US3675231A - Automatic device for making drawings - Google Patents

Automatic device for making drawings Download PDF

Info

Publication number
US3675231A
US3675231A US774132A US3675231DA US3675231A US 3675231 A US3675231 A US 3675231A US 774132 A US774132 A US 774132A US 3675231D A US3675231D A US 3675231DA US 3675231 A US3675231 A US 3675231A
Authority
US
United States
Prior art keywords
line
convertor
codes
code
convertors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US774132A
Inventor
Marlen Solomonovich Bezrodny
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3675231A publication Critical patent/US3675231A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G1/00Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data
    • G09G1/20Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data using multi-beam tubes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G1/00Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data
    • G09G1/06Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data using single beam tubes, e.g. three-dimensional or perspective representation, rotation or translation of display pattern, hidden lines, shadows
    • G09G1/08Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data using single beam tubes, e.g. three-dimensional or perspective representation, rotation or translation of display pattern, hidden lines, shadows the beam directly tracing characters, the information to be displayed controlling the deflection and the intensity as a function of time in two spatial co-ordinates, e.g. according to a cartesian co-ordinate system
    • G09G1/12Control arrangements or circuits, of interest only in connection with cathode-ray tube indicators; General aspects or details, e.g. selection emphasis on particular characters, dashed line or dotted line generation; Preprocessing of data using single beam tubes, e.g. three-dimensional or perspective representation, rotation or translation of display pattern, hidden lines, shadows the beam directly tracing characters, the information to be displayed controlling the deflection and the intensity as a function of time in two spatial co-ordinates, e.g. according to a cartesian co-ordinate system the deflection signals being produced by essentially analogue means

