US3668450A - Variable induction device - Google Patents

Variable induction device Download PDF

Info

Publication number
US3668450A
US3668450A US156311A US3668450DA US3668450A US 3668450 A US3668450 A US 3668450A US 156311 A US156311 A US 156311A US 3668450D A US3668450D A US 3668450DA US 3668450 A US3668450 A US 3668450A
Authority
US
United States
Prior art keywords
segments
commutator
conductors
support member
drums
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US156311A
Inventor
Donald S Rozelle
Ralph B Rozelle
Umid R Nejib
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Magnetech Industries Inc
Original Assignee
Magnetech Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magnetech Industries Inc filed Critical Magnetech Industries Inc
Application granted granted Critical
Publication of US3668450A publication Critical patent/US3668450A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F29/00Variable transformers or inductances not covered by group H01F21/00
    • H01F29/08Variable transformers or inductances not covered by group H01F21/00 with core, coil, winding, or shield movable to offset variation of voltage or phase shift, e.g. induction regulators
    • H01F29/12Variable transformers or inductances not covered by group H01F21/00 with core, coil, winding, or shield movable to offset variation of voltage or phase shift, e.g. induction regulators having movable coil, winding, or part thereof; having movable shield

Definitions

  • VLE INDUCTION DEVICE [72] Inventors: Donald S. Rozelle, Owego, N.Y.; Ralph B.
  • Each drum carries a portion of the secondary wind- 7 ing, and the portions are connected in series opposition.
  • the turns of the transferable secondary winding may be transferred from one drum to the other by rotating the drums in synchronism, thereby varying the effective number of transformer secondary turns.
  • a fixed secondary winding or coil having a predetermined number of fixed turns is provided on one of the drums, and electrical connections are made to the windings-on the drums by way of an induced current cancelling commutator. All of the elements comprising a variable induction device are removably mounted and one of the core end members is removable to provide interchangeability of the elements.
  • the present invention relates to a variable induction device, and more particularly, to a variable induction device providing an output voltage which may be continuously varied between a predetermined minimum and maximum.
  • variable transformers are the conventional autotransformer and transformers utilizing tap changing systems.
  • the autotransfomier is similar to a potentiometer in that a continuously variable output voltage is picked off a transformer winding by a sliding contact.
  • the use of a tap changing system to provide a variable output voltage requires the selective making and breaking of contacts connected at desired points along a transformer winding.
  • Both types of variable transformers are subject to mechanical wear and do not provide a truly continuous output voltage, i.e. the output voltage varies incrementally with these types of systems.
  • variable transformer in another type of variable transformer, as exemplified by U.S. Pat. No. 1,004,102 to Storer,.the output voltage is varied by varying the number of secondary winding turns in series aiding and in series opposition with a generator.
  • This is accomplished in the device illustrated in the Storer patent by providing a secondary winding in series with an ac. generator which is wound in series opposition on two reels and which is transferred from one reel to the other when the reels are rotated.
  • a primary winding, connected across the generator output terminals, is wound on the core about which the reels rotate and is therefore magnetically coupled to the transferable winding.
  • the output voltage is taken between one end of the secondary winding and one side of the generaton'the connections to the secondary winding being made through commutators which cooperate with a great number of brushes to prevent arcing.
  • the transferable secondary windings are connected in series opposition, the voltage induced in the winding on one of the reels adds to the generator voltage and the voltage induced in the winding on the other reel subtracts from the generated voltage.
  • the total output voltage is equal to the generator voltage plus the voltage across the secondary winding.
  • the total output voltage is equal to the generator voltage minus the voltage across the secondary winding.
  • the device disclosed in the Storer patent is thus, in effect, a device for regulating the output voltage of a generator by varying the impedence between the generator output terminals and the load.
  • Line isolation i.e. isolation between the generator and the load, is not provided and, in addition, the magnetizing current at the full voltage condition is supplied by only one of the primary transformer windings, causing an unbalance in the primary circuit at full voltage.
  • the Storer device does not provide the versatility required in many applications.
  • FIG. 1 is a perspective view of the induction device of the present invention
  • FIG. 2 is an exploded view of the device of FIG. 1;
  • FIG. 3 is an elevational view of the device of FIG. 1;
  • FIG. 4 is a cross-sectional view of the device along the line 4-4 in FIG. 3;
  • FIG. 5 is a detail view partially in cross section illustrating the commutator of the device of FIG. 1;
  • FIG. 6 is a cross-sectional view of the commutator taken along the line 6-6 in FIG. 5;
  • FIG. 7 is a schematic diagram of the induction device of FIG. 1.
  • the induction device of the present invention comprises a rectangular laminated core 10 having a removable end member 12, two generally cylindrical, substantially hollow drums 14A and 14B carried by opposite legs of the core 10 for axial rotation about the longitudinal axes thereof, two electrically conductive coils 16A and 16B formed by a flexible conductor 18 wound about each of the drums l4, and means for simultaneously modifying the number of turns in each of the coils 16.
  • Electrically conductive contacts or brushes 20A and 20B are connected to one end of an associated one of the drums 14A and 14B, respectively, in wiping engagement with an associated one of the commutators 22A and 228 which are non-rotatably carried by opposite legs of the core 10.
  • two cylindrical members 24A and 24B are carried by opposite legs of the core 10 within the drums 14A and 14B, respectively, to provide a means for inducing a cyclically varying magnetic flux in the coils 16 or alternatively to generate an output voltage in response to a cyclically varying magnetic field induced therein by the coils 16.
  • the core 10 preferably comprises a pair of spaced substantially parallel laminated legs 26A and 26B of any suitable cross-sectional shape.
  • suitable cross-sectional shapes may include square, rectangular, cruciform, or octagonal shapes.
