US3672930A - Process of transferring an electrostatic charge pattern without using external pressure or electrical bias - Google Patents
Process of transferring an electrostatic charge pattern without using external pressure or electrical bias Download PDFInfo
- Publication number
- US3672930A US3672930A US25246A US3672930DA US3672930A US 3672930 A US3672930 A US 3672930A US 25246 A US25246 A US 25246A US 3672930D A US3672930D A US 3672930DA US 3672930 A US3672930 A US 3672930A
- Authority
- US
- United States
- Prior art keywords
- radical
- radicals
- charge pattern
- electrostatic charge
- receiving element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title abstract description 46
- 230000008569 process Effects 0.000 title abstract description 31
- 239000007788 liquid Substances 0.000 abstract description 42
- 238000012546 transfer Methods 0.000 abstract description 31
- 238000005513 bias potential Methods 0.000 abstract description 10
- 229930195733 hydrocarbon Natural products 0.000 abstract description 10
- 150000002430 hydrocarbons Chemical class 0.000 abstract description 10
- 239000004215 Carbon black (E152) Substances 0.000 abstract description 9
- 238000009835 boiling Methods 0.000 abstract description 7
- -1 2 Chemical class 0.000 description 122
- 150000003254 radicals Chemical class 0.000 description 23
- 125000004432 carbon atom Chemical group C* 0.000 description 19
- 239000000463 material Substances 0.000 description 19
- 125000001424 substituent group Chemical group 0.000 description 17
- 229910052739 hydrogen Inorganic materials 0.000 description 16
- 239000001257 hydrogen Substances 0.000 description 16
- CIUQDSCDWFSTQR-UHFFFAOYSA-N [C]1=CC=CC=C1 Chemical compound [C]1=CC=CC=C1 CIUQDSCDWFSTQR-UHFFFAOYSA-N 0.000 description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 13
- 125000003118 aryl group Chemical group 0.000 description 13
- 125000004429 atom Chemical group 0.000 description 13
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 12
- 125000000217 alkyl group Chemical group 0.000 description 11
- 125000001162 cycloheptenyl group Chemical group C1(=CCCCCC1)* 0.000 description 11
- 229910052757 nitrogen Inorganic materials 0.000 description 11
- 150000001875 compounds Chemical class 0.000 description 10
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 9
- 239000011347 resin Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 9
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 150000005840 aryl radicals Chemical group 0.000 description 7
- 125000001624 naphthyl group Chemical group 0.000 description 7
- 229920000139 polyethylene terephthalate Polymers 0.000 description 7
- 239000005020 polyethylene terephthalate Substances 0.000 description 7
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- MDFFNEOEWAXZRQ-UHFFFAOYSA-N aminyl Chemical compound [NH2] MDFFNEOEWAXZRQ-UHFFFAOYSA-N 0.000 description 6
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical group C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 125000005259 triarylamine group Chemical group 0.000 description 5
- CNPVJWYWYZMPDS-UHFFFAOYSA-N 2-methyldecane Chemical compound CCCCCCCCC(C)C CNPVJWYWYZMPDS-UHFFFAOYSA-N 0.000 description 4
- HSFWRNGVRCDJHI-UHFFFAOYSA-N Acetylene Chemical compound C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 4
- DQFBYFPFKXHELB-UHFFFAOYSA-N Chalcone Natural products C=1C=CC=CC=1C(=O)C=CC1=CC=CC=C1 DQFBYFPFKXHELB-UHFFFAOYSA-N 0.000 description 4
- 229910021595 Copper(I) iodide Inorganic materials 0.000 description 4
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 235000005513 chalcones Nutrition 0.000 description 4
- LSXDOTMGLUJQCM-UHFFFAOYSA-M copper(i) iodide Chemical compound I[Cu] LSXDOTMGLUJQCM-UHFFFAOYSA-M 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 125000005678 ethenylene group Chemical group [H]C([*:1])=C([H])[*:2] 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 229910052759 nickel Inorganic materials 0.000 description 4
- 239000003921 oil Substances 0.000 description 4
- 239000000123 paper Substances 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 125000003107 substituted aryl group Chemical group 0.000 description 4
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- 239000004305 biphenyl Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- JEVCWSUVFOYBFI-UHFFFAOYSA-N cyanyl Chemical compound N#[C] JEVCWSUVFOYBFI-UHFFFAOYSA-N 0.000 description 3
- 125000001664 diethylamino group Chemical group [H]C([H])([H])C([H])([H])N(*)C([H])([H])C([H])([H])[H] 0.000 description 3
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 3
- 125000005842 heteroatom Chemical group 0.000 description 3
- 150000002429 hydrazines Chemical class 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- PDBZHEMVWXFWIT-UHFFFAOYSA-N 1-[4-(n-phenylanilino)phenyl]ethanone Chemical compound C1=CC(C(=O)C)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 PDBZHEMVWXFWIT-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 125000002252 acyl group Chemical group 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 125000004171 alkoxy aryl group Chemical group 0.000 description 2
- 125000002877 alkyl aryl group Chemical group 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- 125000000732 arylene group Chemical group 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004063 butyryl group Chemical group O=C([*])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000000609 carbazolyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 2
- 125000005026 carboxyaryl group Chemical group 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- WOZVHXUHUFLZGK-UHFFFAOYSA-N dimethyl terephthalate Chemical compound COC(=O)C1=CC=C(C(=O)OC)C=C1 WOZVHXUHUFLZGK-UHFFFAOYSA-N 0.000 description 2
- DMBHHRLKUKUOEG-UHFFFAOYSA-N diphenylamine Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1 DMBHHRLKUKUOEG-UHFFFAOYSA-N 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- XEHVFKKSDRMODV-UHFFFAOYSA-N ethynyl Chemical compound C#[C] XEHVFKKSDRMODV-UHFFFAOYSA-N 0.000 description 2
- 125000001188 haloalkyl group Chemical group 0.000 description 2
