US3667443A - Internal combustion engine with vented piston clearance spaces and method - Google Patents
Internal combustion engine with vented piston clearance spaces and method Download PDFInfo
- Publication number
- US3667443A US3667443A US15494A US3667443DA US3667443A US 3667443 A US3667443 A US 3667443A US 15494 A US15494 A US 15494A US 3667443D A US3667443D A US 3667443DA US 3667443 A US3667443 A US 3667443A
- Authority
- US
- United States
- Prior art keywords
- piston
- clearance space
- crankcase
- engine
- combustion chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J9/00—Piston-rings, e.g. non-metallic piston-rings, seats therefor; Ring sealings of similar construction
Definitions
- An internal combustion engine is provided with pistons having 51 int. Cl ..F0lb 31 00, F02f 3 00, F16j 1 00 vent Openings connecting the Space between the first and [58] Field of Search 1 23/ 193 P, 193 GP, 47 R, 73 AA second piston rings with the engine crankcase so as to vent to 123/73 FA, 19] B, 85 A; 92/182, 182 R, 182 A, the crankcase hydrocarbon-rich gases which escape from the 220; 277/29, 58 combustion chamber past the first piston ring.
- This method of venting the clearance space has been shown to reduce [56] References Cited hydrocarbon emissions in some instances.
- This invention proposes a method and means for reducing hydrocarbon emissions in the exhaust gases of internal combustion engines by venting the clearance space between the first and second compression rings of the engine pistons to a low pressure location, preferably the engine crankcase.
- Tests of this method in gasoline fueled four stroke spark ignition engines have in some cases shown substantial reductionsin exhaust hydrocarbon emissions. These reductions are thought to result from a change in the action of unburned hydrocarbonrich gases entering the clearance space between the first and second piston rings, which are vented into the crankcase and' prevented from building up a pressure between the rings so that the re-expansion of such unburned hydrocarbons back into the combustion chamber at a later part of the cycle is avoided.
- any increase in piston blowby which results from such venting is likely to result in residual exhaust products entering the clearance space between the rings toward the end of each combustion chamber expansion phase, sweeping out most of the unburned hydrocarbon-rich gases and leaving little to be returnedto the combustion chamber on the expansion and exhaust strokes of the piston.
- FIG. 1 is a fragmentary cross-sectional view of a four stroke gasoline fueled internal combustion engine of generally conventional construction but including pistons having venting means formed according to the invention
- FIG. 2 is an enlarged cross-sectional view showing more clearly the construction of the piston and venting means of FIG. 1 and FIG. 3 is a side view taken generally in the plane indicated by the line 33 of FIG. 2 as viewed in the direction of the arrows.
- Engine 10 includes a cylinder block 12 having a plurality of cylinders 14 integrally formed therein and only one of which is illustrated.
- each of the cylinders is a piston 16 connected by a connecting rod 18 with a throw 20 of crankshaft 22 which is rotatably supported by the cylinder block 12.
- the crankshaft is enclosed within the engine crankcase cavity 24, which is formed by the cylinder block 12 and oil pan 26 and connects with the lower open ends of the cylinders 14.
- Cylinder head 28 which coacts with the cylinders and pistons to define combustion chambers 30.
- Cylinder head 28 includes the usual intake ports and valves, not shown, as well as exhaust ports 32 and valves 34 to provide for the admission of fuel-air mixture to the combustion chambers and the discharge of exhaust products from the combustion chambers at the appropriate phases of each combustion chamber cycle.
- the valves are actuated by conventional valve gear such as rocker arms 36, push rods 38 and hydraulic lifters 40, all driven by a camshaft 42 carried in the cylinder block.
- Conventional coil springs 44 are used to seat the valves.
- the piston 16 includes integrally cast crown and skirt portions 46 and 48, respectively, joined by a thickened ring belt section 50.
- First, second and third axially spaced piston ring grooves 52, 54 and 56 are machined into the outer surface of the piston ring belt section adjacent the crown, leaving an ungrooved top land 5 8 with progressively smaller second and third lands 60, 62 between the various grooves.
- Within the first and second ring grooves 52, 54 are carried first and second compression rings 64 and 66, respectively, each of which are discontinuous at the usual end gaps 68.
- a conventional spring loaded rail type side sealing oil control ring which engages the walls of cylinder 14 and acts to scrape oil from them in the usual manner.