  • the adjacent ends of the legs 26A and 268 may be interconnected by a pair of transverse laminated end members 12. Slots 27 are provided to receive the commutators 22 as will hereinafter be described. This may be accomplished, as illustrated, by shortening a selected number of laminations which form the legs 26A and 268.
  • the end members 12 may be connected to the legs 26A and 268 in any conventional manner, such as by means of pins 28. In this manner, one of the end members 12 may be removed from the legs 26A and 26B to facilitate the assembly and the removal of the various elements comprising the induction device. Greater versatility is thereby achieved as will hereinafter be described.
  • each of the drums 14A and 14B of electrically non-conductive material may be provided with a generally circumferential, helical groove 30, running from one end of each drum 14 to the other end thereof along the external surface thereof.
  • the electrical conductor 18 generally conforms to the shape of the grooves 30 and is wound about both of the drums 14 in the grooves 30 to provide the two electrically conductive coils 16A and 16B, the turns of which are transferable from one drum 14 to the other by axially rotating the drums 14 in synchronism through a timing belt 32.
  • Any suitable conventional level wind mechanism may be utilized as an alternative to the groove 30 if desired.
  • the timing belt 32 engages gear teeth 34 provided on a flange 36 at either or both ends of each of the drums 14.
  • the timing belt 32 may also engage a gear 38 which may in turn be driven either manually or by a motor (not shown).
  • the timing belt 32 circumscribes the gear 38 and the flanges 36 at the end of the drums 14, thereby providing synchronous axial rotation of the drums 14 in response to the rotation of the gear 38.
  • Suitable stops such as limit switches or mechanical stops may be provided to prevent the motor from driving the drums l4 beyond predetermined limits.
  • the electrically conductive contacts or brushes 20A and 20B are connected to one end of an associated one of the drums 14A and 148.
  • One of the drums 14, for example, the drum 14B, is provided with an electrically conductive fixed coil 40 wound thereabout and preferably embedded beneath the surface thereof as illustrated in FIGS. 2 and 4.
  • the number of turns of the fixed coil 40 is equal to the total number of turns of the coils 16A and 16B formed by the conductor 18 on the respective drums 14A and 148.
  • One end 42 of the fixed coil 40 is connected to the end of the overlying coil 16B and the other end 44 of the fixed coil 40 is connected to the brush 20B as illustrated in phantom in FIG. 4.
  • the end of the coil 16A on the drum 14A is connected to the brush 20A, also illustrated in phantom in FIG. 4.
  • the cylindrical members 24A and 24B of electrically non-conductive material are each provided with a longitudinal cavity 46 generally conforming to the shape of the legs 26 of the core 10, thereby allowing the cylindrical members 24A and 248 to be non-rotatably carried by the legs 26A and 26B, respectively, in telescoping relationship thereover.
  • Each of the cylindrical members 24A and 24B may be provided with circumferential flanges 48 at each end thereof, as well as a circumferential flange 50 intermediate the ends thereof.
  • the flanges 48 at one end of each of the cylindrical members 24 may be provided with a plurality of internally threaded apertures 52 to facilitate the assembly of the induction device as will hereinafter be described. Additionally, a.
  • shoulder 54 extending radially outwardly beyond the flanges 48 may be provided at the other end of each of the cylindrical members 24A and 24B.
  • the circumferential surfaces of the flanges 48 and 50 are preferably very smooth to provide substantially friction-free bearing surfaces upon which the drums 14 may be carried for rotation.
  • the shoulder 54 provided on the flanges 48 at one end of each of the cylindrical members 34 is also preferably smooth to provide a relatively friction-free surface against which the drums 12 may abut, as will be more fully described.
  • each of the cylindrical members 24A and 24B is provided with a primary transformer winding 56A and 56B, wound thereabout preferably beneath the surface thereof.
  • the respective ends 58A and 60A of the primary transformer winding 56A and the ends 588 and 60B of the primary transformer winding 56B protrude through suitable lead ports in the respective ends of the cylindrical members 24A and 24B and extend axially therebeyond as illustrated in phantom.
  • Secondary transformer windings 62A and 62B wound in overlying relationship with the primary transfomier windings 56A and 568 respectively may also be provided on the respective cylindrical members 24A and 248.
  • the ends 64A and 66A of the secondary transformer winding 62A and the ends 643 and 66B of the secondary transformer winding 628 may likewise protrude through and extend axially beyond the ends of the respective cylindrical members 24A and 24B.
  • the ends 58 and 64 of the primary and secondary transformer windings 56 and 62 respectively also extend through suitable lead ports in both the commutators 22 and bearing plates 68 as will hereinafter be more fully described.
  • the commutators 22 preferably comprise a generally flat, circular plate 70 of an electrically non-conductive material and a segmented ring 72 of electrically conductive material.
  • the segments of the ring 72 are shown as being carried by the outer periphery of the plate 70 in electrical isolation from each other.
  • An output terminal 73 may be electrically connected to one or more segments of the ring 72 at a convenient position.
  • An aperture 74 generally conforming to the shape of the legs 26, a plurality of apertures 76 aligned with the positions of the threaded apertures 52 in the cylindrical members 24, and a plurality of lead ports 78 aligned with the lead ports in the cylindrical members 24 may be provided through the plate 70.
  • the segments 75 of the segmented ring 72 are electrically connected by a plurality of conductors 80, such that a closed, conductive loop is formed by the commutator segments 75 and the conductors 80.
  • the core 10 cross-sectional area is subdivided by the conductor crossover through the slots 25 in such a manner that the current induced by the field in pairs of conductors 80 is equal and opposite. Any grouping of pair conductors, even or odd, that accomplishes this may be utilized.
  • the current (as indicated by arrows) induced in immediately adjacent segments 75 of the ring 72 is in the same direction in the segments.
  • the segments are connected by the conductors 80 such that the currents oppose and thus cancel.
  • the total induced current tending to flow in one direction is equal to the total induced current tending to flow in the opposite direction, e.g. by selecting an even number of segments of substantially the same length and pairs of conductors of substantially the same length