Definitions

  • This invention relates to the field of digital-to-graphical conversion of information and, more particularly, to automatic drawing devices for automation of designing processes through the use of digital computers.
  • Known devices are used to calculate the coordinates of each point of the line on the drawing either directly in a digital computer or in an intermediate digital unit (interpolator), which receives digital codes from the computer, said codes describing a segment of the line as a whole, for example, the coordinates of the beginning and end of the segment.
  • interpolator intermediate digital unit
  • the coordinates of every point of the line segment may be calculated also in the digital form and then converted by using the known method into the movement of the drawing element of a twocoordinate recording instrument.
  • the known devices for obtaining graphical images of separate symbols by utilizing the above-mentioned figures contain a definite set of units to generate any given symbol.
  • the devices for symbol generation can, however, produce only a definite set of symbols. When necessity arises to trace a figure beyond the set, the device should be modified.
  • An object of the present invention is to provide an automatic drawing device which would allow conversion of digital information into any lines on the drawing without preliminary calculation of the coordinates of each point of the line in digital form, without any modifications or readjustments in the above-mentioned automatic device or graphical output device.
  • the automatic drawing device which makes use of codes set by a digital computer, comprises: a convertor for translating codes describing the position of a line on the drawing into d.c. signals proportionate to the codes involved; a convertor for translating codes describing projection lengths of a line into a.c. signals proportionate to the codes involved, a convertor for translating the code describing the configuration of a line (straight line, ellipse or parabola) into signals whose frequency and phase shifts are determined by the configuration of the line; and means for summing up the signals obtained separately with respect to each coordinate, said means being connected to the deflection systems of a two-coordinate recording instrument.
  • the convertor for translating the code describing the projection length of a line on the drawing with respect to one of the coordinates into a.c. signals proportionate to the code involved may be coupled, through AND" and OR circuits connected to a line configuration decoder, to either a phase shifter or a frequency doubler and a phase shifter placed in parallel, whereas the convertor for translating the code describing the projection length of the line with respect to the other coordinate into a.c. signals proportionate to the code involved as well as a phase shifter and a frequency doubler may be connected to an a.c. voltage generator.
  • the line thickness and brightness automatic control unit may comprise: a convertor for translating the code describing the line projection length with respect to one of the coordinates into an a.c. signal, said convertor being coupled via AND and OR" circuits, connected to the line configuration decoder,- to series-connected a.c. voltage generator, phase shifter and rectifier for tracing straight lines or to series connected a.c. voltage generator and rectifier for tracing ellipses; a converter for translating the code describing the line projection length with respect to the other coordinate into an a.c. signal, said convertor being coupled to series-connected a.c. voltage generator and rectifier; a summing amplifier, whose input is connected to the convertors for translating projection length codes into a.c. signals, while its output is coupled to series-connected amplifiers, said amplifiers being coupled to the two-coordinate recording instrument via AND circuits connected to the line thickness decoder, an OR" circuit and a non-linear functional unit.
  • an arc tracing unit to the input of the two-coordinate recording instrument through an AND" circuit and a flip-flop, the coordinates of the beginning and end of the arc and an a.c. generator voltage being applied to the input of said are tracing unit.
  • FIG. 1 is a block diagram of the automatic drawing device of the invention
  • FIG. 2 is a functional diagram of the arc tracing unit
  • FIG. 3 is a functional diagram of the line thickness and brightness automatic control unit.
  • FIG. 4 illustrates an example of a configuration drawn in accordance with the present invention.
  • the automatic drawing device comprises: a digital register 1 (FIG. 1) for storing digital information concerning a line to be traced; an a.c. voltage generator 2; a decoder 3 for delivering a control signal from anyone of its outputs, depending upon the thickness of the line; a convertor for translating the code describing the configuration of a line which comprises a decoder 4 for delivering a control signal from anyone of its outputs, depending upon the configuration of the line (straight line, circumference, ellipse or parabola), a phase shifter 5.for shaping signals phase-shifted by a definite angle relative to signals produced by the a.c.
  • a digital register 1 for storing digital information concerning a line to be traced
  • an a.c. voltage generator 2 for storing digital information concerning a line to be traced
  • a decoder 3 for delivering a control signal from anyone of its outputs, depending upon the thickness of the line
  • a convertor for translating the code describing the configuration of a line which comprises
  • phase shifter being employed for obtaining straight lines and ellipses, a frequency doubler 6 and a phase shifter 7, both employed for obtaining parabola; a unit 8 for obtaining arcs, said unit being used to receive signals corresponding to the beginning and end of an arc; a line thickness and brightness automatic control unit 9, said unit being connected to decoders 3 and 4 and to a phase shifter 5; convertors l0 and 11 for translating line position codes into d.c. signals; convertors 12 and 13 for translating line projection codes into a.c. signals; means 14 and 15 for summing up signals obtained in the above-mentioned signal convertors; a two-coordinate recording instrument fashioned as a cathode-ray tube 16 with a camera 17 in front of its display.
  • the automatic device of the present invention functions as follows.
  • code A describing the abscissa of the mid-point of a line segment
  • code I describing the length of the line horizontal projection
  • code D describing the line thickness
  • code K describing the configuration of the line
  • sine ac. voltage is delivered from the generator 2 to the convertor 12 and the phase shifter 5.
  • the code A describing the abscissa of the line mid-point is applied to the convertor 10
  • the code P describing the length of the horizontal projection is applied to the convertor 12.
  • K A, k P cos K (wt+ ⁇ 11) the vertically deflecting plates of the cathode-ray tube 16, K being the amplification factor, K l for tracing straight lines and ellipses, K 2 for tracing a parabola, ll: is a phase angle equal to 0, 90 or 180 depending upon the configuration of the line to be drawn.
  • the signal produced by' the generator 2 is not delivered directly to the convertor 13; it is supplied through the phase shifter 5, one of AND circuits 18, 19, 20 and an OR circuit 21 in the case of tracing straight lines and ellipses, or through the frequency doubler 6, the 90 phase shifter 7, an AND circuit 22 and the OR circuit 21 in the case of tracing a parabola.
  • codes 0, and 6 describing the beginning and end of the arc are supplied to the unit 8, said unit generating signals X and Y, which set the flipflop 23 to l or 0" position.
  • the output voltage of said flipflop is applied to one of the inputs of an AND" circuit 24, said'circuit either permitting or inhibiting the delivery of a signal to the modulating electrode of the cathode-ray tube 16.
  • the codes 0, and 6 describing the beginning and end of an are supplied to convertors 25 and 26 (FIG. 2), which translate the codes into proportional voltages.
  • convertors 25 and 26 (FIG. 2), which translate the codes into proportional voltages.
  • a sine voltage is applied to a null indicator 27, the latter operates and sends a permissive signal to OR" circuits 28 or 29 which are coupled to the convertors 25 and 26.
  • This permissive signal indicates the beginning of the voltage-to-time" conversion which is accomplished by convertors 30 and 31 of, say, the phantastron type, said convertors shaping the signals X and Y switching the flip-flop on and off.
  • the lines thus induced on the screen are consecutively photographed onto a single frame by the camera 17.
  • a permissive signal is delivered from the decoder 4 (FIG. 1) to inputs 32 and 33 (FIG. 3), while inhibitive signals are applied to an input 34.
  • Voltage P lsin toll is simultaneously shaped by a convertor 42, which is similar to the output voltage of the convertor 38.
  • the output voltages of the convertors 38 and 42 are summed up in a summing amplifier 43 and, depending upon the line thickness set by the signals from the line thickness decoder 3 through inputs 44, 45, 46 and 47, are delivered via one of amplifiers 48, 49 or 50 to AND circuits 51, 52, 53 and 54 and, further, via an OR circuit 55 to a non-linear functional unit 56.