- a plurality of radial oil drain holes 72 are provided in the piston, connecting the base of the third ring groove 56 with the piston interior which is open to the engine crankcase 24 and thus provides for the direct return to the crankcase of oil scraped from the cylinder walls by the oil ring 70.
- the upper, ring belt, portion of the piston is smaller is diameter than the cylinder 14 so that a measurable clearance 74 exists between them. Since the piston rings 64, 66, 70 engage the cylinder wall, they coact with the piston and cylinder surfaces to enclose a first annular clearance space 76 between the first and second piston ,rings and a second annular clearance space 78 between the second compression ring and the oil ring 70. These annular clearance spaces are connected to the combustion chamber 30 by restricted flow paths through the end gaps 68 of the two compression rings as well as by very small leakage paths across the faces of these rings.
- the above described construction is conventional and is like that commonly used in current automotive engine practice.
- the present invention differs from previous practice in the provision of means to vent the first annular clearance space 76 to a low pressure location.
- the clearance space is vented to the engine crankcase 24 by a pair of oppositely disposed drilled passages 80 which extend radially through the second ring land 60 and the ring belt section 50 so as to connect the clearance space 76 with the interior of the piston 16.
- Two passages 80 are provided on opposite sides of the piston so that if one of the passages is blocked by the movement of the piston outer diameter into engagement with the cylinder wall, the other passage will be spaced from the cylinder wall and open by reason of the differing diameters of the piston and cylinder.
- vent openings could be fitted with one-way valves or they could be arranged for coaction between the cylinder and the piston so that the vents were open only during certain portions of the piston travel.
- Some such arrangements have been tried with varying degrees of success. It is important, however, that whatever mechanism is used that it operate primarily to bleed gases from the clearance space into the engine crankcase and not provide a path through which substantial amounts of crankcase gases are drawn into the engine combustion chamber on the intake stroke, as this would undoubtedly result in excessive consumption of lubricating oil. While this factor may have an effect on the type and location of piston vent openings selected for a particular engine, the tests of the disclosed preferred embodiment did not show significant oil consumption problems.
- the method of reducing hydrocarbon emissions in the exhaust gases of a piston type four stroke non-rotary spark ignition internal combustion engine including the step of directly venting to the engine crankcase the clearance space between the top and second piston rings of each engine piston during at least the latter part of the high pressure portions of each cycle of its respective combustion chamber, said venting step being accomplished without increasing the leakage path past the top piston ring and being characterized by the expulsion to the crankcase of a sufficient portion of the blowby gases entering said clearance space to prevent retention in said clearance space during the expansion and exhaust strokes of gas pressure significantly higher than that in the adjacent combustion chamber.
- vent means comprise passage means extending radially through the piston wall between said first and second piston rings.
- vent means further comprise two of said passage means disposed on opposite sides of the piston.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
Abstract
An internal combustion engine is provided with pistons having vent openings connecting the space between the first and second piston rings with the engine crankcase so as to vent to the crankcase hydrocarbon-rich gases which escape from the combustion chamber past the first piston ring. This method of venting the clearance space has been shown to reduce hydrocarbon emissions in some instances.
Description
Unite SK tes W111 i 1151 3,667,443 Currie et a1. 45 J 6, 1972 [54] INTERNAL COMBUSTION ENGINE 2,318,599 5/1943 Davis 123/55 A I VENTED PISTON CLE v ,1 CE 2,425,156 8/1947 Knight ..123/55 A 3,181,515 5/1965 Zurich... ..123/55 A X 1,778,200 10/1930 Nibbs ..277/29 [72] Inventors; James H, Currie Rochester; Stanley H, 2,072,623 3/1937 11111161 ..277/29 Mick, Mt. Clemens, both of Mich. 7 1 1/1 21 1,115,176 101 14 [73] Ass1gnee: General Motors Corporation, Detroit, /9
Primary Examiner-Wendell E. Burns [22] Filed; Mar. 2, 1970 Attorney-J. L. Carpenter and Robert J. Outland 21 App]. No.: 15,494 Y [57] ABSTRACT [52] US. Cl. ..123/193 P, 123/47 R, 277/29,
' 92 132 An internal combustion engine is provided with pistons having 51 int. Cl ..F0lb 31 00, F02f 3 00, F16j 1 00 vent Openings connecting the Space between the first and [58] Field of Search 1 23/ 193 P, 193 GP, 47 R, 73 AA second piston rings with the engine crankcase so as to vent to 123/73 FA, 19] B, 85 A; 92/182, 182 R, 182 A, the crankcase hydrocarbon-rich gases which escape from the 220; 277/29, 58 combustion chamber past the first piston ring. This method of venting the clearance space has been shown to reduce [56] References Cited hydrocarbon emissions in some instances.