  • the total induced current flowing through the closed loop formed by the segments 75 and the conductors 80 is zero thereby eliminating commutator losses. Since the segments 75 and the conductors 80 form a continuous closed conductive path, the segments are all at the same potential and arcing does not occur as the brushes 20 bridge the gaps between segments in moving around the ring 72.
  • variable induction device of the present invention will now be described with reference to FIGS. 1 through 3.
  • the one of the end members 12 of the core 10 is first removed, and the legs 26A and 26B may be inserted into the cavities 46A and 46B of the cylindrical members 24A and 24B, respectively.
  • the drums 14A and 148 may then be positioned in telescoping relationship with the respective cylindrical members 24A and 243 with the ends thereof abutting the respective shoulders 54A and 54B.
  • a bearing plate 68 having a leg receiving aperture 82, suitable lead ports 84 and a plurality of apertures 86 aligned with the like apertures in the commutators 22 as previously described, may be positioned on the end of each of the legs 26 in abutting relationship with the drums 14.
  • the commutators 22A and 22B may then be mounted on the respective legs 26A and 263, the conductors 80 being disposed in the slots 27.
  • the end member 12 may then be inserted between the laminations of the legs 26 and secured against removal be inserting the pins 28 therethrough.
  • the bearing plate 68 may, of course, be eliminated and the function thereof performed by providing a smooth bearing surface on one side of the commutators 22.
  • conventional fasteners such as flat head screws may be inserted through the apertures 76 in the commutator and the apertures 86 in the bearing plate 68 into the threaded apertures 52 in the cylindrical member 24 to provide additional strength.
  • the induction device may then be secured to a suitable frame (not shown) adjacent the manually or electrically driven gear 38 and the timing belt 32 may bemounted to circumscribe and engage the gear teeth 34 on the drums 14 and the gear 38 as illustrated in FIG. 3.
  • variable induction device of the present invention 7 may be more fully understood with reference to the schematic diagram of P10. 7.
  • the coils carried by the drums 14 are shown on the left side of the diagram and the coils carried by the cylindrical members 24 are shown on the right side of the diagram, as illustrated in phantom, to facilitate the description of the operation.
  • the end 60A of the primary winding 56A may be electrically connected to the end 608 of the primary winding 56B and an a.c. input signal applied between the ends 58A and 58B of the respective primary windings 56A and 56B.
  • the ends 66A and 66B of the secondary transformer windings 62A and 623, respectively, may be electrically connected, and an output voltage may be taken between the ends 64A and 64B of the respective windings 62A and 623.
  • This type of transformer connection may be referred to as a humbucking connection and is a desirable feature in a well designed transformer.
  • the fixed coil 40 having one end connected to the brush 20B and the other end 42 connected to the end of the overlying transferable coil 16B is preferably wound in a direction opposite from that of the transferable coil 168, for example, in a counterclockwise direction looking from the left end of the drawing of F IG. 1.
  • the transferable coil 16A and 16B are connected in series opposition, and therefore the transferable coil 16A is in series aiding with the fixed coil 40.
  • the primary windings 56 are energized and induce an a.c. current into the secondary winding 62 and the coils l6 and 40. If the primary windings 56 are energized from a 1 15 volt a.c. line and if, as illustrated, the turns ratio between the primary windings 56 and the secondary windings 62 is 1:1, the voltage appearing between the ends 64A and 64B of the secondary windings 62A and 628, respectively, will be 1 15 volts a.c.
  • an output voltage which is variable between 0 and 115 volts a.c. appears between the output tenninals 73A and 738 on the commutators 22A and 228, respectively.
  • the maximum output voltage condition i.e. 115 volts a.c. appearing between the output terminals 73A and 733, may be obtained by synchronously rotating the drums 14A and 148 until all of the turns of the coil 168 have been transferred from the drum 148 to the drum 14A.
  • the variable secondary circuit is balanced, i.e., there are an equal number of turns on each drum.
  • the minimum output voltage condition may be obtained by rotating the drums in'the opposite direction to transfer all of the turns of the coil 16A to the opposite drum.
  • the coil 163 then has a maximum number of turns, and since the voltage induced thereacross is in series opposition with the voltage across the coil 40, the output voltage is a minimum or 0 volts. It is, of course, apparent that any output voltage between 0 and 1 l5 voltsac. may be obtained by rotating the drums 14A and 148 in the proper direction until the desired output voltage is obtained.
  • variable induction device of the present invention provides an output voltage which is continuously variable between a predetermined maximum and minimum while providing isolation between the primary and secondary circuits. Also, the variable winding circuit is balanced at the full output voltage condition. 1
  • the induction device of the present invention is extremely versatile since the elements comprising the device may be easily removed and replaced with elements having various electrical characteristics.
  • the secondary transformer windings 62 provide even further versatility since they may be connected in any number of ways to the variable secondary circuit or to independent loads.
  • a commutator adapted to cooperate in wiping engagement with an electrically conductive brush for providing a current path between a rotating element and a fixed element, the commutator comprising:
  • a conductive ring carried by said support member, said ring comprising a plurality of electrically isolated segments
  • conductor means electrically connecting said segments for providing a closed current path between said segments to thereby fix all of said segments at substantially the same potential, the current path being such that the total induced current flowing in said closed current path is substantially zero.
  • said closed current path comprises two portions of equal length, the portions being electrically connected such that the current induced in one portion is cancelled by thecurrent induced in the other portion.
  • said conductor means includes a plurality of conductors extending across said conductive ring, said conductors being substantially parallel to a predetermined diametrical axis of said ring.
  • an electrically non-conductive support member said support member being substantially circular and having a central opening

