The device as described in claim 2 wherein said one of said plurality of resistance members comprises variable resistance means for varying the value of the series resistance R and thus the time tin said equation.
4. The device as described in claim 2 wherein said reset switch means comprises a momentary switch having a spring biased actuator witch is depressed to be actuated in said one mode and released to be actuated in said other mode.
5. The device of claim 3 wherein said primary switch means and said variable resistance means are operatively interconnected for actuation by a common control member.
6. The device of claim 1 wherein said signalling means includes a speaker for producing an audible sound.
7. The device of claim 2 wherein said oscillator circuit includes a transistor connected in fixed parallel relation to said capacitor and operative to trigger the discharge of said capacitor only when said reset switch is in said other mode and said transistor and capacitor are at a predetermined voltage in excess of said capacitor voltage V.
8. The device of claim 7 wherein a speaker is connected in series with said transistor, said capacitor being in parallel with said series connected transistor and speaker, said speaker producing an audible sound pulse when said capacitor discharges through said transistor.

Claims (8)

1. A device for producing a plurality of pulses having a period between pulses of a selected predetermined length comprising a relaxation oscillator circuit including a capacitor and a plurality of resistance members in series in a signalling means which have a time period of a predetermined length in accordance with the equation: t RC 1n VB - Vo/VB - Vc where: t time R series resistance C capacitance VB battery voltage VC capacitor voltage Vo initial capacitor voltage primary switch means for connecting the battery to close said oscillator circuit; reset resistance means and reset switch means operable for selectively connecting said reset resistance means in said closed circuit in parallel connection with said capacitor and shunting one of said plurality of resistance members which has a greater value of resistance, said reset resistance means having a resistance value sufficiently low to prevent said circuit from oscillating to produce pulses while maintaining the voltage across the capacitor at a constant value equal to the value Vo which it has when the reset switch is open and the circuit is oscillating to produce pulses.
2. The device as described in claim 1 wherein said reset switch means is operative when actuated in one mode to connect said reset resistance in said circuit in parallel connection with said capacitor and to remove said one of said plurality of resistance members from series connection with said capacitor, said switch being operative when actuated in another mode to remove said reset resistance from said circuit and to restore said one of said plurality of resistance members to series connection with said capacitor.
3. The device as described in claim 2 wherein said one of said plurality of resistance members comprises variable resistance means for varying the value of the series resistance R and thus the time t in said equation.
4. The device as described in claim 2 wherein said reset switch means comprises a momentary switch having a spring biased actuator witch is depressed to be actuated in said one mode and released to be actuated in said other mode.
5. The device of claim 3 wherein said primary switch means and said variable resistance means are operatively interconnected for actuation by a common control member.
6. The device of claim 1 wherein said signalling means includes a speaker for producing an audible sound.
7. The device of claim 2 wherein said oscillator circuit includes a transistor connected in fixed parallel relation to said capacitor and operative to trigger the discharge of said capacitor only when said reset switch is in said other mode and said transistor and capacitor are at a predetermined voltage in excess of said capacitor voltage V.
8. The device of claim 7 wherein a speaker is connected in series with said transistor, said capacitor being in parallel with said series connected transistor and speaker, said speaker producing an audible sound pulse when said capacitor discharges through said transistor.
US4967A 1970-01-22 1970-01-22 Electronic drip timing device Expired - Lifetime US3675243A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US496770A 1970-01-22 1970-01-22

Publications (1)

Publication Number Publication Date
US3675243A true US3675243A (en) 1972-07-04

Family

ID=21713445

Family Applications (1)

Application Number Title Priority Date Filing Date
US4967A Expired - Lifetime US3675243A (en) 1970-01-22 1970-01-22 Electronic drip timing device

Country Status (1)