- 125000003106 haloaryl group Chemical group 0.000 description 2
- 125000000623 heterocyclic group Chemical group 0.000 description 2
- ORTFAQDWJHRMNX-UHFFFAOYSA-N hydroxidooxidocarbon(.) Chemical compound O[C]=O ORTFAQDWJHRMNX-UHFFFAOYSA-N 0.000 description 2
- 125000005027 hydroxyaryl group Chemical group 0.000 description 2
- TUJKJAMUKRIRHC-UHFFFAOYSA-N hydroxyl Chemical compound [OH] TUJKJAMUKRIRHC-UHFFFAOYSA-N 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 239000011101 paper laminate Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 2
- 229920000642 polymer Polymers 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 150000007659 semicarbazones Chemical class 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 159000000000 sodium salts Chemical class 0.000 description 2
- KXCAEQNNTZANTK-UHFFFAOYSA-N stannane Chemical compound [SnH4] KXCAEQNNTZANTK-UHFFFAOYSA-N 0.000 description 2
- 229910000080 stannane Inorganic materials 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- DQFBYFPFKXHELB-VAWYXSNFSA-N trans-chalcone Chemical compound C=1C=CC=CC=1C(=O)\C=C\C1=CC=CC=C1 DQFBYFPFKXHELB-VAWYXSNFSA-N 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- SYXGMWCLRWOVJB-MDWZMJQESA-N (e)-1-[4-(dimethylamino)phenyl]-3-phenylprop-2-en-1-one Chemical compound C1=CC(N(C)C)=CC=C1C(=O)\C=C\C1=CC=CC=C1 SYXGMWCLRWOVJB-MDWZMJQESA-N 0.000 description 1
- PDKPRWFMRVBCOB-JLHYYAGUSA-N (e)-3-[4-(dimethylamino)phenyl]-1-phenylprop-2-en-1-one Chemical compound C1=CC(N(C)C)=CC=C1\C=C\C(=O)C1=CC=CC=C1 PDKPRWFMRVBCOB-JLHYYAGUSA-N 0.000 description 1
- LJQUEQYLARILJK-UHFFFAOYSA-N 1,1,2,2-tetra(imidazol-1-yl)hydrazine Chemical compound C1=NC=CN1N(N1C=NC=C1)N(N1C=NC=C1)N1C=NC=C1 LJQUEQYLARILJK-UHFFFAOYSA-N 0.000 description 1
- YZEBVLNCFWTAAI-UHFFFAOYSA-N 1,2-diphenylethane-1,2-dione N-phenylaniline Chemical compound C1(=CC=CC=C1)C(=O)C(=O)C1=CC=CC=C1.C1(=CC=CC=C1)NC1=CC=CC=C1 YZEBVLNCFWTAAI-UHFFFAOYSA-N 0.000 description 1
- JZXUCPZPIQOICJ-UHFFFAOYSA-N 1-[4-(n-phenylanilino)phenyl]hexan-1-ol Chemical compound C1=CC(C(O)CCCCC)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 JZXUCPZPIQOICJ-UHFFFAOYSA-N 0.000 description 1
- OQYNUZDJQMOTFA-UHFFFAOYSA-N 2,3-diphenyl-3,4-dihydropyrazole Chemical compound C1C=NN(C=2C=CC=CC=2)C1C1=CC=CC=C1 OQYNUZDJQMOTFA-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- AJHHRHAXOZYHBP-UHFFFAOYSA-N 2-(4-methylphenyl)-3-phenyl-3,4-dihydropyrazole Chemical compound C1(=CC=C(C=C1)N1N=CCC1C1=CC=CC=C1)C AJHHRHAXOZYHBP-UHFFFAOYSA-N 0.000 description 1
- WUPHOULIZUERAE-UHFFFAOYSA-N 3-(oxolan-2-yl)propanoic acid Chemical compound OC(=O)CCC1CCCO1 WUPHOULIZUERAE-UHFFFAOYSA-N 0.000 description 1
- JRDKPBBZJIRXMI-UHFFFAOYSA-N 3-phenyl-9-(3-phenylcarbazol-9-yl)carbazole Chemical group C1=CC=CC=C1C1=CC=C(N(N2C3=CC=C(C=C3C3=CC=CC=C32)C=2C=CC=CC=2)C=2C3=CC=CC=2)C3=C1 JRDKPBBZJIRXMI-UHFFFAOYSA-N 0.000 description 1
- UESSERYYFWCTBU-UHFFFAOYSA-N 4-(n-phenylanilino)benzaldehyde Chemical compound C1=CC(C=O)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 UESSERYYFWCTBU-UHFFFAOYSA-N 0.000 description 1
- XUDQSFMBCQRHAX-UHFFFAOYSA-N 4-(n-phenylanilino)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 XUDQSFMBCQRHAX-UHFFFAOYSA-N 0.000 description 1
- FWPDVKDTOHKZQS-UHFFFAOYSA-N 4-(n-phenylanilino)benzonitrile Chemical compound C1=CC(C#N)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 FWPDVKDTOHKZQS-UHFFFAOYSA-N 0.000 description 1
- NIGKTGXZVMXWCF-UHFFFAOYSA-N 4-[1-[4-(dimethylamino)phenyl]-1-phenylethyl]-n,n-dimethylaniline Chemical compound C1=CC(N(C)C)=CC=C1C(C)(C=1C=CC(=CC=1)N(C)C)C1=CC=CC=C1 NIGKTGXZVMXWCF-UHFFFAOYSA-N 0.000 description 1
- WMQXZPNJPGLUBU-UHFFFAOYSA-N 4-[[4-(diethylamino)phenyl]-phenylphosphanyl]-n,n-diethylaniline Chemical compound C1=CC(N(CC)CC)=CC=C1P(C=1C=CC(=CC=1)N(CC)CC)C1=CC=CC=C1 WMQXZPNJPGLUBU-UHFFFAOYSA-N 0.000 description 1
- FFQOVFWBVAZFRM-UHFFFAOYSA-N 4-[bis[4-(diethylamino)phenyl]-methylstannyl]-n,n-diethylaniline Chemical compound C1=CC(N(CC)CC)=CC=C1[Sn](C)(C=1C=CC(=CC=1)N(CC)CC)C1=CC=C(N(CC)CC)C=C1 FFQOVFWBVAZFRM-UHFFFAOYSA-N 0.000 description 1
- WFEMATLXEGZOHZ-UHFFFAOYSA-N 4-bis[4-(diethylamino)phenyl]phosphinothioyl-N,N-diethylaniline bis[4-(diethylamino)phenyl]-sulfanylidenetin Chemical compound C(C)N(C1=CC=C(C=C1)[Sn](=S)C1=CC=C(C=C1)N(CC)CC)CC.C(C)N(C1=CC=C(C=C1)P(C1=CC=C(C=C1)N(CC)CC)(C1=CC=C(C=C1)N(CC)CC)=S)CC WFEMATLXEGZOHZ-UHFFFAOYSA-N 0.000 description 1
- 125000004800 4-bromophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Br 0.000 description 1
- JTTMYKSFKOOQLP-UHFFFAOYSA-N 4-hydroxydiphenylamine Chemical compound C1=CC(O)=CC=C1NC1=CC=CC=C1 JTTMYKSFKOOQLP-UHFFFAOYSA-N 0.000 description 1
- 125000004203 4-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000004172 4-methoxyphenyl group Chemical group [H]C1=C([H])C(OC([H])([H])[H])=C([H])C([H])=C1* 0.000 description 1
- NYBZETNSMGMJDP-UHFFFAOYSA-N 7-[2-[4-(N-phenylanilino)phenyl]ethenyl]chromen-2-one Chemical compound C1(=CC=CC=C1)N(C1=CC=C(C=CC2=CC=C3C=CC(OC3=C2)=O)C=C1)C1=CC=CC=C1 NYBZETNSMGMJDP-UHFFFAOYSA-N 0.000 description 1
- WYGGOFSDWWYNJD-UHFFFAOYSA-N 9-carbazol-9-ylcarbazole Chemical group C12=CC=CC=C2C2=CC=CC=C2N1N1C2=CC=CC=C2C2=CC=CC=C21 WYGGOFSDWWYNJD-UHFFFAOYSA-N 0.000 description 1
- ZBJJDYGJCNTNTH-UHFFFAOYSA-N Betahistine mesilate Chemical group CS(O)(=O)=O.CS(O)(=O)=O.CNCCC1=CC=CC=N1 ZBJJDYGJCNTNTH-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- ABEYJLBDBJQSEV-UHFFFAOYSA-N CN(C1=CC=C(C=C1)C=CC(=O)C1=CC=C(C=C1)N(C1=CC=CC=C1)C1=CC=CC=C1)C.C1(=CC=CC=C1)N(C1=CC=C(C=C1)C=CC(=O)C1=CC=C(C=C1)N(C)C)C1=CC=CC=C1 Chemical compound CN(C1=CC=C(C=C1)C=CC(=O)C1=CC=C(C=C1)N(C1=CC=CC=C1)C1=CC=CC=C1)C.C1(=CC=CC=C1)N(C1=CC=C(C=C1)C=CC(=O)C1=CC=C(C=C1)N(C)C)C1=CC=CC=C1 ABEYJLBDBJQSEV-UHFFFAOYSA-N 0.000 description 1
- UJOBWOGCFQCDNV-UHFFFAOYSA-N Carbazole Natural products C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 1
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 1
- BBFKSYAVLAQRBB-UHFFFAOYSA-N N,N-dimethyl-2,3-diphenyl-3,4-dihydropyrazol-4-amine Chemical compound C1(=CC=CC=C1)N1N=CC(C1C1=CC=CC=C1)N(C)C BBFKSYAVLAQRBB-UHFFFAOYSA-N 0.000 description 1