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Current Collectors (AREA)

Abstract

The disclosure relates to a variable induction device or transformer of the type comprising a rectangular magnetic core having two primary transformer windings on opposite core legs and a transferable secondary winding carried by a pair of axially rotatable drums which are each mounted in telescoping relationship over an associated one of the primary transformer windings. Each drum carries a portion of the secondary winding, and the portions are connected in series opposition. The turns of the transferable secondary winding may be transferred from one drum to the other by rotating the drums in synchronism, thereby varying the effective number of transformer secondary turns. A fixed secondary winding or coil having a predetermined number of fixed turns is provided on one of the drums, and electrical connections are made to the windings on the drums by way of an induced current cancelling commutator. All of the elements comprising a variable induction device are removably mounted and one of the core end members is removable to provide interchangeability of the elements.

Description

United States Patent Rozelie et al.
[54] VLE INDUCTION DEVICE [72] Inventors: Donald S. Rozelle, Owego, N.Y.; Ralph B.
Rozelle, Forty Fort; Umid R. Nejib, Edwardsville, both of Pa.
[52] U.S. Cl ....3l0/237 [51] Int. Cl ..H0lr 39/06 [58] Field of Search ..3 10/23 1 233, 237; 29/597 [56] References Cited UNITED STATES PATENTS 2,688,679 9/1954 Schleuning ..'..3 10/237 UX 3,243,872 4/1966 Henry-Baudot ..3 10/237 3,538,365 1 H1970 Reisnecker ..3l0/237 1 June 6, 1972 Primary ExaminerGerald Goldberg Attorney-Burns, Doane, Swecker & Mathis ABSTRACT The disclosure relates to a variable induction device or transformer of the type comprising a rectangular magnetic core having two primary transformer windings on opposite core legs and a transferable secondary winding carried by a pair of axially rotatable drums which are each mounted in telescoping relationship over an associated one of the primary transformer windings. Each drum carries a portion of the secondary wind- 7 ing, and the portions are connected in series opposition. The turns of the transferable secondary winding may be transferred from one drum to the other by rotating the drums in synchronism, thereby varying the effective number of transformer secondary turns. A fixed secondary winding or coil having a predetermined number of fixed turns is provided on one of the drums, and electrical connections are made to the windings-on the drums by way of an induced current cancelling commutator. All of the elements comprising a variable induction device are removably mounted and one of the core end members is removable to provide interchangeability of the elements.
12 Claims, 7 Drawing Figures PATENTEDJUN 5 I972 SHEET 2 OF 3 VARIABLE INDUCTION DEVICE CROSS REFERENCE TO RELATED APPLICATION This is a division of application Ser. No. 42,703, filed June 2, 1970 entitled Variable Induction Device, now US. Pat. No. 3,614,692.
BACKGROUND OF THE INVENTION The present invention relates to a variable induction device, and more particularly, to a variable induction device providing an output voltage which may be continuously varied between a predetermined minimum and maximum.
Among the more common types of variable transformers are the conventional autotransformer and transformers utilizing tap changing systems. The autotransfomier is similar to a potentiometer in that a continuously variable output voltage is picked off a transformer winding by a sliding contact. The use of a tap changing system to provide a variable output voltage requires the selective making and breaking of contacts connected at desired points along a transformer winding. Both types of variable transformers are subject to mechanical wear and do not provide a truly continuous output voltage, i.e. the output voltage varies incrementally with these types of systems.
In another type of variable transformer, as exemplified by U.S. Pat. No. 1,004,102 to Storer,.the output voltage is varied by varying the number of secondary winding turns in series aiding and in series opposition with a generator. This is accomplished in the device illustrated in the Storer patent by providing a secondary winding in series with an ac. generator which is wound in series opposition on two reels and which is transferred from one reel to the other when the reels are rotated. A primary winding, connected across the generator output terminals, is wound on the core about which the reels rotate and is therefore magnetically coupled to the transferable winding. The output voltage is taken between one end of the secondary winding and one side of the generaton'the connections to the secondary winding being made through commutators which cooperate with a great number of brushes to prevent arcing.
Since the transferable secondary windings are connected in series opposition, the voltage induced in the winding on one of the reels adds to the generator voltage and the voltage induced in the winding on the other reel subtracts from the generated voltage. Thus, when the entire secondary transformer winding is transferred to the additive reel, the total output voltage is equal to the generator voltage plus the voltage across the secondary winding. Likewise, when the entire secondary transformer winding is transferred to the subtractive reel, the total output voltage is equal to the generator voltage minus the voltage across the secondary winding.
The device disclosed in the Storer patent is thus, in effect, a device for regulating the output voltage of a generator by varying the impedence between the generator output terminals and the load. Line isolation, i.e. isolation between the generator and the load, is not provided and, in addition, the magnetizing current at the full voltage condition is supplied by only one of the primary transformer windings, causing an unbalance in the primary circuit at full voltage. Furthermore, the Storer device does not provide the versatility required in many applications.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a novel variable induction device having a transferable secondary winding which is electrically isolated from the primary circuit.
It is a further object of the present invention to provide a novel variable induction device in which the primary circuit is balanced in the maximum output voltage condition.
It is yet another object of the present invention to provide a novel variable induction device which is versatile and may be easily converted for use in a variety of applications.
It is yet a further object of the present invention to provide a novel commutator for providing a current path between the rotating and fixed elements in the induction device of the present invention with a minimum of commutator losses and arcing.