  • the unit 56 employing diodes, is designed to compensate the non-linearity of the recording instrument, in particular, the modulation characteristics of the cathoderay tube.
  • Signal P lcos (02/ appears at the output of the convertor 38.
  • the shaping of signal P /sin art/and subsequent process of controlling the line thickness and brightness is analogous to the above described shaping of this signal when drawing straight lines.
  • a multibeam tube can be employed.
  • the application of a cathode-ray tube with an electromagnetic deflection system is also possible.
  • any conventional two-coordinate recording instruments such as two-coordinate automatic recorders can be utilized as a recording instrument.
  • the image comprises six lines of varying shapes and thicknesses.
  • the number of states for each parameter is small, but clearly this number can be increased.
  • the lines can be traced in any succession. Let us assume that they are traced in the order in which they appear in the table above.
  • the codes of the line are transmitted from the digital device to the register 1 where they are stored throughout the time the line is being traced.
  • the code of the address Ax -7 is fed to the convertor 10.
  • the voltage Ux,, cos wt, resulting from the value U being multiplied by the input digital code, is formed at the output of the convertor 12.
  • the END circuit is, as a result, open and the AND circuit 19, and 22 are closed, whereupon the variable voltage 4 cos cut is applied to the analog input of the convertor 13 from the output terminal of the phase shifter 5.
  • the input terminal 32 of the OR circuit 35 is supplied with a permissive signal from the decoder 4, which an inhibitive equal to x/sin wtl.
  • Signals 5/sin wt/ and 5/sin wt/ are formed at the outputs of the convertors 42 and 38 and summed up in the device 43 so that the output of this summing amplifier shows a voltage equal to k-lO/sin wt, where k is the scale factor that depends on the parameters of the circuit.
  • a signal k'l0/sin wt/ is formed at the output of the summing amplifier 43.
  • the amplitude of this dignal is numerically equal to the length of the line being traced, its variation law being inverse of the law of brightness variations of the line. As a result, brightness is satisfactorily adjusted along one line or during the tracing of the lines of varying length.
  • the signal formed by the device 43 corresponds to the smallest intensity of recording i.e., it is used for tracing the thinnest lines. This signal is applied to the first input of the AND circuit 54.
  • the AND circuit 54 (FIG. 3) is open and the AND circuits 51, 52, and 53 are closed, a signal which has an intensity corresponding to the thinnest line traced being supplied to the modulating electrode of the vacuum tube 16 from the amplifier 43 via the circuits AND 54, or 55, non-linear unit 56, busbar 60 and the AND circuit 24.
  • the signal from the output of the unit 9 will continue to arrive at the vacuum tube 16 as long as the flip-flop 23 is in the 1 position, i.e., up to. the moment when the code 0 is 16. After that the beam is switched off and the tracing of the line AB is over.
  • the tracing of the line BC is then started. It must be emphasized at this point that any line, for instance, F, can be started, and the tracing of the line BC is only due to the adopted order of lines.
  • the inputs of the device are supplied with the codes of the line BC. In the manner described above a deflecting signal U 1 7+7 cos out is formed in the channel X.
  • the AND circuit 20 is open and the AND circuits l8, l9 and 22 are closed.
  • the AND circuit 57 of the unit 9 (FIG. 3) is open and the AND circuit 36 is closed.
  • the analog input of the converter 13 is supplied with a voltage /2 sin out.
  • the combined action of the signals U and U causes the light spot to move along the circumference BC in the clockwise direction.
  • a signal 7/cos wt/ is formed at the output of the convertor while a signal 7/sin w/ is formed at the output of the convertor 42 in the same manner as during the tracing of the line AB.
  • the input of the non-linear unit 56 is supplied with the signal k(7/sin wt/ 7/cos wt/) through the AND circuit 54 and the OR circuit 55.
  • This signal is nearly proportional to the recording speed.
  • a variation in the recording intensity in accordance with the above-mentioned law ensures a satisfactory adjustment of the brightness during the tracing of the arc BC.
  • the operation of these convertors is similar to that of the convertors and 11. Constant voltages proportional in value to 0 and 0 respectively, are formed at the output terminals of these convertors.
  • These signals are applied to the first inputs of the AND circuits 28 and 29, but cannot reach the inputs of the convertors 30 and 31 until the other inputs of the AND circuits 28 and 29 are supplied with a permissive signal (actuating pulse).
  • An actuating pulse is shaped in the null indicator 27 at the moment when the sinusoidal deflecting voltage passes through zero.
  • the actuating pulse is directed from the output of the device 27 to the AND circuits 28 and 29, which are thus opened by it.
  • the output voltages of the convertors 25 and 26 are applied to the input terminals of the convertors 30 and 31. From this moment corresponding to the position of the beam at point 0 of the circumference BC (FIG. 4) the convertors 30 and 31 begin the voltage-to-time conversion.
  • a pulse is shaped at the output of the convertor 30 after a time period corresponding to ten angular units and sets the flipflop 23 to the position l corresponding to the point B in FIG. 4.
  • the AND circuit 24 opens, illuminating the vacuum tube.
  • the output of the convertor 31 produces a signal after a time period corresponding to 14 angular units after the beginning of the actuating pulse. This corresponds to the point C in FIG. 4.
  • the flip-flop 23 is set to the position 0", and the AND circuit 24 closes, discontinuing illumination.
  • the tracing ofthe arc BC is over.
  • a permissive signal therefore, is available at the terminal 33 of the convertor 4, while the analog input of the convertor 13 is supplied with a signal from the terminal 65 of the phase shifter. This signal is cos wt.
  • a voltage 7% cos 2wt is applied to the analog input of the convertor 13 via the frequency doubler 6, phase shifter 7 and AND circuit 22 and the OR circuit 21.
  • the codes Ax and Ay correspond to the coordinates of the point f.
  • An automatic device for making drawings by using digital codes of separate line, the codes describing the coordinates of the centers of said lines, the projection lengths on the coordinates, the coordinates of the beginning and end of an arc, the thickness, configuration of separate lines, such as, straight lines, ellipses, parabola, said automatic device comprising: a receiving register for storing the codes received; a first convertor of codes describing the horizontal coordinates of the line centers into d.c. electric signals proportionate to said codes,
  • said first convertor being connected to said receiving register; a second convertor of codes describing the vertical coordinates of the line centers into d.c. electric signals proportionate to said codes, said second convertor being connected to said receiving register; a third convertor of codes describing the lengths of horizontal projections of the lines into ac. electric signal proportionate to said codes, said third convertor being connected to said register; a fourth convertor of codes describing the lengths of vertical projections of lines into ac.
  • a voltage generator connected to said fifth code convertor and to that of said two convertors of codes describing the lengths of the line projections not connected to said fifth code convertor, a first device for summing up the output signals of said first and third code convertors; a second device for summing up the output signals of said second and fourth code convertors; a two-coordinate recording instrument provided with systems deflecting the drawing element and with a device for recording density control, said recording instrument being connected to said first and second summing-up devices.
  • said line thickness and brightness automatic control unit comprises additional convertors of codes describing horizontal and vertical projection lengths into ac. electric signals, said additional code convertors being connected to said receiving register, and one of said additional code convertors being coupled to said a.c. generator through a first rectifier, the other of said additional code convertors being coupled to the same a.c. generator through seriesconnected phase shifter and second rectifier when tracing a straight line, said other additional code convertor being coupled to said a.c.
  • said line thickness and brightness automatic control nit also including a summing-up amplifier whose input is connected to said additional code convertors and whose output is connected to three series-connected amplifiers, each of said amplifiers via AND circuits connected to said line thickness decoder, an OR circuit and a non-linear functional unit being coupled to said two-coordinate recording instrument.
  • An automatic device as claimed in claim 4, which comprises an arc tracing unit having input terminals connected with the output of said generator and said register, the output terminal being connected through said AND circuit and said flip-flop to the input of said recording instrument.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Details Of Television Scanning (AREA)