- XQVWYOYUZDUNRW-UHFFFAOYSA-N N-Phenyl-1-naphthylamine Chemical compound C=1C=CC2=CC=CC=C2C=1NC1=CC=CC=C1 XQVWYOYUZDUNRW-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- MIOPAZXOXHOPMZ-UHFFFAOYSA-N [3-[4-(N-phenylanilino)phenyl]prop-2-enylideneamino]urea Chemical compound C1(=CC=CC=C1)N(C1=CC=C(C=CC=NNC(N)=O)C=C1)C1=CC=CC=C1 MIOPAZXOXHOPMZ-UHFFFAOYSA-N 0.000 description 1
- MUBKMWFYVHYZAI-UHFFFAOYSA-N [Al].[Cu].[Zn] Chemical compound [Al].[Cu].[Zn] MUBKMWFYVHYZAI-UHFFFAOYSA-N 0.000 description 1
- 150000001279 adipic acids Chemical class 0.000 description 1
- 150000001335 aliphatic alkanes Chemical group 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 125000004183 alkoxy alkyl group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 125000005037 alkyl phenyl group Chemical group 0.000 description 1
- 125000004103 aminoalkyl group Chemical group 0.000 description 1
- 125000005001 aminoaryl group Chemical group 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 125000000649 benzylidene group Chemical group [H]C(=[*])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- ZDZHCHYQNPQSGG-UHFFFAOYSA-N binaphthyl group Chemical group C1(=CC=CC2=CC=CC=C12)C1=CC=CC2=CC=CC=C12 ZDZHCHYQNPQSGG-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 229910052980 cadmium sulfide Inorganic materials 0.000 description 1
- UHYPYGJEEGLRJD-UHFFFAOYSA-N cadmium(2+);selenium(2-) Chemical compound [Se-2].[Cd+2] UHYPYGJEEGLRJD-UHFFFAOYSA-N 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001789 chalcones Chemical class 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000002508 contact lithography Methods 0.000 description 1
- 150000004775 coumarins Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 125000005266 diarylamine group Chemical group 0.000 description 1
- HPNMFZURTQLUMO-UHFFFAOYSA-N diethylamine Chemical compound CCNCC HPNMFZURTQLUMO-UHFFFAOYSA-N 0.000 description 1
- VNGOYPQMJFJDLV-UHFFFAOYSA-N dimethyl benzene-1,3-dicarboxylate Chemical compound COC(=O)C1=CC=CC(C(=O)OC)=C1 VNGOYPQMJFJDLV-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- BVQXZULQPWPOKX-UHFFFAOYSA-N ethyl 2,6-diphenyl-4-[4-(n-phenylanilino)phenyl]benzoate Chemical compound CCOC(=O)C1=C(C=2C=CC=CC=2)C=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=CC=CC=2)C=C1C1=CC=CC=C1 BVQXZULQPWPOKX-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 125000002768 hydroxyalkyl group Chemical group 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- CIPVVROJHKLHJI-UHFFFAOYSA-N n,n-diethyl-3-methylaniline Chemical compound CCN(CC)C1=CC=CC(C)=C1 CIPVVROJHKLHJI-UHFFFAOYSA-N 0.000 description 1
- DAUSYACCYYEMII-UHFFFAOYSA-N n,n-diethyl-4-triphenylplumbylaniline Chemical compound C1=CC(N(CC)CC)=CC=C1[Pb](C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 DAUSYACCYYEMII-UHFFFAOYSA-N 0.000 description 1
- CJTMNDMKZBYLNA-UHFFFAOYSA-N n,n-dimethyl-1,1,1-triphenylmethanamine Chemical compound C=1C=CC=CC=1C(C=1C=CC=CC=1)(N(C)C)C1=CC=CC=C1 CJTMNDMKZBYLNA-UHFFFAOYSA-N 0.000 description 1
- FDTSORXCDYOHAB-UHFFFAOYSA-N n-[3-[4-(n-phenylanilino)phenyl]prop-2-enylidene]hydroxylamine Chemical compound C1=CC(C=CC=NO)=CC=C1N(C=1C=CC=CC=1)C1=CC=CC=C1 FDTSORXCDYOHAB-UHFFFAOYSA-N 0.000 description 1
- QYDPCVZRCPDOBJ-UHFFFAOYSA-N n-naphthalen-1-ylnaphthalen-1-amine;n-phenylaniline Chemical compound C=1C=CC=CC=1NC1=CC=CC=C1.C1=CC=C2C(NC=3C4=CC=CC=C4C=CC=3)=CC=CC2=C1 QYDPCVZRCPDOBJ-UHFFFAOYSA-N 0.000 description 1
- XHPBZHOZZVRDHL-UHFFFAOYSA-N n-phenyl-4-[4-(n-phenylanilino)phenyl]aniline Chemical compound C=1C=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C=CC=CC=2)C=CC=1NC1=CC=CC=C1 XHPBZHOZZVRDHL-UHFFFAOYSA-N 0.000 description 1
- XBCIOBSQHJYVBQ-UHFFFAOYSA-N naphthalen-1-ylhydrazine Chemical compound C1=CC=C2C(NN)=CC=CC2=C1 XBCIOBSQHJYVBQ-UHFFFAOYSA-N 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 description 1
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 1
- KHUXNRRPPZOJPT-UHFFFAOYSA-N phenoxy radical Chemical compound O=C1C=C[CH]C=C1 KHUXNRRPPZOJPT-UHFFFAOYSA-N 0.000 description 1
- KMXACIPHXOEAMP-UHFFFAOYSA-N phenyl-[2-(N-phenylanilino)phenyl]methanone Chemical compound C1(=CC=CC=C1)N(C1=CC=CC=C1)C1=C(C(=O)C2=CC=CC=C2)C=CC=C1 KMXACIPHXOEAMP-UHFFFAOYSA-N 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 125000000382 plumbyl group Chemical group [H][Pb]([H])([H])* 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 125000002755 pyrazolinyl group Chemical group 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000003330 sebacic acids Chemical class 0.000 description 1
- 230000001235 sensitizing effect Effects 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 125000003638 stannyl group Chemical group [H][Sn]([H])([H])* 0.000 description 1
- 125000000547 substituted alkyl group Chemical group 0.000 description 1
- 229920001897 terpolymer Polymers 0.000 description 1
- MDDUHVRJJAFRAU-YZNNVMRBSA-N tert-butyl-[(1r,3s,5z)-3-[tert-butyl(dimethyl)silyl]oxy-5-(2-diphenylphosphorylethylidene)-4-methylidenecyclohexyl]oxy-dimethylsilane Chemical compound C1[C@@H](O[Si](C)(C)C(C)(C)C)C[C@H](O[Si](C)(C)C(C)(C)C)C(=C)\C1=C/CP(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 MDDUHVRJJAFRAU-YZNNVMRBSA-N 0.000 description 1
- PEQHIRFAKIASBK-UHFFFAOYSA-N tetraphenylmethane Chemical compound C1=CC=CC=C1C(C=1C=CC=CC=1)(C=1C=CC=CC=1)C1=CC=CC=C1 PEQHIRFAKIASBK-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- 150000005671 trienes Chemical class 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- ORGHESHFQPYLAO-UHFFFAOYSA-N vinyl radical Chemical compound C=[CH] ORGHESHFQPYLAO-UHFFFAOYSA-N 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G13/00—Electrographic processes using a charge pattern
- G03G13/14—Transferring a pattern to a second base
- G03G13/18—Transferring a pattern to a second base of a charge pattern
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03G—ELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
- G03G5/00—Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
- G03G5/02—Charge-receiving layers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
Definitions
- a receiving element which also has a low Sheffield Smoothness value.