Briefly, these and other objects and advantages are accomplished by providing two spaced, axially rotatable drums having a secondary transformer winding comprising a fixed, electrically conductive coil wound on one of the drums and a transferable coil wound on both of the drums, the transferable coil being adapted to be selectively transferred from one of the drums to the other in response to the axial rotation of the drums to thereby modify the effective number of turns of the fixed coil.
DESCRIPTION OF THE DRAWINGS A preferred embodiment of the present invention is illustrated in the accompanying drawings, in which:
FIG. 1 is a perspective view of the induction device of the present invention;
FIG. 2 is an exploded view of the device of FIG. 1;
FIG. 3 is an elevational view of the device of FIG. 1;
FIG. 4 is a cross-sectional view of the device along the line 4-4 in FIG. 3;
FIG. 5 is a detail view partially in cross section illustrating the commutator of the device of FIG. 1;
FIG. 6 is a cross-sectional view of the commutator taken along the line 6-6 in FIG. 5; and
FIG. 7 is a schematic diagram of the induction device of FIG. 1.
DETAILED DESCRIPTION Referring to FIG. 1, the induction device of the present invention comprises a rectangular laminated core 10 having a removable end member 12, two generally cylindrical, substantially hollow drums 14A and 14B carried by opposite legs of the core 10 for axial rotation about the longitudinal axes thereof, two electrically conductive coils 16A and 16B formed by a flexible conductor 18 wound about each of the drums l4, and means for simultaneously modifying the number of turns in each of the coils 16. Electrically conductive contacts or brushes 20A and 20B are connected to one end of an associated one of the drums 14A and 14B, respectively, in wiping engagement with an associated one of the commutators 22A and 228 which are non-rotatably carried by opposite legs of the core 10. Although not shown in FIG. 1, two cylindrical members 24A and 24B are carried by opposite legs of the core 10 within the drums 14A and 14B, respectively, to provide a means for inducing a cyclically varying magnetic flux in the coils 16 or alternatively to generate an output voltage in response to a cyclically varying magnetic field induced therein by the coils 16.
A more detailed understanding of the construction of the device of the present invention may be had by reference to the exploded view of FIG. 2. As shown in FIG. 2, the core 10 preferably comprises a pair of spaced substantially parallel laminated legs 26A and 26B of any suitable cross-sectional shape. Illustratively, suitable cross-sectional shapes may include square, rectangular, cruciform, or octagonal shapes.
The adjacent ends of the legs 26A and 268 may be interconnected by a pair of transverse laminated end members 12. Slots 27 are provided to receive the commutators 22 as will hereinafter be described. This may be accomplished, as illustrated, by shortening a selected number of laminations which form the legs 26A and 268.
The end members 12 may be connected to the legs 26A and 268 in any conventional manner, such as by means of pins 28. In this manner, one of the end members 12 may be removed from the legs 26A and 26B to facilitate the assembly and the removal of the various elements comprising the induction device. Greater versatility is thereby achieved as will hereinafter be described.
With continued reference to FIG. 2, each of the drums 14A and 14B of electrically non-conductive material may be provided with a generally circumferential, helical groove 30, running from one end of each drum 14 to the other end thereof along the external surface thereof. The electrical conductor 18 generally conforms to the shape of the grooves 30 and is wound about both of the drums 14 in the grooves 30 to provide the two electrically conductive coils 16A and 16B, the turns of which are transferable from one drum 14 to the other by axially rotating the drums 14 in synchronism through a timing belt 32. Any suitable conventional level wind mechanism may be utilized as an alternative to the groove 30 if desired.
As is more clearly illustrated in FIG. 3, the timing belt 32 engages gear teeth 34 provided on a flange 36 at either or both ends of each of the drums 14. The timing belt 32 may also engage a gear 38 which may in turn be driven either manually or by a motor (not shown). The timing belt 32 circumscribes the gear 38 and the flanges 36 at the end of the drums 14, thereby providing synchronous axial rotation of the drums 14 in response to the rotation of the gear 38. Suitable stops (not shown) such as limit switches or mechanical stops may be provided to prevent the motor from driving the drums l4 beyond predetermined limits.
Referring back to FIG. 2, the electrically conductive contacts or brushes 20A and 20B are connected to one end of an associated one of the drums 14A and 148.
One of the drums 14, for example, the drum 14B, is provided with an electrically conductive fixed coil 40 wound thereabout and preferably embedded beneath the surface thereof as illustrated in FIGS. 2 and 4. In the preferred embodiment of the present invention, the number of turns of the fixed coil 40 is equal to the total number of turns of the coils 16A and 16B formed by the conductor 18 on the respective drums 14A and 148. One end 42 of the fixed coil 40 is connected to the end of the overlying coil 16B and the other end 44 of the fixed coil 40 is connected to the brush 20B as illustrated in phantom in FIG. 4. The end of the coil 16A on the drum 14A is connected to the brush 20A, also illustrated in phantom in FIG. 4.
Referring again to FIGS. 2 and 4, the cylindrical members 24A and 24B of electrically non-conductive material, are each provided with a longitudinal cavity 46 generally conforming to the shape of the legs 26 of the core 10, thereby allowing the cylindrical members 24A and 248 to be non-rotatably carried by the legs 26A and 26B, respectively, in telescoping relationship thereover. Each of the cylindrical members 24A and 24B may be provided with circumferential flanges 48 at each end thereof, as well as a circumferential flange 50 intermediate the ends thereof. The flanges 48 at one end of each of the cylindrical members 24 may be provided with a plurality of internally threaded apertures 52 to facilitate the assembly of the induction device as will hereinafter be described. Additionally, a.
shoulder 54 extending radially outwardly beyond the flanges 48 may be provided at the other end of each of the cylindrical members 24A and 24B.