Country Link
US (1) US3675243A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2616239A1 (en) * 1987-06-04 1988-12-09 Rechem Fabrice Van Device for displaying a metronome rate and for modulating the frequency of the sound signal produced
US4971059A (en) * 1986-07-28 1990-11-20 Niewald Jack L Medical timing device
US5040790A (en) * 1988-12-16 1991-08-20 Swingpacer Corporation Apparatus for pacing
FR2668369A1 (en) * 1990-10-30 1992-04-30 Servelle Lucien Electronic drip meter with sound rhythm for regulating perfusion in the medical field
US5464957A (en) * 1993-01-27 1995-11-07 The Babcock & Wilcox Company Manual arc welding speed pacer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3155879A (en) * 1960-12-07 1964-11-03 Gen Electric Tripping arrangement for an electric circuit breaker
US3324779A (en) * 1964-05-26 1967-06-13 Asahi Optical Co Ltd Photoelectric time control shutter circuit for photographic camera
US3364441A (en) * 1966-03-07 1968-01-16 Elastic Stop Nut Corp Low frequency transistor relaxation oscillator
US3365651A (en) * 1964-01-16 1968-01-23 Lorain Prod Corp Apparatus and method for synchronizing an inverter to a source of a.c. power
US3466472A (en) * 1965-04-16 1969-09-09 Bliss Co Timing circuit method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3155879A (en) * 1960-12-07 1964-11-03 Gen Electric Tripping arrangement for an electric circuit breaker
US3365651A (en) * 1964-01-16 1968-01-23 Lorain Prod Corp Apparatus and method for synchronizing an inverter to a source of a.c. power
US3324779A (en) * 1964-05-26 1967-06-13 Asahi Optical Co Ltd Photoelectric time control shutter circuit for photographic camera
US3466472A (en) * 1965-04-16 1969-09-09 Bliss Co Timing circuit method and apparatus
US3364441A (en) * 1966-03-07 1968-01-16 Elastic Stop Nut Corp Low frequency transistor relaxation oscillator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. V. Crowling, Modified UJT Oscillator, EEE Circuit Design Engineering, Dec. 1966, pp. 120 121. *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4971059A (en) * 1986-07-28 1990-11-20 Niewald Jack L Medical timing device
FR2616239A1 (en) * 1987-06-04 1988-12-09 Rechem Fabrice Van Device for displaying a metronome rate and for modulating the frequency of the sound signal produced
US5040790A (en) * 1988-12-16 1991-08-20 Swingpacer Corporation Apparatus for pacing
FR2668369A1 (en) * 1990-10-30 1992-04-30 Servelle Lucien Electronic drip meter with sound rhythm for regulating perfusion in the medical field
US5464957A (en) * 1993-01-27 1995-11-07 The Babcock & Wilcox Company Manual arc welding speed pacer

Similar Documents

Publication Publication Date Title
US5140564A (en) Exam timer
US3675243A (en) Electronic drip timing device
US3623052A (en) Automatic infusion apparatus
JPS611714B2 (en)
US3540344A (en) Miniaturized metronome with earphone and voice amplifier
US4061927A (en) Timing system for watering devices
US3599627A (en) Method and instrument for determining the pulse rate of a person with an implanted heart pacer
US4018131A (en) Electronic metronome
US4035720A (en) Ion gauge system
US3322115A (en) Achilles reflex test apparatus
US3332076A (en) Reading timer
GB1013976A (en) Variable time delay sequencing arrangement
US3320608A (en) After beat metronome
US4036431A (en) Method and apparatus for use in setting a counter
US4576484A (en) Memory enhancing apparatus
JPS5644227A (en) Timer device
US3681613A (en) Timing circuit
JPH0143113Y2 (en)
US3498169A (en) Accelerating metronome
US2906963A (en) Polypulse generator
JPS5474315A (en) Transceiver unit
JPS626188B2 (en)
SU564616A1 (en) Lightning meter calibration device
SU1498483A1 (en) Orthodontic device
Thorne et al. A generator of very low frequency pulses or long time intervals.