- the smooth surfaced member is then placed in face-to-face contact with the receiving element in the presence of a thin layer of an electrically insulating isoparafiinic hydrocarbon transfer liquid having a boiling point in the range of 105 to 260 C. During contact, the charge pattern is transferred to the receiving element in the absence of external pressure or electrical bias potential. The transferred image is then developed to form a high resolution visible image.
- This invention relates to electrostatic imaging procedures and more particularly to procedures for transferring and developing electrostatic charge patterns.
- a sensitive element which is typically in the form of an electrophotographic element.
- Suitable elements comprise a conductive support having thereon a layer of a photoconductive composition generally comprising a resinous binder and a photoconductor which may be organic or inorganic and which will accept and retain an electrostatic charge when in darkness.
- a suitable electrostatic charge is placed on the sensitive element by, for example, subjecting the element to a corona discharge. After charging, such an element is given an imagewise exposure by any suitable means. The exposure results in a variation in the charge on the element in accordance with the relative energy received by the element during exposure. This charge pattern is usually referred to as an electrostatic charge pattern.
- the charge pattern can now be rendered visible by the application of a suitable developer containing electrostatically attractable marking particles which are drawn to the element in accordance with the charge pattern thereon.
- the visible pattern thus formed is typically transferred to a receiver sheet and permanently afiixed thereto.
- Transfer processes of this type have several disadvantages where it is desired to reuse the photoconductor. If the image is developed with dry materials, the developing and transferring steps can result in considerable abrasion to the photoconductive surface. Abrasion is undesirable as it causes a reduction in image quality. If the electrostatic charge pattern is developed using liquid developers, the surface of the photoconductor often becomes coated with an uneven scum of dried developer. Unwanted deposits of this type adversely affect the electrical properties of the sensitive element. Attempts to remove these deposits may result in abrasion damage or solvent attack of the surface of the element.
- a further disadvantage of the materials and process described in the above patent is that high resolutions are not attainable. In fact, when the invention is practiced according to the patent resolutions of only 30 to 60 lines per millimeter are obtained. Such low resolution capability makes such a process entirely unsuited where high resolution is required as, for example, in microimage recording and reproduction.
- the minimum resolution requirement for Class I (negative camera microimage) at 16X reduction ratio is 101 line pairs/mm. At a 30X reduction ration, the minimum requirement is line pairs/ mm.
- a further object of this invention is to provide a new method of transferring electrostatic charge patterns which is rapid and simple.
- Another object of this invention is to provide a novel process for transferring and developing electrostatic charge patterns to obtain images of high resolution.
- charge-image-bearing members and receiving elements having extremely smooth surufaces.
- a charge pattern is formed on an image-bearing member which is then wetted with certain electrically insulating liquids.
- a smooth surfaced receiving element is then placed in contact with the wetted member and the charge pattern is transferred to the element without the application of any pressure or external electrical connections.
- the transferred pattern is then developed to form a visible image.
- an electrostatic charge pattern is produced on an image-bearing member by any of the suitable techniques known in the art of electrography.
- One particularly useful means of producing such charge patterns is by electrophotographic techniques.
- Electrophotography involves the use of a sensitive element typically comprising a conducting support having coated thereon a layer of a photoconductive composition.
- Suitable supporting materials for use in elements of the type described above can include any of a wide variety of electrically conducting supports, for example, paper (at a relative humidity above 20 percent), aluminum foil-paper laminates; metal foils such as aluminum foil, zinc foil, etc.; metal plates, such as aluminum, copper, zinc, brass and galvanized plates; vapor deposited metal layers such as silver, nickel, aluminum and the like coated on paper or conventional photographic film bases such as cellulose acetate, polystyrene, poly(ethylene terephthalate), etc.
- electrically conducting supports for example, paper (at a relative humidity above 20 percent), aluminum foil-paper laminates; metal foils such as aluminum foil, zinc foil, etc.; metal plates, such as aluminum, copper, zinc, brass and galvanized plates; vapor deposited metal layers such as silver, nickel, aluminum and the like coated on paper or conventional photographic film bases such as cellulose acetate, polystyrene, poly(ethylene terephthalate), etc.
- Such conducting materials as nickel can be coated by vacuum deposition on transparent film supports in sufficiently thin layers to allow electrophotographic elements prepared therewith to be exposed from either side of such be-preparedbycoating a'su'pport material such" as poly (ethylene terephthalate) witlra conducting layer containing a semiconductor such as cuprous iodide dispersed in a resimSuch conducting layers both with and Without insulating barrier layers are described in U.S.Pats. 3,245,833 and 3,428,451.
- a suitable conducting coating can be prepared from the sodium salt of a carboxyeste'r lactone of maleic anhydride and a vinyl acetate polymer.
- the photoconductive compositions which'can be coated on the above supports include a wide variety of materials.
- Useful compositions typically comprise a photoconductive compound in an electrically insulating, filmforming resin binder.