UNITED STATES PATENTS 6 Claims, 3 Drawing figures 1,221,840 4/1917 Daniel ..92/229 X INTERNAL COMBUSTION ENGINE WITH VENTED PISTON CLEARANCE SPACES AND METHOD BACKGROUND OF THE INVENTION This invention relates to piston type internal combustion engines and more particularly to methods and means of venting the clearance spaces below the top compression rings for the purpose of reducing hydrocarbon emissions in such engines.
US. Pat. No. 3,335,643 Wentworth discloses the part that the crevice volumes beside and behind the top piston ring are believed to play in adding to the emission of unburned hydrocarbons in the exhaust gases of spark ignition internal combustion engines. Further discussion of these concepts is found in Society of Automotive Engineers, Paper No. 680,109 presented during the meeting of Jan. 8th through 12th, 1968. In paper it is hypothesized that unburned hydrocarbons entering the clearance space between the first and second compression rings of an engine piston are in part expanded back into the associated combustion chamber during lower pressure portions of its working cycle and some of these unburned hydrocarbons are swept out with the exhaust gases. While this is but one possible explanation of the observed efiects, it seems likely that crevice volume effects contribute in some degree to the hydrocarbon emissions of most, if not all, gasoline fueled piston type internal combustion engines.
SUMMARY OF THE INVENTION This invention proposes a method and means for reducing hydrocarbon emissions in the exhaust gases of internal combustion engines by venting the clearance space between the first and second compression rings of the engine pistons to a low pressure location, preferably the engine crankcase. Tests of this method in gasoline fueled four stroke spark ignition engines have in some cases shown substantial reductionsin exhaust hydrocarbon emissions. These reductions are thought to result from a change in the action of unburned hydrocarbonrich gases entering the clearance space between the first and second piston rings, which are vented into the crankcase and' prevented from building up a pressure between the rings so that the re-expansion of such unburned hydrocarbons back into the combustion chamber at a later part of the cycle is avoided. Also, any increase in piston blowby which results from such venting is likely to result in residual exhaust products entering the clearance space between the rings toward the end of each combustion chamber expansion phase, sweeping out most of the unburned hydrocarbon-rich gases and leaving little to be returnedto the combustion chamber on the expansion and exhaust strokes of the piston.
Further objects and advantages of the invention will be more clearly understood from the following description of a preferred embodiment taken together with the accompanying drawing.
BRIEF DESCRIPTION OF THE DRAWING In the drawing:
FIG. 1 is a fragmentary cross-sectional view of a four stroke gasoline fueled internal combustion engine of generally conventional construction but including pistons having venting means formed according to the invention,
FIG. 2 is an enlarged cross-sectional view showing more clearly the construction of the piston and venting means of FIG. 1 and FIG. 3 is a side view taken generally in the plane indicated by the line 33 of FIG. 2 as viewed in the direction of the arrows.
DESCRIPTION OF THE PREFERRED EMBODIIVIENT Referring in detail to the drawing, numeral generally indicates a four stroke gasoline fueled internal combustion engine which is of the conventional V type but could equally well be of any other known cylinder arrangement. Engine 10 includes a cylinder block 12 having a plurality of cylinders 14 integrally formed therein and only one of which is illustrated.
Within each of the cylinders is a piston 16 connected by a connecting rod 18 with a throw 20 of crankshaft 22 which is rotatably supported by the cylinder block 12. The crankshaft is enclosed within the engine crankcase cavity 24, which is formed by the cylinder block 12 and oil pan 26 and connects with the lower open ends of the cylinders 14.
The upper ends of the cylinders 14 are closed by a conventional cylinder head 28 which coacts with the cylinders and pistons to define combustion chambers 30. Cylinder head 28 includes the usual intake ports and valves, not shown, as well as exhaust ports 32 and valves 34 to provide for the admission of fuel-air mixture to the combustion chambers and the discharge of exhaust products from the combustion chambers at the appropriate phases of each combustion chamber cycle. The valves are actuated by conventional valve gear such as rocker arms 36, push rods 38 and hydraulic lifters 40, all driven by a camshaft 42 carried in the cylinder block. Conventional coil springs 44 are used to seat the valves.