Abstract

An automatic drawing device wherein use is made of codes set by digital computer, the codes describing the position of a line on the drawing, length of projection and the configuration of the lines.

Description

ilnieed eaies Pmm [151 3,675,231
Bezrodny July 4, 1972 541 AUTOMATIC DEVICE FOR MAKlNG 3,449,721 6/1969 Dertouzos et a1 ..340 172.5 WINGS 3,440,480 4/1969 Henderson ..315/18 3,364,479 1/1968 Henderson el al ..340/324 [72] Inventor: Marlen Solomonovich Bezrodny, Pavlova 3,335,415 8/1967 Conway et al. 340/324 Pole, 5 Mikroraion. 76, kv. 43, Kharkov, 3,434,135 3/1969 Granberg et al.... .....340/324 U.S.S.R 3320,40) 5/1967 Larrowe ..235/151 Flledi 1968 v Primary Exarniner-Kathleen H. Claffy [211 pp No: 774,132 Assistant ExaminerThomas J. DAmico Art0rneyWaters, Roditi, Schwartz & Nissen [52] US. Cl. ..340/324 A, 315/18 [57] ABSTRACT [51] Int. Cl. ..G06f 3/14 An automatic draw.
mg device wherem use is made of codes set Field of Search 340/3241 by digital computer, the codes describing the position ofa linc 340/324 172-5, 347 DA; 235/1511 154; 315/18 0n the drawing, length of projection and the configuration of the lines. [56] References Cited UNITED STATES PATENTS 8 Claims, 4 Drawing Figures 3,364,382 1/1968 Harrison ..340/324 A cede t0- direct register 2 }Vl7/Zllfl current eenvel'ter 39 99/15/11: sum/Hing device Ax l0 1 e e meme/[Emm J55; 5, P mlzaje c0/n erzfe/' IZ re 5 44 45 4e 47 I (E 11 1 l D 3 24 (1/111 7 L 50 p/Iute deem/er ,3233-34 9 enmera K unit fer euteli maul; eel 4st men a me 59 i5 2 1 [flit/mess and- E [mum/Icy 2 5 cede-[0 alter/11111119 g mirage /ce/1i/er[er FL l3 l5 (5 7 e7 fregz/efley e/zase s/zifzer wsummm "l. 4111161 [lei/[6e 9 4 eede-te-elrecz Z3 ICU/141W 9/ 8 2 Z velzaee eel/reefer I: 62
and fee Miami/1g ares AUTOMATIC DEVICE FOR MAKING DRAWINGS This invention relates to the field of digital-to-graphical conversion of information and, more particularly, to automatic drawing devices for automation of designing processes through the use of digital computers.
There are known devices for obtaining graphical data in accordance with the preset digital codes, which make it possible to represent the computer output in the form of a drawing and utilize two-coordinate recording instruments.
Known devices are used to calculate the coordinates of each point of the line on the drawing either directly in a digital computer or in an intermediate digital unit (interpolator), which receives digital codes from the computer, said codes describing a segment of the line as a whole, for example, the coordinates of the beginning and end of the segment. By using the coordinates of the beginning and end of the segment the coordinates of every point of the line segment may be calculated also in the digital form and then converted by using the known method into the movement of the drawing element of a twocoordinate recording instrument.
It is likewise known that, if influenced by signals varying sinusoidally, the drawing element is deflected by said signals into two mutually perpendicular directions, owing to which said element traces a path which is a segment of a straight line, a circumference, an ellipse or a parabola, the horizontal and vertical projection lengths of said figures being proportionate to the amplitudes of the deflecting signals.
The known devices for obtaining graphical images of separate symbols by utilizing the above-mentioned figures (conventionally called interference or Lissjous figures) contain a definite set of units to generate any given symbol.
However, a disadvantage of such devices lies in certain limitations in representing the digital computer output in a graphical form.
For instance, the employment of the devices which calculate the coordinates of each point of a line complicates the processing of computer information. Transient phenomena unavoidable in each digit-to-point position conversion limit the speed of operation of said devices, this being an obstacle in the development of quick-acting digital computers and in the efiective utilization of graphical-form visual output devices.
The devices for symbol generation can, however, produce only a definite set of symbols. When necessity arises to trace a figure beyond the set, the device should be modified.
An object of the present invention is to provide an automatic drawing device which would allow conversion of digital information into any lines on the drawing without preliminary calculation of the coordinates of each point of the line in digital form, without any modifications or readjustments in the above-mentioned automatic device or graphical output device.
With this and other objects in view, the present invention resides in that the automatic drawing device, which makes use of codes set by a digital computer, comprises: a convertor for translating codes describing the position of a line on the drawing into d.c. signals proportionate to the codes involved; a convertor for translating codes describing projection lengths of a line into a.c. signals proportionate to the codes involved, a convertor for translating the code describing the configuration of a line (straight line, ellipse or parabola) into signals whose frequency and phase shifts are determined by the configuration of the line; and means for summing up the signals obtained separately with respect to each coordinate, said means being connected to the deflection systems of a two-coordinate recording instrument.
The convertor for translating the code describing the projection length of a line on the drawing with respect to one of the coordinates into a.c. signals proportionate to the code involved may be coupled, through AND" and OR circuits connected to a line configuration decoder, to either a phase shifter or a frequency doubler and a phase shifter placed in parallel, whereas the convertor for translating the code describing the projection length of the line with respect to the other coordinate into a.c. signals proportionate to the code involved as well as a phase shifter and a frequency doubler may be connected to an a.c. voltage generator.
It may be advantageous to connect the input of the twocoordinate recording instrument through an AND" circuit to a line thickness decoder and to a line thickness and brightness automatic control unit associated with the latter, codes describing projection lengths and the configuration of the line being applied to the inputs of said control unit.
The line thickness and brightness automatic control unit may comprise: a convertor for translating the code describing the line projection length with respect to one of the coordinates into an a.c. signal, said convertor being coupled via AND and OR" circuits, connected to the line configuration decoder,- to series-connected a.c. voltage generator, phase shifter and rectifier for tracing straight lines or to series connected a.c. voltage generator and rectifier for tracing ellipses; a converter for translating the code describing the line projection length with respect to the other coordinate into an a.c. signal, said convertor being coupled to series-connected a.c. voltage generator and rectifier; a summing amplifier, whose input is connected to the convertors for translating projection length codes into a.c. signals, while its output is coupled to series-connected amplifiers, said amplifiers being coupled to the two-coordinate recording instrument via AND circuits connected to the line thickness decoder, an OR" circuit and a non-linear functional unit.
It is also expedient to connect an arc tracing unit to the input of the two-coordinate recording instrument through an AND" circuit and a flip-flop, the coordinates of the beginning and end of the arc and an a.c. generator voltage being applied to the input of said are tracing unit.
An embodiment of the present invention is described hereinbelow by way of example with reference to the accompanying drawings, wherein:
FIG. 1 is a block diagram of the automatic drawing device of the invention;
FIG. 2 is a functional diagram of the arc tracing unit; and
FIG. 3 is a functional diagram of the line thickness and brightness automatic control unit.
FIG. 4 illustrates an example of a configuration drawn in accordance with the present invention.
The automatic drawing device comprises: a digital register 1 (FIG. 1) for storing digital information concerning a line to be traced; an a.c. voltage generator 2; a decoder 3 for delivering a control signal from anyone of its outputs, depending upon the thickness of the line; a convertor for translating the code describing the configuration of a line which comprises a decoder 4 for delivering a control signal from anyone of its outputs, depending upon the configuration of the line (straight line, circumference, ellipse or parabola), a phase shifter 5.for shaping signals phase-shifted by a definite angle relative to signals produced by the a.c. voltage generator 2, said phase shifter being employed for obtaining straight lines and ellipses, a frequency doubler 6 and a phase shifter 7, both employed for obtaining parabola; a unit 8 for obtaining arcs, said unit being used to receive signals corresponding to the beginning and end of an arc; a line thickness and brightness automatic control unit 9, said unit being connected to decoders 3 and 4 and to a phase shifter 5; convertors l0 and 11 for translating line position codes into d.c. signals; convertors 12 and 13 for translating line projection codes into a.c. signals; means 14 and 15 for summing up signals obtained in the above-mentioned signal convertors; a two-coordinate recording instrument fashioned as a cathode-ray tube 16 with a camera 17 in front of its display.
The automatic device of the present invention functions as follows.
Applied to the inputs of the register 1 in their respective order are: code A, describing the abscissa of the mid-point of a line segment, code I, describing the length of the line horizontal projection, code D describing the line thickness, code K describing the configuration of the line, code A,,
describing the ordinate of the mid-point of the line segment, code P describing the length of the vertical projection of the line segment, code describing the beginning of a circumference arc and code 0 describing the end of said arc. The above-said codes are stored in the register 1. The employment of the register 1 makes it possible to obviate the idle time of the digital computer when drawing lines of various configurations (straight line, circumference, ellipse, parabola).
At the same time, sine ac. voltage is delivered from the generator 2 to the convertor 12 and the phase shifter 5.
The code A, describing the abscissa of the line mid-point is applied to the convertor 10, whereas the code P describing the length of the horizontal projection is applied to the convertor 12. After being summed up and amplified by the means 14, the output voltages are delivered to the horizontally defecting plates of the cathode-ray tube 16, said voltages varying according to:
K, A,.+% P, (cos wr)where K is amplification factor, W is ac. voltage cyclic frequency of the generator 2.
K A, k P cos K (wt+\11) the vertically deflecting plates of the cathode-ray tube 16, K being the amplification factor, K l for tracing straight lines and ellipses, K 2 for tracing a parabola, ll: is a phase angle equal to 0, 90 or 180 depending upon the configuration of the line to be drawn.
The above-said voltage results from translation of the codes A, and P, into d.c. and ac. signals and their summing up in the means 15.
The signal produced by' the generator 2 is not delivered directly to the convertor 13; it is supplied through the phase shifter 5, one of AND circuits 18, 19, 20 and an OR circuit 21 in the case of tracing straight lines and ellipses, or through the frequency doubler 6, the 90 phase shifter 7, an AND circuit 22 and the OR circuit 21 in the case of tracing a parabola.
When necessity arises to trace an arc, codes 0, and 6 describing the beginning and end of the arc are supplied to the unit 8, said unit generating signals X and Y, which set the flipflop 23 to l or 0" position. The output voltage of said flipflop is applied to one of the inputs of an AND" circuit 24, said'circuit either permitting or inhibiting the delivery of a signal to the modulating electrode of the cathode-ray tube 16.
A more detailed description of the function of the arc tracing unit 8 follows hereinbelow.
The codes 0, and 6 describing the beginning and end of an are are supplied to convertors 25 and 26 (FIG. 2), which translate the codes into proportional voltages. When a sine voltage is applied to a null indicator 27, the latter operates and sends a permissive signal to OR" circuits 28 or 29 which are coupled to the convertors 25 and 26. This permissive signal indicates the beginning of the voltage-to-time" conversion which is accomplished by convertors 30 and 31 of, say, the phantastron type, said convertors shaping the signals X and Y switching the flip-flop on and off.
Influenced by the signals coming from the summing means 14 and (FIG. 1), as well as from the AND circuit 24, the electron beam traces with its end a required line in a required area of the drawing.
The lines thus induced on the screen are consecutively photographed onto a single frame by the camera 17.
Use is made of the line thickness and brightness automatic control unit 9 to set up an instantaneous brightness intensity level, said level being the function of the signal applied to either of the outputs of the decoder 3. Apart from this, the current of the beam for every point of the drawing is automatically controlled depending upon the variations in the beam velocity, whereby the uniform brightness of the line is provided.
To elucidate the process of control over the line brightness and thickness, refer to a block-diagram in FIG. 3.
Theory and experience have shown that, if an electron beam (or any drawing element in general) deflects sinusoidally, a sufficient extent of line brightness uniformity can be obtained on condition that the beam current in tracing straight lines varies according to:
! (t)=m(D)-(P,+P,,) /sin rut/where I (t) is beam current, and m is a constant, whose magnitude depends upon the circuit parameters and the line thickness D, whereas in tracing ellipses the beam current varies as follows:
The above relationships l and (2) are accomplished in .the line brightness and thickness automatic control unit.
When straight lines are being traced, a permissive signal is delivered from the decoder 4 (FIG. 1) to inputs 32 and 33 (FIG. 3), while inhibitive signals are applied to an input 34. This results in opening an OR circuit 35, an AND circuit 36, and an OR" circuit 37, whereas a convertor 38 for translating codes describing the length of the line with respect to one of the coordinates into ac. signals is coupled through an input 39 to series connected generator 2 (FIG. 1), phase shifter 40 (FIG. 3) and rectifier 41. Voltage P,,/sin wt/ appears at the output of the converter 38.
Voltage P lsin toll is simultaneously shaped by a convertor 42, which is similar to the output voltage of the convertor 38.
The output voltages of the convertors 38 and 42 are summed up in a summing amplifier 43 and, depending upon the line thickness set by the signals from the line thickness decoder 3 through inputs 44, 45, 46 and 47, are delivered via one of amplifiers 48, 49 or 50 to AND circuits 51, 52, 53 and 54 and, further, via an OR circuit 55 to a non-linear functional unit 56. The unit 56 employing diodes, is designed to compensate the non-linearity of the recording instrument, in particular, the modulation characteristics of the cathoderay tube.
When tracing ellipses, a permissive signal is applied to the input 34, inhibitive signals being applied to the inputs 32 and 33, whereby an AND circuit 57 opens and the convertor 38 is coupled to series-connected generator 2 (FIG. 1) and rectifier 58 via the input 39.
Signal P lcos (02/ appears at the output of the convertor 38. The shaping of signal P /sin art/and subsequent process of controlling the line thickness and brightness is analogous to the above described shaping of this signal when drawing straight lines.
In the automatic drawing device, as described according to the specific embodiment of the invention,use is made of a cathode-ray tube with an electrostatic deflection system serving as a recording instrument.
To improve the speed of the device a multibeam tube can be employed. The application of a cathode-ray tube with an electromagnetic deflection system is also possible.
Furthermore, any conventional two-coordinate recording instruments, such as two-coordinate automatic recorders can be utilized as a recording instrument.
All the units mentioned in the description of the present invention (such as convertors, decoders, etc) are of the conventional type.
The operation of the device is described below in connection with the example illustrated FIG. 4.
The image comprises six lines of varying shapes and thicknesses. For the sake of simplicity, the number of states for each parameter is small, but clearly this number can be increased.
Each of the lines is described by the following codes.
The lines can be traced in any succession. Let us assume that they are traced in the order in which they appear in the table above.
6 signal is applied to the input terminal 34 of the AND circuit 57. This causes the opening of the AND circuit 36 and the supply of the analog input of the convertor 38 with a voltage Kind, K Address code Projection code Arc code Thickness Symbol Name Code Ax Ay Px Py 01 02 Name D Code All Straight line 1 7 21 1O 10 0 16 Thin 0 BC Ellipse (circle) 2 17 21 14 14 0 14 do 0 Cl) Straight line 2-.. 1 30 18 16 16 0 16 Medium- 1 AD Straight line 2 1 2O 13 36 6 0 16 Thick 2 E Ellipse 2 11 7 10 6 0 16 Thin 0 F lmabola Let us first see how signals pass through the device when AB is traced.
The codes of the line are transmitted from the digital device to the register 1 where they are stored throughout the time the line is being traced.
The code of the address Ax -7 is fed to the convertor 10. A constant voltage U=7 is generated at the output of this convertor.
The code of the projection Px -lfl arrives at the digital inputs of the convertor 12, voltage U= k Coswt (the oscillation amplitude of the generator voltages is assumed to be half the actual value to simplify description) being applied to the analog input of this convertor via the busbar 39 from the generator 2. The voltage Ux,,= cos wt, resulting from the value U being multiplied by the input digital code, is formed at the output of the convertor 12.
The output voltages of the convertors 10 and 12 are summed up in the device 14, and the horizontal deflecting system of the vacuum tube 16 is fed with the signal UIFUXL +Uxl =7+5 cos out.
The code A,, -21 arrives at the convertor 11, a constant voltage U,.,=2l being generated at the output of the convertor.
The code of the line k=0 is fed to the decoder 4, causing the appearance of a permissive signal at its output terminal 32, the terminals 33, 34 and 59 showing inhibitive signals. The END circuit is, as a result, open and the AND circuit 19, and 22 are closed, whereupon the variable voltage 4 cos cut is applied to the analog input of the convertor 13 from the output terminal of the phase shifter 5.
The code of the projection Pyl =10 is applied to the digital inputs of the convertor 13, the signal U,,,=5 cos wt being formed at the output thereof.
The output voltages of the convertors 11 and 13 are summed up in the device 15 and the signal U,,,=2l+5 cos mt is applied to the vertical deflecting system of the vacuum tube- Under the influence of the signals U and Y, the light spot on the screen traces a trajectory corresponding to the line AB.
It is not necessary to use the unit 8 for tracing this line, as well as other straight lines, full ellipses and parabolas. To avoid complicated coding and commutation, however, the embodiment under consideration employs the unit 8 in these cases as well. If need be, a portion of the su'aight line could be traced separately, in accordance with the codes 0 and 0 For tracing whole lengths, the codes of the beginning and end of the arc correspond to 0(0,-0) and to 360(0 =l6 in this example). The operation of the unit 8 will be explained in more detail when the tracing of the line BC is considered as an example.
Let us now examine how the brightness and thickness of the line AB are adjusted.
The codes Px =10 and Py =10 are applied to the digital inputs of the convertors 42 and 38 of the unit 9 (FIGS. 1 and 3).
The input 39 of this unit is supplied with the voltage U= r cos cot from the generator 2.
As a result of a phase shift in the device 40 and rectification in the device 41 there forms a voltage x/sin wt/, which is applied to the analog input of the convertor 42 and to the first input of the AND circuit 36.
The input terminal 32 of the OR circuit 35 is supplied with a permissive signal from the decoder 4, which an inhibitive equal to x/sin wtl.
Signals 5/sin wt/ and 5/sin wt/ are formed at the outputs of the convertors 42 and 38 and summed up in the device 43 so that the output of this summing amplifier shows a voltage equal to k-lO/sin wt, where k is the scale factor that depends on the parameters of the circuit.
Thus, a signal k'l0/sin wt/ is formed at the output of the summing amplifier 43. The amplitude of this dignal is numerically equal to the length of the line being traced, its variation law being inverse of the law of brightness variations of the line. As a result, brightness is satisfactorily adjusted along one line or during the tracing of the lines of varying length.
The signal formed by the device 43 corresponds to the smallest intensity of recording i.e., it is used for tracing the thinnest lines. This signal is applied to the first input of the AND circuit 54.