- Both inorganic and organic photoconductors can be used in the present invention as well as mixtures of two or more photoconductors. Suitable inorganic photoconductors would include zinc oxide, cadmium sulfide, cadmium selenide, titanium dioxide and others;
- Useful organicphotoconductors include the following materials.
- Arylamine photoconductors including substituted and unsubstituted arylamines, diarylamines, nonpolymeric triarylamines and polymeric triarylamines such as those described in U.S. Pats. 3,240,597 and 3,180,730.
- Z represents a mononuclear or polynuclear. divalent aromatic radical, either fused or linear (e.g., phenyl, naphthyl, biphenyl, 'binaphthyl, etc.), or a substituted divalent aromatic radical of these types wherein said substituent can comprise a member such as an acyl group having from 1 to about 6 carbon atoms (e.g., acetyl,'propionyl, butyryl, etc.), an alkyl group having from -lto about 6 carbon atoms (e.g., methyl, ethyl, propyl, butyl, etc.), an alkoxy group having from 1 to about 6 carbon atoms (e.g., methoxy, ethoxy, propoxy, pentoxy, etc.) or a nitro group; Z represents a mononuclear or polynuclear monovalent or polynuclear monovalent aromatic-radical, either fused or linear (e.
- acyl group having from 1 to about 6 .carbon atoms (e.g.,
- acetyl, propionyl, butyryl, etc. an alkyl group-having from 1 to about 6 carbon atoms (e.g., methyhethyl, propyl, butyl, etc.), an alkoxy group having from 1,to about 6 carbon atoms (e.g., methoxy, propoxy, Collaborationoxy,
- Q can represent ahydrogen atom or an aromatic amino group, such as Z'NH ;
- ,b represents ,an integer from 1 to about 12, and Lreplesents a hydrogen atom, a mononuclear or polynuclear, aromatic radical, either fused or linear (e.g.,.phenyl, naphthyl, bi-
- phenyl, etc. a substituted aromatic radical whereim fii substituted in at least one of the aryl nucle i;attached to the alkane and methane moieties of the lattertwoclasses of photoconductors which are non-leuco base materials; and also other polyarylalkanes includesby the formula:
- each of D, E and G is an aryl group and J a 'Hydro'gefi'atom,afi*alkyl rnupg'or' an aryl grou at least one of D, E and G containing an amino substituent
- the aryl groups attached to the central carbon atom being preferably phenyl groups, although naphthyl groups can also be used including substituted aryl groups containing substituents such as alkyl and alkoxy typically having 1 to 8 carbon atoms, hydroxy, halogen; ,etc.," in the ortho, meta or para positions, ortho-substitutedphenyl being preferredj
- the taryl groups can also .be joined together or cyclized to form a fluorene moiety, for example;
- the amino substituent can be represented by the formula I t x LflRz'I' wherein each R can be' an alkyl grouptypically having 1 to 8 carbonatomspa hydrogenatom, an aryl-
- v I .a (D) Photocouductors' comprising 4-diarylamino substituted chalcones having the formula:
- R and R are each phenyl radicals including substituted phenyl radicals, R2 preferably having the formula:
- Rt wherein R and R are each aryl radicals, aliphatic residues of 1 to 12 carbon atoms such as alkyl radicals pr'eferably having lto 4 carbon atoms, or hydrogen; particularly advantageous results being obtained wnenR, is a phenyl radical including a substituted phenyl. radical and where R, is diphenylaminophenyl, dijmethylamiriophe'nyl or phenyl, these materials being more fullydescribe m Fox'application U.S. Ser. No. 613,846, new U.S. Pat. 3,525,501.
- Non-ionic cycloheptenyl compounds' which maybe substitutedwith substituents such as: 2 (1) an aryl radical including substituted as well as "uni substituted aryl radicals, 1 (2) a hydroxy radical,
- D can be any of the substituents defined for E and G above and is attached to a carbon atom in the cycloheptenyl nucleus having a double bond; (R and R (R and R (R and R and (R and R are together the necessary atoms to complete a benzene ring fused to the cycloheptenyl nucleus; these compounds being more fully described in U.S. Ser. No. 654,091 filed July 18, 1967, now U.S. Pat. 3,533,786.
- a phenyl radical including a substituted phenyl radical such as a naphthyl, an aminophenyl or a hydroxyphenyl radical,
- a heterocyclic radical such as a-pyrazolyl, carbazolyl or a pyridyl radical
- D E G and 1 are each either: 1
- Y (a) a substituted phenyl radical such as a naphthyl I Especially preferred are those tetra-substituted hydrazines wherein both D and G are either substituted phenyl radicals or heterocyclic radicals. These compounds are more fully described in U.S. Ser. No. 673,962 filed Oct. 9, 1967.
- (G) Organic compounds having a 3,3'-bis-aryl-2-pyrazoline nucleus which is substituted in either five-member ring with the same or different substituents.
- the 1 and 5 positions on both pyrazoline rings can be substituted by an aryl moiety including unsubstituted as well as substituted aryl substituents such as alkoxyaryl, alkaryl, alkaminoaryl, carboxyaryl, hydroxyaryl and haloaryl.
- the 4 position can contain hydrogen or unsubstituted as well as substituted alkyl and aryl radicals such as alkoxyaryl, alkaryl, alkaminoaryl, haloaryl, hydroxyaryl, alkoxyalkyl, aminoalkyl, carboxyaryl, hydroxyalkyl and haloalkyl.
- aryl radicals such as alkoxyaryl, alkaryl, alkaminoaryl, haloaryl, hydroxyaryl, alkoxyalkyl, aminoalkyl, carboxyaryl, hydroxyalkyl and haloalkyl.
- Other photoconductors in this class are represented by the following structure:
- D D 1;, and 1; can be either a phenyl radical includmg a substituted phenyl radical such as a tolyl radical or a naphthyl radical including a substituted naphthyl radical,
- E E G G L and L can be any of the substitu ents set forth above and in addition can be either a hydrogen atom or an alkyl radical containing 1 to 8 carbon atoms.
- vinylene radical includes substituted as well as unsubstituted vinylene radicals and also includes those radicals having at least one and as many as three repeating units of vinylene groups such as wherein n is an integer of from 1 to 3.
- Groups which contain active hydrogen are well known in the art, the definition of this term being set forth in several textbooks such as Advanced Organic Chemistry, R. C. Fuson, pp. 154-157, John Wiley & Sons, 1950.
- act ve hydrogen-containing group includes those compounds encompassed by the discussion in the text book cited above and in addition includes those compounds which contain groups which are hydrolyzable to active hydrogen-containing groups.
- Typical active hydrogen-containing groups substituted on the vinylene rad cal of the triarylamine include:
- R is alkyl or aryl
- cyclic ester radicals e.g.,
- R is a cyclic alkylene radical connected to a vinylene combination such as is found in coumarin derivatives
- carboxylic acid anhydride radicals e.g., a cyclic alkylene radical connected to a vinylene combination such as is found in coumarin derivatives
- carboxylic acid anhydride radicals e.g., a cyclic alkylene radical connected to a vinylene combination such as is found in coumarin derivatives
- amido radicals e.g.,
- R is a hydrogen atom, an alkyl group or an aryl group
- active hydrogen-Containing groups include sub.- stituted and unsubstituted alkylidyne oximadoradicals.