As best shown in FIGS. 2 and 3, the piston 16 includes integrally cast crown and skirt portions 46 and 48, respectively, joined by a thickened ring belt section 50. First, second and third axially spaced piston ring grooves 52, 54 and 56 are machined into the outer surface of the piston ring belt section adjacent the crown, leaving an ungrooved top land 5 8 with progressively smaller second and third lands 60, 62 between the various grooves. Within the first and second ring grooves 52, 54 are carried first and second compression rings 64 and 66, respectively, each of which are discontinuous at the usual end gaps 68. In the third ring groove 56 there is retained a conventional spring loaded rail type side sealing oil control ring which engages the walls of cylinder 14 and acts to scrape oil from them in the usual manner. A plurality of radial oil drain holes 72 are provided in the piston, connecting the base of the third ring groove 56 with the piston interior which is open to the engine crankcase 24 and thus provides for the direct return to the crankcase of oil scraped from the cylinder walls by the oil ring 70.
The upper, ring belt, portion of the piston is smaller is diameter than the cylinder 14 so that a measurable clearance 74 exists between them. Since the piston rings 64, 66, 70 engage the cylinder wall, they coact with the piston and cylinder surfaces to enclose a first annular clearance space 76 between the first and second piston ,rings and a second annular clearance space 78 between the second compression ring and the oil ring 70. These annular clearance spaces are connected to the combustion chamber 30 by restricted flow paths through the end gaps 68 of the two compression rings as well as by very small leakage paths across the faces of these rings. The above described construction is conventional and is like that commonly used in current automotive engine practice.
The present invention differs from previous practice in the provision of means to vent the first annular clearance space 76 to a low pressure location. In the preferred embodiment disclosed, the clearance space is vented to the engine crankcase 24 by a pair of oppositely disposed drilled passages 80 which extend radially through the second ring land 60 and the ring belt section 50 so as to connect the clearance space 76 with the interior of the piston 16. Two passages 80 are provided on opposite sides of the piston so that if one of the passages is blocked by the movement of the piston outer diameter into engagement with the cylinder wall, the other passage will be spaced from the cylinder wall and open by reason of the differing diameters of the piston and cylinder.
With this arrangement the hydrocarbon-rich gases which escape from the combustion chamber past the top ring 64, either through the ring gap 68 or otherwise, are allowed to pass through passages 80 to the engine crankcase without building up a substantial pressure in the clearance space 76. This also prevents the build up of substantial pressures in the second annular clearance space 62.
Thus, it is thought that as pressures build up in the combustion chamber, on the compression stroke of the piston and continuing into the combustion phase of the expansion stroke, gases pass from the combustion chamber to the clearance space and. are vented to the crankcase through the openings 80. In all likelihood, the gases entering the clearance space toward the end of each such period include substantial amounts of combustion products and thus have lower percentages of unburned hydrocarbons than the gases received earlier in each period. Thus, when the pressure in the combustion chamber is reduced during the latter portion of the expansion stroke and the beginning of the exhaust stroke, the pressure in the first annular clearance space is sufficiently low so as not to cause substantial return of the gases therein back to the combustion chamber. Furthermore, to the extent that there is some return of gases, these are not likely to be particularly rich in hydrocarbons. It is believed that in this way the venting of the first annular clearance space under the top ring causes reductions in hydrocarbon rich gases returned to the cylinder and a reduction in hydrocarbon emissions in the engine exhaust.
Whatever the mechanism by which the results are obtained, substantial reductions in exhaust emissions of hydrocarbons, averaging 16 percent in one instance, were obtained in actual vehicle tests using a production engine with the pistons modified as shown in the drawings. In other tests with different engines and under varying conditions, results varied from no change up to a 30 percent reduction in hydrocarbon emissions. Thus significant reductions are obtainable in certain instances but it would presently require engine testing to determine applicability to a particular engine design.