The thickness code D=0 is applied to the decoder 3, causing a permissive signal to appear at its output terminal 47, while inhibitive signals are available at the terminals 44, 45 and 46. As a result the AND circuit 54 (FIG. 3) is open and the AND circuits 51, 52, and 53 are closed, a signal which has an intensity corresponding to the thinnest line traced being supplied to the modulating electrode of the vacuum tube 16 from the amplifier 43 via the circuits AND 54, or 55, non-linear unit 56, busbar 60 and the AND circuit 24.
The signal from the output of the unit 9 will continue to arrive at the vacuum tube 16 as long as the flip-flop 23 is in the 1 position, i.e., up to. the moment when the code 0 is 16. After that the beam is switched off and the tracing of the line AB is over.
The tracing of the line BC is then started. It must be emphasized at this point that any line, for instance, F, can be started, and the tracing of the line BC is only due to the adopted order of lines.
The inputs of the device (register 1) are supplied with the codes of the line BC. In the manner described above a deflecting signal U 1 7+7 cos out is formed in the channel X.
The code of the line K=2 is applied to the decoder 4, causing a permissive signal to appear at its output terminal 34, while no permissive signals appear at the terminals 32, 33 and 59. As a result, the AND circuit 20 is open and the AND circuits l8, l9 and 22 are closed. For the same reason the AND circuit 57 of the unit 9 (FIG. 3) is open and the AND circuit 36 is closed.
The analog input of the converter 13 is supplied with a voltage /2 sin out.
The code P =l4 is applied to the digital inputs of the convertors 13 so that a signal U,, ,=-7 sin mt is formed at the output of the convertor.
Considering that A =2l it is not difficult to see, in view of the above arguments, that a deflecting signal equal to U -ZI sin wt is formed in the channel Y.
The combined action of the signals U and U causes the light spot to move along the circumference BC in the clockwise direction.
The application of the code K=2 causes a voltage x/cos wt/ is supplied to the analog input of the convertor 38 of the unit 9 (FIG. 3) through the rectifier 58, AND circuit 57 and the OR circuit 37. A signal 7/cos wt/ is formed at the output of the convertor while a signal 7/sin w/ is formed at the output of the convertor 42 in the same manner as during the tracing of the line AB.
It is clear that the input of the non-linear unit 56 is supplied with the signal k(7/sin wt/ 7/cos wt/) through the AND circuit 54 and the OR circuit 55. This signal is nearly proportional to the recording speed. A variation in the recording intensity in accordance with the above-mentioned law ensures a satisfactory adjustment of the brightness during the tracing of the arc BC.
The code =l0 is applied to the inputs of the convertor 25, while the code 0 =14 arrives at the inputs of the convertor 26 of the unit 8 (FIG. 2). The operation of these convertors is similar to that of the convertors and 11. Constant voltages proportional in value to 0 and 0 respectively, are formed at the output terminals of these convertors. These signals are applied to the first inputs of the AND circuits 28 and 29, but cannot reach the inputs of the convertors 30 and 31 until the other inputs of the AND circuits 28 and 29 are supplied with a permissive signal (actuating pulse). An actuating pulse is shaped in the null indicator 27 at the moment when the sinusoidal deflecting voltage passes through zero. The actuating pulse is directed from the output of the device 27 to the AND circuits 28 and 29, which are thus opened by it. The output voltages of the convertors 25 and 26 are applied to the input terminals of the convertors 30 and 31. From this moment corresponding to the position of the beam at point 0 of the circumference BC (FIG. 4) the convertors 30 and 31 begin the voltage-to-time conversion. A pulse is shaped at the output of the convertor 30 after a time period corresponding to ten angular units and sets the flipflop 23 to the position l corresponding to the point B in FIG. 4.
The AND circuit 24 opens, illuminating the vacuum tube.
The output of the convertor 31 produces a signal after a time period corresponding to 14 angular units after the beginning of the actuating pulse. This corresponds to the point C in FIG. 4. The flip-flop 23 is set to the position 0", and the AND circuit 24 closes, discontinuing illumination. The tracing ofthe arc BC is over.
The processes taking place during the tracing of the other lines of the image in FIG. 4 are similar to the above and will readily be understood by those skilled in the art.
During the tracing of the lines CD and AD the line code is K=l. A permissive signal, therefore, is available at the terminal 33 of the convertor 4, while the analog input of the convertor 13 is supplied with a signal from the terminal 65 of the phase shifter. This signal is cos wt.
The tracing of the ellipse E with the center at the point e is similar to that of the line BC, except that for tracing a full ellipse the arc codes are 0,=0 and 02 16.
When the parabola F is traced, the line code k=3 predetermines the appearance of a permissive signal at the terminal 59 of the decoder 4. As a result, a voltage 7% cos 2wt is applied to the analog input of the convertor 13 via the frequency doubler 6, phase shifter 7 and AND circuit 22 and the OR circuit 21. During the tracing of the parabola F the codes Ax and Ay correspond to the coordinates of the point f.
Though the present invention is described herein in conjunction with a preferred embodiment thereof, it will be clear to those skilled in the art that various changes and modifications can be made without departure from the spirit and scope of the invention.
These changes and modifications are considered to be within the scope of the invention as set forth in the claims that follow.
What is claimed is:
1. An automatic device for making drawings by using digital codes of separate line, the codes describing the coordinates of the centers of said lines, the projection lengths on the coordinates, the coordinates of the beginning and end of an arc, the thickness, configuration of separate lines, such as, straight lines, ellipses, parabola, said automatic device comprising: a receiving register for storing the codes received; a first convertor of codes describing the horizontal coordinates of the line centers into d.c. electric signals proportionate to said codes,
said first convertor being connected to said receiving register; a second convertor of codes describing the vertical coordinates of the line centers into d.c. electric signals proportionate to said codes, said second convertor being connected to said receiving register; a third convertor of codes describing the lengths of horizontal projections of the lines into ac. electric signal proportionate to said codes, said third convertor being connected to said register; a fourth convertor of codes describing the lengths of vertical projections of lines into ac. electric signals proportionate to said codes, said electric signals being sinusoidal, said fourth convertor being connected to said receiving register; a fifth convertor of a code describing the line configuration into signals whose frequency and phase shift are determined by the line configuration; said fifth code convertor being connected to one of said two convertors of codes describing the lengths of the line projections and to said receiving register; an ac. voltage generator, connected to said fifth code convertor and to that of said two convertors of codes describing the lengths of the line projections not connected to said fifth code convertor, a first device for summing up the output signals of said first and third code convertors; a second device for summing up the output signals of said second and fourth code convertors; a two-coordinate recording instrument provided with systems deflecting the drawing element and with a device for recording density control, said recording instrument being connected to said first and second summing-up devices.
2. An automatic device as claimed in claim 1, wherein said convertor of a code describing a line configuration being a phase shifter coupled to one of said convertors of a code describing the projection length through AND and OR" circuits connected to a line configuration decoder, said ac. voltage generator being connected to said phase shifter.
3. An automatic device as claimed in claim 2, wherein connected to said ac. voltage generator being series-connected are means for frequency doubling and the second phase shifter, said second phase shifter being connected to said OR circuit through the AND" circuit.
4. An automatic device as claimed in claim 1, wherein connected to the input of said two-coordinate recording instrument through an AND circuit is a line thickness and brightness automatic control unit, the inputs of said control unit being connected to said line configuration decoder and line thickness decoder, the line thickness decoder being con nected to said receiving register, to which the codes describing the projection lengths and the line configuration are delivered.
5. An automatic device as claimed in claim 4, wherein said line thickness and brightness automatic control unit comprises additional convertors of codes describing horizontal and vertical projection lengths into ac. electric signals, said additional code convertors being connected to said receiving register, and one of said additional code convertors being coupled to said a.c. generator through a first rectifier, the other of said additional code convertors being coupled to the same a.c. generator through seriesconnected phase shifter and second rectifier when tracing a straight line, said other additional code convertor being coupled to said a.c. generator through the first rectifier when tracing ellipses, said line thickness and brightness automatic control nit also including a summing-up amplifier whose input is connected to said additional code convertors and whose output is connected to three series-connected amplifiers, each of said amplifiers via AND circuits connected to said line thickness decoder, an OR circuit and a non-linear functional unit being coupled to said two-coordinate recording instrument.
6. An automatic device as claimed in claim 1, wherein said a.c. electric signal produced by said third converter is sinusoidal.
7. An automatic device as claimed in claim 1, wherein said ac. voltage generator produces a sinusoidal signal.
8. An automatic device as claimed in claim 4, which comprises an arc tracing unit having input terminals connected with the output of said generator and said register, the output terminal being connected through said AND circuit and said flip-flop to the input of said recording instrument.