- Photoconductors included in this class canbe represented by the following structure; a
- Ar and Ar are each a phenyl radical including a substituted phenyl radical such as a halophenyl radical, an'alkyl-phenyl radical oran aminophenyl'radical;
- (2)-Ar is an arylene radical including asubstituted arylene radical such as a phenylene radical or a naphthylene radical,
- Rf, and R are each hydrogen, a phenyl radical in- I cludinga substituted'phenyl radical-or a lower alkyl radicalpreferably having 1' to 8 carbon atoms,
- an active hydrogen-containing group such' as a carboxy radical, an acyl halide radical,-- an amido radical,; .a ;carboxylic acid anhydridef radical, an ester radical, a cyanoradical, a hydroxyradical, a
- the arylene nucleus can be substituted in any position by the vinyl or vinylene moiety.
- Ar is phenylene, particularly good results are obtained. if the substitution occurs in the para position.
- Triarylamines in which at least one ofthe aryl radicals is substituted by an active hydrogen-eontaining group.
- active hydrogen-containing groupf' has the same meaning as set forth above and againincludes those compounds encompassedby the discussion in tlie textbook and additionally includes thosejv compounds which contain groups which are hydrolyzable to active hydrogen-containing group's.
- Typical active' hydrogen containing groups which are substituted on an aryl-radical of the triarylamine include: a
- ester radicals e.g.,
- R is an alkyl or an aryl group
- lower alkylene hydroxy radicals e.g., having 1 to 8 carbon atoms.
- carboxylic acid anhydride radicals 1 v (7) lower alkylene carboxy radicals (e.g., having 2to 8 carbon atoms).
- i cyano radicals, (9) acyl halide radicals (e.g.,
- amido radicals e.g.,
- R is a hydrogen atom, an alkylgroup or an y p), .i
- I Q (a) Ar, and Ar are 'ach' a phenyl adian including a substituted phenyl radical such as a halophe'nyl radical, an alkyl phenylradical or an amino phenyl radical
- Arg isan arylene radical including a substituted arylene'radical such as a phenylene radical or anaphthylene radical
- I (c) X is an active hydrogen-containinggroup such as a carboxy radical, anacyl halidefradical, an'amidoradical, acarbox'ylic acid anhydride radical, a'ri'ester radical, a cyano radical, a semicarbozono radical, a hyradical or a phenylene carbox'y' droxy radical, an ethynyl radical, "amethylidyneoximido UZ S. Ser. 0. 706,780 filed Feb. 20,
- tionfpp; 394-95-)1and includezsilicon, germanium, tin and lead-iror'n'Group-IVa and phosphorus, arsenic, antimony and'bismuth, from Group Va. .
- These materials can be substituted in the metallo nucleus with a wide variety of substituents but at least one of the substituents must be an amino-aryl radical.
- the amino radical can be positioned anywhere on the aromatic nucleus, but best results are obtained if the aryl 'moietyis a phenyl radical having the F amino group in the 401 'paraposition.
- Typical substituents attached to the metalnucleus include thetfollowingz T QP Y J T F lIiP i si i Photoconductors included in this. class can be -repr esented by thefollowing structures; a
- E G L and Q can be:
- an aryl radical including unsubstituted as well as substituted aryl radicals such as a phenyl radical, a naphthyl radical, a dialkylamjnophenyl radical, or a diarylaminophenyl radical,
- a heterocyclic radical having 5 to 6 atoms in the hetero nucleus including at least one nitrogen atom such as a triazolyl, a pyridyl radical, etc.
- T is an amino radical such as an alkylamino radical having 1 to 8 carbon atoms or an arylamino radical such as a phenylamino radical;
- Ar is an aromatic radical such as phenyl or naphthyl
- M and M are the same or different Group IVa metals
- M is a Group Va metal
- D can be any of the substituents set forth above for E G L and Q and in addition can be a Group IVa organo-metallic radical or, when taken with E, an oxygen atom or a sulfur atom;
- J can be any of the substituents set forth above for E G L and Q and in addition can be when taken with B, an oxygen atom or'a sulfur atom. These materials are described in US. Ser. No. 650,664, filed July 3, 1967.
- organic photoconductors useful in this invention include the compounds listed below:
- the image-bearing members whether, comprised simply of a sheet of insulating'material or in-the form of an electrophotographic element, all have ,in common an extremely smooth surface towhich the electrostatic charge pattern is ,applied.
- the image-bearing member smoothness measurements is: made by thei'She'fiield Corporation of Dayton, Ohio.
- the components of the equipment are (I) a precision device in which a sheet sample is held against a smooth glass plate under an accurately weighed, precision-machined head th'ro'ughwhich a regulated stream of air flows, and (II) 'ajModular- Precisionaire Instrument which measures theflow ofair across the face of the sheet sample; Data are read in numerical units from O for extremesmoothness toi wo for rough surfaces.
- the electrostatic charge formed on the surface of the photoconductive is then selectively dissipated from the surface of the layer by imagewise exposure to light by means of a conventional exposure operation such as, for example, by a contact-printing techinque, or by lens projection of an image, and the like, to thereby form an electrostatic latent image in the photoconductive layer.
- Exposing the surface in this manner forms a pattern of electrostatic charge by virtue of the fact that light energy striking the photoconductor causes the electrostatic charge in the light struck areas to be conducted away from the surface in proportion to the intensity of the illumination in a particular area.
- the smooth surface of the image-bearing member is wetted with an electrically insulating particle-free transfer liquid.
- This liquid can be applied by any suitable means such as spraying, pouring, swabbing, squeegeeing, immersion and the like.
- Useful materials for wetting the image-bearing member include hydrocarbon liquids typically having a boiling point in the range of about 105 to 260 C. and a volume resistivity of at least about 10 ohm-cm.
- the transfer liquids should exhibit no substantial solvent action on either the image-bearing member or the receiving element. Similarly, the transfer liquid should be compatible with any liquid developing materials used to develop the transferred charge pattern.
- isoparaffinic hydrocarbons having a low dielectric constant preferably below about 2.5.
- Specific liquids which are useful include various solvents made by Humble Oil & Refining Co. and sold under the trade name of Isopar, such as Isopar C, Isopar E, Isopar G, Isopar H, Isopar K, Isopar L, Isopar M, etc. Mixtures of suitable liquids can also be utilized.
- the receiving element After application of the transfer liquid, the receiving element can be immediately placed in contact with the wetted member. However, to insure a uniform thickness of liquid over the whole surface of the element, it is often desirable to allow the liquid to partially dry for a brief period.
- the liquid layer can also be rapidly wiped with a squeegee or similar device to insure a uniform thickness of the liquid layer.
- the process of this invention can be rapidly accomplished without the drying or squeegeeing steps; however, these steps insure a greater degree of reprodncibility.