The circumferential surfaces of the flanges 48 and 50 are preferably very smooth to provide substantially friction-free bearing surfaces upon which the drums 14 may be carried for rotation. The shoulder 54 provided on the flanges 48 at one end of each of the cylindrical members 34 is also preferably smooth to provide a relatively friction-free surface against which the drums 12 may abut, as will be more fully described.
As illustrated more clearly in FIG. 4, each of the cylindrical members 24A and 24B is provided with a primary transformer winding 56A and 56B, wound thereabout preferably beneath the surface thereof. The respective ends 58A and 60A of the primary transformer winding 56A and the ends 588 and 60B of the primary transformer winding 56B protrude through suitable lead ports in the respective ends of the cylindrical members 24A and 24B and extend axially therebeyond as illustrated in phantom.
Secondary transformer windings 62A and 62B wound in overlying relationship with the primary transfomier windings 56A and 568 respectively may also be provided on the respective cylindrical members 24A and 248. The ends 64A and 66A of the secondary transformer winding 62A and the ends 643 and 66B of the secondary transformer winding 628 may likewise protrude through and extend axially beyond the ends of the respective cylindrical members 24A and 24B.
The ends 58 and 64 of the primary and secondary transformer windings 56 and 62 respectively also extend through suitable lead ports in both the commutators 22 and bearing plates 68 as will hereinafter be more fully described.
The construction of the commutators 22 utilized with the variable induction device of the present invention are more fully described with reference to FIGS. 5 and 6. Referring now to FIGS. 5 and 6, the commutators 22 preferably comprise a generally flat, circular plate 70 of an electrically non-conductive material and a segmented ring 72 of electrically conductive material. The segments of the ring 72 are shown as being carried by the outer periphery of the plate 70 in electrical isolation from each other. An output terminal 73 may be electrically connected to one or more segments of the ring 72 at a convenient position.
An aperture 74 generally conforming to the shape of the legs 26, a plurality of apertures 76 aligned with the positions of the threaded apertures 52 in the cylindrical members 24, and a plurality of lead ports 78 aligned with the lead ports in the cylindrical members 24 may be provided through the plate 70. The segments 75 of the segmented ring 72 are electrically connected by a plurality of conductors 80, such that a closed, conductive loop is formed by the commutator segments 75 and the conductors 80.
As shown in FIG. 2, the core 10 cross-sectional area is subdivided by the conductor crossover through the slots 25 in such a manner that the current induced by the field in pairs of conductors 80 is equal and opposite. Any grouping of pair conductors, even or odd, that accomplishes this may be utilized.
As illustrated in FIG. 5, the current (as indicated by arrows) induced in immediately adjacent segments 75 of the ring 72 is in the same direction in the segments. However, the segments are connected by the conductors 80 such that the currents oppose and thus cancel. By selecting the segments and the conductors 80 such that the total induced current tending to flow in one direction is equal to the total induced current tending to flow in the opposite direction, e.g. by selecting an even number of segments of substantially the same length and pairs of conductors of substantially the same length, the total induced current flowing through the closed loop formed by the segments 75 and the conductors 80 is zero thereby eliminating commutator losses. Since the segments 75 and the conductors 80 form a continuous closed conductive path, the segments are all at the same potential and arcing does not occur as the brushes 20 bridge the gaps between segments in moving around the ring 72.
The assembling of the variable induction device of the present invention will now be described with reference to FIGS. 1 through 3. As illustrated in FIG. 2, the one of the end members 12 of the core 10 is first removed, and the legs 26A and 26B may be inserted into the cavities 46A and 46B of the cylindrical members 24A and 24B, respectively. The drums 14A and 148 may then be positioned in telescoping relationship with the respective cylindrical members 24A and 243 with the ends thereof abutting the respective shoulders 54A and 54B. A bearing plate 68 having a leg receiving aperture 82, suitable lead ports 84 and a plurality of apertures 86 aligned with the like apertures in the commutators 22 as previously described, may be positioned on the end of each of the legs 26 in abutting relationship with the drums 14. The commutators 22A and 22B may then be mounted on the respective legs 26A and 263, the conductors 80 being disposed in the slots 27. The end member 12 may then be inserted between the laminations of the legs 26 and secured against removal be inserting the pins 28 therethrough.
The bearing plate 68 may, of course, be eliminated and the function thereof performed by providing a smooth bearing surface on one side of the commutators 22. In addition, conventional fasteners such as flat head screws may be inserted through the apertures 76 in the commutator and the apertures 86 in the bearing plate 68 into the threaded apertures 52 in the cylindrical member 24 to provide additional strength. The induction device may then be secured to a suitable frame (not shown) adjacent the manually or electrically driven gear 38 and the timing belt 32 may bemounted to circumscribe and engage the gear teeth 34 on the drums 14 and the gear 38 as illustrated in FIG. 3.
The operation of the variable induction device of the present invention 7 may be more fully understood with reference to the schematic diagram of P10. 7. Referring now to FIG. 7, the coils carried by the drums 14 are shown on the left side of the diagram and the coils carried by the cylindrical members 24 are shown on the right side of the diagram, as illustrated in phantom, to facilitate the description of the operation.
The end 60A of the primary winding 56A may be electrically connected to the end 608 of the primary winding 56B and an a.c. input signal applied between the ends 58A and 58B of the respective primary windings 56A and 56B. Likewise, the ends 66A and 66B of the secondary transformer windings 62A and 623, respectively, may be electrically connected, and an output voltage may be taken between the ends 64A and 64B of the respective windings 62A and 623. This type of transformer connection may be referred to as a humbucking connection and is a desirable feature in a well designed transformer.