Claims (8)

1. An automatic device for making drawings by using digital codes of separate line, the codes describing the coordinates of the centers of said lines, the projection lengths on the coordinates, the coordinates of the beginning and end of an arc, the thickness, configuration of separate lines, such as, straight lines, ellipses, parabola, said automatic device comprising: a receiving register for storing the codes received; a first convertor of codes describing the horizontal coordinates of the line centers into d.c. electric signals proportionate to said codes, said first convertor being connected to said receiving register; a second convertor of codes describing the vertical coordinates of the line centers into d.c. electric signals proportionate to said codes, said second convertor being connected to said receiving register; a third convertor of codes describing the lengths of horizontal projections of the lines into a.c. electric signal proportionate to said codes, said third convertor being connected to said register; a fourth convertor of codes describing the lengths of vertical projections of lines into a.c. electric signals proportionate to said codes, said electric signals being sinusoidal, said fourth convertor being connected to said receiving register; a fifth convertor of a code describing the line configuration into signals whose frequency and phase shift are determined by the line configuration; said fifth code convertor being connected to one of said two convertors of codes describing the lengths of the line projections and to said receiving register; an a.c. voltage generator, connected to said fifth code convertor and to that of said two convertors of codes describing the lengths of the line projections not connected to said fifth code convertor, a first device for summing up the output signals of said first and third code convertors; a second device for summing up the output signals of said second and fourth code convertors; a twocoordinate recording instrument provided with systems deflecting the drawing element and with a device for recording density control, said recording instrument being connected to said first and second summing-up devices.
2. An automatic device as claimed in claim 1, wherein said convertor of a code describing a line configuration being a phase shifter coupled to one of said convertors of a code describing the projection length through ''''AND'''' and ''''OR'''' circuits connected to a line configuration decoder, said a.c. voltage generator being connected to said phase shifter.
3. An automatic device as claimed in claim 2, wherein connected to said a.c. voltage generator being series-connected are means for frequency doubling and the second phase shifter, said second phase shifter being connected to said ''''OR'''' circuit through the ''''AND'''' circuit.
4. An automatic device as claimed in claim 1, wherein connected to the input of said two-coordinate recording instrument through an ''''AND'''' circuit is a line thickness and brightness automatic control unit, the inputs of said control unit being connected to said line configuration decoder and line thickness decoder, the line thickness decoder being connected to said receiving register, to which the codes describing the projection lengths and the line configuration are delivered.
5. An automatic device as claimed in claim 4, wherein said line thickness and brightness automatic control unit comprises additional convertors of codes describing horizontal and vertical projection lengths into a.c. electric signals, said additional code convertors being connected to said receiving register, and one of said additional code convertors being coupled to said a.c. generator through a first rectifier, the other of said additional code convertors being coupled to the same a.c. generator through series- connected phase shifter and second rectifier when tracing a straight line, said other additional code convertor being coupled to said a.c. generator through the first rectifier when tracing ellipses, said line thickness and brightness automatic control unit also including a summing-up amplifier whose input is connected to said additional code convertors and whose output is connected to three series-connected amplifiers, each of said amplifiers via ''''AND'''' circuits connected to said line thickness decoder, an ''''OR'''' circuit and a non-linear functional unit being coupled to said two-coordinate recording instrument.
6. An automatic device as claimed in claim 1, wherein said a.c. electric signal produced by said third converter is sinusoidal.
7. An automatic device as claimed in claim 1, wherein said a.c. voltage generator produces a sinusoidal signal.
8. An automatic device as claimed in claim 4, which comprises an arc tracing unit having input terminals connected with the output of said generator and said register, the output terminal being connected through said AND circuit and said flip-flop to the input of said recording instrument.
US774132A 1967-02-28 1968-11-07 Automatic device for making drawings Expired - Lifetime US3675231A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR96876A FR1512855A (en) 1967-02-28 1967-02-28 Automatic device for drawing drawings from coded information
US77413268A 1968-11-07 1968-11-07