- the receiving elements useful in the present invention can be formed of a variety of sheet materials. Suitable receiving elements have an electrically insulating layer and an electrically conductive backing or support. These elements are preferably flexible and all have in common at least one electrically insulating surface which typically has a resistivity of at least about 10 ohm-cm. and which is extremely smooth. In general, this surface of the element has a Shefiield Smoothness value, as described above, in the range of O to 25 with preferred materials having a value in the range of to 10.
- Useful receiving elements can be formed using a variety of different conducting supports, for example, paper (at a relative humidity above 20 percent), aluminum foil-paper laminates; metal foils, such as aluminum foil, zinc foil, etc.; vapor deposited metal layers such as silver, nickel, aluminum and the like coated on paper or conventional photographic film bases such as cellulose acetate, polystyrene, poly(ethylene terephthalate), etc.
- Such conducting materials as nickel can be coated by vacuum deposition on transparent film supports in sufiiciently thin layers as to result in a transparent element.
- An especially useful conducting support can be prepared by coating a support material such as poly (ethylene terephthalate) with a conducting layer containing a semiconductor such as cuprous iodide dispersed in a resin. Such conducting layers are described in U.S. Pats.
- a suitable conduct ing coating can be prepared from the sodium salt of a carboxyester lactone of maleic anhydride and a vinyl acetate polymer. Conducting layers of this latter type and methods for their preparation and use are described in U.S. Pat. Nos. 3,007,901 and 3,267,807.
- the conducting support is then overcoated with a suitable electrically insulating resin to provide the requisite extremely smooth surface.
- Suitable resins for this purpose can include any of a wide variety of electrically insulating, film-forming resins.
- Typical resins useful in this invention would include polyesters, polyolfins, such as polyethylene and polypropylene, polycarbonates, polyamides, poly (alkyl methacrylates) and the like. Mixtures of various resins can be used as well as plasticized resins. The only requirements of the resins used are that they be electrically insulating, film-forming, reasonably flexible and capable of being coated so as to have the requisite surface smoothness.
- the receiving element can be opaque or transparent depending upon the type of final image desired.
- the receiving element can, of course, be wetted with the transfer liquid and then placed in contact with a dry image-bearing member. Regardless of which is wetted first, the member and element are always placed in face to face contact in the presence of an intermediate layer of transfer liquid. Intimate contact of the member and element is obtained without the application of any external pressure. In addition, no forward or reverse bias potentials are applied between the image-bearing member and the receiving element before, during or after transfer of the charge pattern. Also, the member and element do not have to be electrically grounded during transfer.
- the layer of transfer liquid is squeegeed, is allowed to partially dry or is otherwise treated or applied such that the layer is extremely thin, probably having a thickness in the range of about 1 to 5 microns. In this latter instance, images are obtainable which have a resolution of at least about lines/mm.
- An electrophotographic element is prepared by coating a layer of poly(vinyl-m-bromobenzoate-co-vinyl acetate) containing about 25% by Weight of 4,4-diethylamino-2,2'- dimethyltriphenylmethane photoconductor onto a conductive support comprising a curpous iodide conducting layer on a poly(ethylene terephthalate) film base which is coated with a terpolymer of itaconic acid, ethyl acrylate and vinylidene chloride.
- the conducting layer is overcoated with a barrier layer of cellulose nitrate.
- the photoconductive layer is coated at a wet thickness of 0.004 inch.
- the coating is allowed to dry at room temperature and further dried by placing the element in a hot-air oven with an air temperature of about 60 C. After complete drying, the element is examined and found to have an extremely smooth surface on the photoconductive layer. The Shefiield Smoothness value of this surface is about 5.
- This element is then charged using a negative corona source until the surface potential reaches a value of minus 700 volts.
- the charged element is then exposed to a negative-appearing microimage having a maximum density of 1.5 and a maximum resolution of linepairs per millimeter. The exposure is made using an 85- watt Mercury light source.
- the exposed element is then placed in contact with a receiving element comprising a.
- polyester 49,000 is a polyester obtained from Du Pont Co. and is prepared from ethylene glycol and equal amounts of dimethyl terephthalate and dimethyl isophthalate with small amounts of adipic and sebacic acids. The element is charged, exposed and developed as in Example 1 and found to have similar resolution but with lower maximum density.
- Example 3 The procedure of Example 1 is repeated several times only using an electrical potential between the conductive layer of the receiving element and the conductive layer of the photoconductive element. Forward bias potentials of from 225 to 1000 volts are used during the transfer operation with the receiving element being positive with respect to the photoconductive element. The resulting images are similar to those obtained in Example 1 with no significant change in resolution. However, unwanted density is obtained in the background image areas.
- Example 4 The procedure of Example 3 is repeated using a reverse bias potential of 225 volts during transfer with the receiving element at a negative polarity. After development, the resulting image is found to have a lower resolution with only 60 line-pairs per millimeter being obtainable.
- Example 5 The procedure of Example 1 is generally followed except that, after exposure, the photoconductive film is wetted by dipping it into a bath of Isopar G.
- Isopar G is an isoparaflinic hydrocarbon solvent having a boiling point in the range of 150 to 185 C. (Humble Oil & Refining Co.).
- the wetted image-bearing member is placed in contact with a receiving element as before and the receiving element is then carefully peeled away and developed as in Example 1. During the transfer operation, no external pressure or electrical bias potentials are applied. After developing the transferred charge image, the resolution is found to be 135 line-pairs per millimeter.
- EXAMPLE 6 The procedure in Example 5 is repeated entirely except that the receiving element is first wetted and then placed in contact with the dry image-bearing member. Similar results are obtained.
- EXAMPLE 7 The procedure of Example 6 is repeated entirely except the receiver surface is allowed to dry partially for a period of l-minute after being immersed in the transfer liquid. The partially dried receiver element is then placed in contact with the image-bearing member and carefully peeled away. The resulting image has a higher and more uniform maximum density and has a resolution of at least 150 line-pairs per millimeter.
- EXAMPLE 8 The procedure of Example 5 is repeated several times using electrical bias potentials in the range of about 500 16 and 1200 volts with the conductive layer of the receiving element being positive and that of the image-bearing member being negative. This results in an increased maximum density; however, it also results in an increased minimum density above the desirable level. In addition, the resolution is adversely affected.
- Example 9 The procedure of Example 5 is followed again only in place of the isoparafiinic hydrocarbon transfer liquid, Dow Corning Fluid 200 Silicon Oil is used, which oil has a viscosity of about 2 centistokes. The resulting image has a resolution considerably below that obtained in Example 5.
- a process as described in claim 1 including the further step of allowing said liquid to partially dry prior to contact with said receiving element.
- liquid developer is a liquid developer comprised of marking particles dispersed in a carrier liquid which is compatible with said transfer liquid.