The fixed coil 40 having one end connected to the brush 20B and the other end 42 connected to the end of the overlying transferable coil 16B is preferably wound in a direction opposite from that of the transferable coil 168, for example, in a counterclockwise direction looking from the left end of the drawing of F IG. 1. The transferable coil 16A and 16B are connected in series opposition, and therefore the transferable coil 16A is in series aiding with the fixed coil 40.
In operation, the primary windings 56 are energized and induce an a.c. current into the secondary winding 62 and the coils l6 and 40. If the primary windings 56 are energized from a 1 15 volt a.c. line and if, as illustrated, the turns ratio between the primary windings 56 and the secondary windings 62 is 1:1, the voltage appearing between the ends 64A and 64B of the secondary windings 62A and 628, respectively, will be 1 15 volts a.c.
Furthermore, if the total number of turns of the coils l6 and 40'is equal to the total number of turns of the coils 56 as illustrated, an output voltage which is variable between 0 and 115 volts a.c. appears between the output tenninals 73A and 738 on the commutators 22A and 228, respectively. The maximum output voltage condition, i.e. 115 volts a.c. appearing between the output terminals 73A and 733, may be obtained by synchronously rotating the drums 14A and 148 until all of the turns of the coil 168 have been transferred from the drum 148 to the drum 14A. Since the coil 16A is connected in series aiding to the fixed coil 40, the voltages across the coil 16A and the coil 40 add to produce a maximum or a l 15 volt a.c. output voltage. Additionally, since at the maximum output volt age condition the fixed coil 40 and the coil 16 A are wound on opposite drums, the variable secondary circuit is balanced, i.e., there are an equal number of turns on each drum.
The minimum output voltage condition may be obtained by rotating the drums in'the opposite direction to transfer all of the turns of the coil 16A to the opposite drum. The coil 163 then has a maximum number of turns, and since the voltage induced thereacross is in series opposition with the voltage across the coil 40, the output voltage is a minimum or 0 volts. It is, of course, apparent that any output voltage between 0 and 1 l5 voltsac. may be obtained by rotating the drums 14A and 148 in the proper direction until the desired output voltage is obtained.
It is thus apparent from the above description that the variable induction device of the present invention provides an output voltage which is continuously variable between a predetermined maximum and minimum while providing isolation between the primary and secondary circuits. Also, the variable winding circuit is balanced at the full output voltage condition. 1
In addition, the induction device of the present invention is extremely versatile since the elements comprising the device may be easily removed and replaced with elements having various electrical characteristics. The secondary transformer windings 62 provide even further versatility since they may be connected in any number of ways to the variable secondary circuit or to independent loads.
The invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. The present embodiment is therefore to be considered in all respects as illustrative and not restrictive, the scope of the invention being indicated by the appended claims rather than by the foregoing description, and all changes which come within the meaning and range of equivalency of the claims are therefore intended to be embraced therein.
What is claimed is:
l. A commutator adapted to cooperate in wiping engagement with an electrically conductive brush for providing a current path between a rotating element and a fixed element, the commutator comprising:
an electrically non-conductive support member;
a conductive ring carried by said support member, said ring comprising a plurality of electrically isolated segments;
conductor means electrically connecting said segments for providing a closed current path between said segments to thereby fix all of said segments at substantially the same potential, the current path being such that the total induced current flowing in said closed current path is substantially zero.-
2. The commutator of claim 1 wherein the number of said segments is an even number and said segments are equal in length.
3. The commutator of claim 1 wherein said closed current path comprises two portions of equal length, the portions being electrically connected such that the current induced in one portion is cancelled by thecurrent induced in the other portion.
4. The commutator of claim 1 wherein said conductor means includes a plurality of conductors extending across said conductive ring, said conductors being substantially parallel to a predetermined diametrical axis of said ring.
5. The commutator of claim 4 wherein said segments are arranged in pairs spaced on opposite sides of said ring, one of said pairs being symmetrically arranged on opposite sides of said axis, and other of said pairs being between said segments of said one pair.
6. The commutator of claim 5 wherein said conductors connect alternate members of each pair in succession around the circumference of said ring, the junction between said conductors and said segments being adjacent an end of said segments.
7. The commutator of claim 5 wherein said support member has a central opening to receive an inductor core member, and said conductors are in the form of wires extending across said opening.
8. A commutator for stationary mounting in a magnetic field of the type having a conductive ring positioned to be engaged by a movable brush, said commutator comprising:
an electrically non-conductive support member, said support member being substantially circular and having a central opening;
a plurality of electrically conductive segments secured on and spaced around the periphery of said support member, thereby providing a conductive ring; said segments being circumferentially spaced from each other and being arranged in pairs, said segments of each pair being on opposite sides of the center of said support member; and
a plurality of pairs of parallel conductors extending across said opening, said conductors being connected between selected ones of said segments to cause current to flow in opposite directions in said conductors of each pair while current flows circumferentially in one direction in said segments.
9. The commutator according to claim 8 wherein said conductors connect alternate segments in series progressively around the circumference of said support member.
10. The commutator according to claim 8 wherein said segments of each pair have substantially the same arcuate length and said conductors of each pair have substantially the same