Publications (1)

Publication Number Publication Date
US3675231A true US3675231A (en) 1972-07-04

Family

ID=26174824

Family Applications (1)

Application Number Title Priority Date Filing Date
US774132A Expired - Lifetime US3675231A (en) 1967-02-28 1968-11-07 Automatic device for making drawings

Country Status (2)

Country Link
US (1) US3675231A (en)
FR (1) FR1512855A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789200A (en) * 1972-06-30 1974-01-29 Ibm Circle or arc generator for graphic display
US4511893A (en) * 1980-08-22 1985-04-16 Shaken Co., Ltd. Method of storing images in the form of contours and photo-typesetting apparatus thereof
US4768086A (en) * 1985-03-20 1988-08-30 Paist Roger M Color display apparatus for displaying a multi-color visual pattern derived from two audio signals

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3320409A (en) * 1963-01-30 1967-05-16 Burroughs Corp Electronic plotting device
US3335415A (en) * 1964-07-23 1967-08-08 Gen Precision Inc Digital display
US3364382A (en) * 1967-01-03 1968-01-16 Control Image Corp Automatic generation and display of animated figures
US3364479A (en) * 1963-07-31 1968-01-16 Bunker Ramo Line drawing system
US3434135A (en) * 1966-08-01 1969-03-18 Sperry Rand Corp Constant velocity beam deflection control responsive to digital signals defining length and end points of vectors
US3440480A (en) * 1967-01-20 1969-04-22 Bunker Ramo Display apparatus including means for varying line width
US3449721A (en) * 1966-10-31 1969-06-10 Massachusetts Inst Technology Graphical display system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3320409A (en) * 1963-01-30 1967-05-16 Burroughs Corp Electronic plotting device
US3364479A (en) * 1963-07-31 1968-01-16 Bunker Ramo Line drawing system
US3335415A (en) * 1964-07-23 1967-08-08 Gen Precision Inc Digital display
US3434135A (en) * 1966-08-01 1969-03-18 Sperry Rand Corp Constant velocity beam deflection control responsive to digital signals defining length and end points of vectors
US3449721A (en) * 1966-10-31 1969-06-10 Massachusetts Inst Technology Graphical display system
US3364382A (en) * 1967-01-03 1968-01-16 Control Image Corp Automatic generation and display of animated figures
US3440480A (en) * 1967-01-20 1969-04-22 Bunker Ramo Display apparatus including means for varying line width

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3789200A (en) * 1972-06-30 1974-01-29 Ibm Circle or arc generator for graphic display
US4511893A (en) * 1980-08-22 1985-04-16 Shaken Co., Ltd. Method of storing images in the form of contours and photo-typesetting apparatus thereof
US4768086A (en) * 1985-03-20 1988-08-30 Paist Roger M Color display apparatus for displaying a multi-color visual pattern derived from two audio signals

Also Published As

Publication number Publication date
FR1512855A (en) 1968-02-09

Similar Documents

Publication Publication Date Title
US3325802A (en) Complex pattern generation apparatus
GB858002A (en) Improvements in an electronic curve follower
US3309560A (en) Linearity correction apparatus
US2734269A (en) Claret
GB1082103A (en) A cathode ray tube deflection system
US3675231A (en) Automatic device for making drawings
US3869085A (en) Controlled current vector generator for cathode ray tube displays
US3772566A (en) Linearization of magnetically deflected cathode ray tube with non-axial guns
GB858003A (en) Improvements in electronic curve follower and analog computer
US3089918A (en) Telewriting apparatus
US2281350A (en) Number displaying device
US3175121A (en) Arrangement for deflecting the electron beam of a cathode ray tube in a rosette pattern
GB1105639A (en) Electrical circuits for use in display systems employing cathode ray tubes
GB1175341A (en) Curve Tracer for Oscillographic Display
US3681646A (en) Method to produce symbols composed of straight lines on the screen
US2924818A (en) Automatic tracking circuits
US3697877A (en) Methods and apparatus for generating electrical waveforms and quadraturephase trapezoidal and/or sinusoidal waveforms
US3794993A (en) Coordinate generation system
US3648097A (en) Digital cathode-ray tube linearity corrector
GB1298385A (en) Constant velocity vector generator
US3178709A (en) Radar apparatus
US3720860A (en) Dynamic rotation of cathode ray tube display
GB948486A (en) Cathode ray tube system
GB1091596A (en) Interpolation device
SU555415A1 (en) Device for displaying arcs of circles and ellipses on the screen of a cathode ray tube