- a process as described in claim 3 wherein the gap between said member and said element during transfer is about 1 to 5 microns.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Photoreceptors In Electrophotography (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2524670A | 1970-04-02 | 1970-04-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3672930A true US3672930A (en) | 1972-06-27 |
Family
ID=21824915
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US25246A Expired - Lifetime US3672930A (en) | 1970-04-02 | 1970-04-02 | Process of transferring an electrostatic charge pattern without using external pressure or electrical bias |
Country Status (6)
Country | Link |
---|---|
US (1) | US3672930A (enrdf_load_stackoverflow) |
AU (1) | AU2720771A (enrdf_load_stackoverflow) |
BE (1) | BE765016A (enrdf_load_stackoverflow) |
CA (1) | CA937978A (enrdf_load_stackoverflow) |
FR (1) | FR2092497A5 (enrdf_load_stackoverflow) |
GB (1) | GB1329188A (enrdf_load_stackoverflow) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3770429A (en) * | 1970-09-25 | 1973-11-06 | Katsuragawa Denki Kk | Method for removing corona discharge contaminants in electrophotography |
US3784398A (en) * | 1970-08-17 | 1974-01-08 | Commw Australia Secretary Depa | Transferring recorded signals and latent electrostatic images before development |
US3861954A (en) * | 1973-03-16 | 1975-01-21 | Eastman Kodak Co | Receiver sheets for electrostatic recording |
US3873354A (en) * | 1972-03-24 | 1975-03-25 | Preco Corp | Electrostatic printing |
US3876463A (en) * | 1971-07-06 | 1975-04-08 | Eastman Kodak Co | Receiving element |
US3933489A (en) * | 1972-03-24 | 1976-01-20 | Preco Corporation | Electrostatic reproduction process employing novel transfer paper |
US3972714A (en) * | 1972-03-03 | 1976-08-03 | La Cellophane | Method for electrostatic reproduction by charge transfer |
DE2708930A1 (de) * | 1976-03-23 | 1977-10-06 | Gaf Corp | Dielektrisches bildelement und verfahren zur herstellung eines bildes aus einem derartigen element |
US4112172A (en) * | 1976-03-23 | 1978-09-05 | Gaf Corporation | Dielectric imaging member |
US4132548A (en) * | 1976-08-20 | 1979-01-02 | Minolta Camera Kabushiki Kaisha | Process for reproducing images of fine lines or characters of low density |
US4404574A (en) * | 1976-03-23 | 1983-09-13 | R.Q.O. Holding Company, Inc. | Electrographic printing system using dielectric film member |
US20080299878A1 (en) * | 2007-06-04 | 2008-12-04 | Micron Technology, Inc. | Systems and methods for reducing electrostatic charge of semiconductor wafers |
-
1970
- 1970-04-02 US US25246A patent/US3672930A/en not_active Expired - Lifetime
-
1971
- 1971-03-10 CA CA107352A patent/CA937978A/en not_active Expired
- 1971-03-29 FR FR7110868A patent/FR2092497A5/fr not_active Expired
- 1971-03-30 BE BE765016A patent/BE765016A/xx unknown
- 1971-04-01 AU AU27207/71A patent/AU2720771A/en not_active Expired
- 1971-04-19 GB GB2591671*A patent/GB1329188A/en not_active Expired
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3784398A (en) * | 1970-08-17 | 1974-01-08 | Commw Australia Secretary Depa | Transferring recorded signals and latent electrostatic images before development |
US3770429A (en) * | 1970-09-25 | 1973-11-06 | Katsuragawa Denki Kk | Method for removing corona discharge contaminants in electrophotography |
US3876463A (en) * | 1971-07-06 | 1975-04-08 | Eastman Kodak Co | Receiving element |
US3972714A (en) * | 1972-03-03 | 1976-08-03 | La Cellophane | Method for electrostatic reproduction by charge transfer |
US3873354A (en) * | 1972-03-24 | 1975-03-25 | Preco Corp | Electrostatic printing |
US3933489A (en) * | 1972-03-24 | 1976-01-20 | Preco Corporation | Electrostatic reproduction process employing novel transfer paper |
US3861954A (en) * | 1973-03-16 | 1975-01-21 | Eastman Kodak Co | Receiver sheets for electrostatic recording |
DE2708930A1 (de) * | 1976-03-23 | 1977-10-06 | Gaf Corp | Dielektrisches bildelement und verfahren zur herstellung eines bildes aus einem derartigen element |
US4112172A (en) * | 1976-03-23 | 1978-09-05 | Gaf Corporation | Dielectric imaging member |
US4404574A (en) * | 1976-03-23 | 1983-09-13 | R.Q.O. Holding Company, Inc. | Electrographic printing system using dielectric film member |
US4132548A (en) * | 1976-08-20 | 1979-01-02 | Minolta Camera Kabushiki Kaisha | Process for reproducing images of fine lines or characters of low density |
US20080299878A1 (en) * | 2007-06-04 | 2008-12-04 | Micron Technology, Inc. | Systems and methods for reducing electrostatic charge of semiconductor wafers |
US7922562B2 (en) * | 2007-06-04 | 2011-04-12 | Micron Technology, Inc. | Systems and methods for reducing electrostatic charge of semiconductor wafers |
Also Published As
Publication number | Publication date |
---|---|
CA937978A (en) | 1973-12-04 |
BE765016A (fr) | 1971-08-16 |
GB1329188A (en) | 1973-09-05 |
FR2092497A5 (enrdf_load_stackoverflow) | 1972-01-21 |
AU2720771A (en) | 1972-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2509292B2 (ja) | 高分子量ポリシリレン正孔移送化合物を含む感光性像形成部材 | |
US3240597A (en) | Photoconducting polymers for preparing electrophotographic materials | |
US4012376A (en) | Photosensitive colorant materials | |
US4123269A (en) | Electrostatographic photosensitive device comprising hole injecting and hole transport layers | |
US3975352A (en) | Repellent compositions and elements containing the same | |
US3672930A (en) | Process of transferring an electrostatic charge pattern without using external pressure or electrical bias | |
US3639121A (en) | Novel conducting lacquers for electrophotographic elements | |
JPS61170747A (ja) | ポリシリレン正孔移送化合物を含む感光性像成形部材 | |
CA1045879A (en) | Aggregate photoconductive compositions and elements with a styryl amino group containing photoconductor | |
US3677752A (en) | Bis(dialkylaminoaryl)ethylene photoconductors | |
US3206306A (en) | Material for electrophotographic purposes | |
US3554742A (en) | Electrophotographic element containing a barrier layer comprising block copolycarbonates | |
US3533783A (en) | Light adapted photoconductive elements | |
US3265497A (en) | Electrophotographic material | |
US4030923A (en) | Mixture of binder materials for use in connection with a charge transport layer in a photoconductor | |
US3448029A (en) | Electrophoretic imaging process using 8,13-dioxodinaphtho - (2,1 - b; 2',3'-d) - furan-6-carboxamide pigments | |
US3703371A (en) | Photoconductive elements containing polymeric binders | |
US3398336A (en) | Electrical charging utilizing a twophase liquid medium | |
US3723110A (en) | Electrophotographic process | |
JPH0221576B2 (enrdf_load_stackoverflow) | ||
US3285740A (en) | Electrophotographic process | |
US3554746A (en) | Photoconductive elements containing haloarylketone-formaldehyde polymeric binders | |
US3684506A (en) | Dimeric poly-n-vinyl carbazole organic photoconductor and photoconductive elements embodying same | |
US3615406A (en) | Photoconductive elements containing polymeric binders | |
US3326709A (en) | Electrostatic printing |