Claims (12)

1. A commutator adapted to cooperate in wiping engagement with an electrically conductive brush for providing a current path between a rotating element and a fixed element, the commutator comprising: an electrically non-conductive support member; a conductive ring carried by said support member, said ring comprising a plurality of electrically isolated segments; conductor means electrically connecting said segments for providing a closed current path between said segments to thereby fix all of said segments at substantially the same poteNtial, the current path being such that the total induced current flowing in said closed current path is substantially zero.
2. The commutator of claim 1 wherein the number of said segments is an even number and said segments are equal in length.
3. The commutator of claim 1 wherein said closed current path comprises two portions of equal length, the portions being electrically connected such that the current induced in one portion is cancelled by the current induced in the other portion.
4. The commutator of claim 1 wherein said conductor means includes a plurality of conductors extending across said conductive ring, said conductors being substantially parallel to a predetermined diametrical axis of said ring.
5. The commutator of claim 4 wherein said segments are arranged in pairs spaced on opposite sides of said ring, one of said pairs being symmetrically arranged on opposite sides of said axis, and other of said pairs being between said segments of said one pair.
6. The commutator of claim 5 wherein said conductors connect alternate members of each pair in succession around the circumference of said ring, the junction between said conductors and said segments being adjacent an end of said segments.
7. The commutator of claim 5 wherein said support member has a central opening to receive an inductor core member, and said conductors are in the form of wires extending across said opening.
8. A commutator for stationary mounting in a magnetic field of the type having a conductive ring positioned to be engaged by a movable brush, said commutator comprising: an electrically non-conductive support member, said support member being substantially circular and having a central opening; a plurality of electrically conductive segments secured on and spaced around the periphery of said support member, thereby providing a conductive ring; said segments being circumferentially spaced from each other and being arranged in pairs, said segments of each pair being on opposite sides of the center of said support member; and a plurality of pairs of parallel conductors extending across said opening, said conductors being connected between selected ones of said segments to cause current to flow in opposite directions in said conductors of each pair while current flows circumferentially in one direction in said segments.
9. The commutator according to claim 8 wherein said conductors connect alternate segments in series progressively around the circumference of said support member.
10. The commutator according to claim 8 wherein said segments of each pair have substantially the same arcuate length and said conductors of each pair have substantially the same length.
11. The commutator according to claim 8 wherein said central opening is substantially square and said conductors extend substantially parallel to one side of said opening, one of said pairs of segments being substantially coextensive with said one side of said opening.
12. The commutator according to claim 11 wherein a plurality of said segments are adjacent another side of said opening that is perpendicular to said one side, said segments that are coextensive with said one side having a greater length than said segments that are adjacent said other side.
US156311A 1970-06-02 1971-06-24 Variable induction device Expired - Lifetime US3668450A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US4270370A 1970-06-02 1970-06-02
US15631171A 1971-06-24 1971-06-24

Publications (1)

Publication Number Publication Date
US3668450A true US3668450A (en) 1972-06-06

Family

ID=26719529

Family Applications (1)

Application Number Title Priority Date Filing Date
US156311A Expired - Lifetime US3668450A (en) 1970-06-02 1971-06-24 Variable induction device

Country Status (1)

Country Link
US (1) US3668450A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110169370A1 (en) * 2008-09-17 2011-07-14 Robert Bosch Gmbh Six-pole dc machine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2688679A (en) * 1947-09-26 1954-09-07 Polytechnic Inst Brooklyn Metallic film variable resistor
US3243872A (en) * 1958-09-15 1966-04-05 Printed Motors Inc Electrical rotating machines
US3538365A (en) * 1966-09-01 1970-11-03 Bosch Gmbh Robert Commutator having disc-shaped base

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2688679A (en) * 1947-09-26 1954-09-07 Polytechnic Inst Brooklyn Metallic film variable resistor
US3243872A (en) * 1958-09-15 1966-04-05 Printed Motors Inc Electrical rotating machines
US3538365A (en) * 1966-09-01 1970-11-03 Bosch Gmbh Robert Commutator having disc-shaped base

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110169370A1 (en) * 2008-09-17 2011-07-14 Robert Bosch Gmbh Six-pole dc machine
US8816563B2 (en) * 2008-09-17 2014-08-26 Robert Bosch Gmbh Six-pole DC machine

Similar Documents

Publication Publication Date Title
US3614692A (en) Variable induction device
GB934351A (en) Improvements in or relating to rotary electric machines
GB1231108A (en)
US3148292A (en) Linear eddy-current electromagnetic actuator
US4806896A (en) Electromagnetic shield for electromagnetic apparatus
US2947960A (en) Winding and core therefor
US2283711A (en) Electrical winding
US2901645A (en) Induction motors
US3668450A (en) Variable induction device
US3239705A (en) Electric rotating machine
KR880013197A (en) Electrical circuit of inductance conductors, transformers and motors
US4521709A (en) Direct current dynamoelectric machines with auxiliary equalizer poles
DE2541694A1 (en) Electric motor with axial airgap - has annular armature stack with toroidal winding with excitation system opposite armature end face
GB1246475A (en) A linear induction motor
GB923809A (en)
US3418563A (en) Single-phase transformer for electric arc welding
US3328735A (en) Electrical transformer
US2205476A (en) Transforming apparatus
US3091711A (en) Printed circuit motor
US1870272A (en) Alternating current motor
US1559295A (en) Frequency converter
US3581189A (en) On-load voltage regulators
KR830005688A (en) Electric induction device
ES287233A1 (en) Electrical appliance that includes a wind (Machine-translation by Google Translate, not legally binding)
US3550054A (en) Limited range transformer with a tap changing system