While the disclosed embodiment illustrates the continuous venting of the annular clearance space under the top ring groove directly to the engine crankcase, it should be obvious that many variations both in structure and in function are possible within the scope of the teachings presented herein. For example, the vent openings could be fitted with one-way valves or they could be arranged for coaction between the cylinder and the piston so that the vents were open only during certain portions of the piston travel. Some such arrangements have been tried with varying degrees of success. It is important, however, that whatever mechanism is used that it operate primarily to bleed gases from the clearance space into the engine crankcase and not provide a path through which substantial amounts of crankcase gases are drawn into the engine combustion chamber on the intake stroke, as this would undoubtedly result in excessive consumption of lubricating oil. While this factor may have an effect on the type and location of piston vent openings selected for a particular engine, the tests of the disclosed preferred embodiment did not show significant oil consumption problems.
We claim:
I. The method of reducing hydrocarbon emissions in the exhaust gases of a piston type four stroke non-rotary spark ignition internal combustion engine, said method including the step of directly venting to the engine crankcase the clearance space between the top and second piston rings of each engine piston during at least the latter part of the high pressure portions of each cycle of its respective combustion chamber, said venting step being accomplished without increasing the leakage path past the top piston ring and being characterized by the expulsion to the crankcase of a sufficient portion of the blowby gases entering said clearance space to prevent retention in said clearance space during the expansion and exhaust strokes of gas pressure significantly higher than that in the adjacent combustion chamber.
2. The method of claim 1 wherein said step of venting to the crankcase is performed continuously during engine operation.
3. The method of claim 2 wherein said venting of each said clearance space occurs through passage means provided in the wall of each piston at its second piston ring land.
4. In combination with a four stroke non-rotary spark ignition internal combustion engine having a crankcase, a plurality of cylinders having one of their ends open to the crankcase and closed at their other ends, pistons in the cylinders defining combustion chambers at the closed ends thereof and separating the combustion chambers from the crankcase and means permitting the cyclic admission of arr and fuel to the combustion chambers and the discharge of exhaust gases therefrom said pistons each carrying first and second axially spaced gas sealing piston rings engaging said cylinder and defining a clearance space between said rings and between said piston and cylinder, each said first piston ring being disposed between a clearance space and a combustion chamber and having an end gas permitting limited passage of gas therethrough between each said combustion chamber and its respective clearance space and vent means through a wall of said piston and directly communicating said clearance space with the engine crankcase at least during the latter parts of the high pressure portions of the combustion chamber working cycle without increasing the gas leakage path past said first piston ring to said clearance space, said vent means being capable of expelling to said crankcase a sufficient portion of the gas entering said clearance space to prevent retention therein during the expansion and exhaust strokes of gas pressure significantly higher than in the adjacent combustion chamber.
5. The combination of claim 4 wherein said vent means comprise passage means extending radially through the piston wall between said first and second piston rings.
6. The combination of claim 5 wherein said vent means further comprise two of said passage means disposed on opposite sides of the piston.
3 33 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3, 667 4-4-3 Dat d June 6, 1972 n nw i James H. Currie and Stanley H. Mick It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
r- Col. 1, Line 16, between "In" and "paper" insert --this- 7 Col. 2, Line 38, "is" should read --in--.
col. 4, Line 30, "gas" should read --gap--.
Signed and sealed this 9th day of January 1973..
(SEAL) Attest:
EDWARD M FLETCHER,JR ROBERT GOTTSCHALK Attesting Officer Commissioner of Patents
Claims (6)
1. The method of reducing hydrocarbon emissions in the exhaust gases of a piston type four stroke non-rotary spark ignition internal combustion engine, said method including the step of directly venting to the engine crankcase the clearance space between the top and second piston rings of each engine piston during at least the latter part of the high pressure portions of each cycle of its respective combustion chamber, said venting step being accomplished without increasing the leakage path past the top piston ring and being characterized by the expulsion to the crankcase of a sufficient portion of the blowby gases entering said clearance space to prevent retention in said clearance space during the expansion and exhaust strokes of gas pressure significantly higher than that in the adjacent combustion chamber.
2. The method of claim 1 wherein said step of venting to the crankcase is performed continuously during engine operation.
3. The method of claim 2 wherein said venting of each said clearance space occurs through passage means provided in the wall of each piston at its second piston ring land.
4. In combination with a four stroke non-rotary spark ignition internal combustion engine having a crankcase, a plurality of cylinders having one of their ends open to the crankcase and closed at their other ends, pistons in the cylinders defining combustion chambers at the closed ends thereof and separating the combustion chambers from the crankcase and means permitting the cyclic admission of air and fuel to the combustion chambers and the discharge of exhaust gases therefrom said pistons each carrying first and second axially spaced gas sealing piston rings engaging said cylinder and defining a clearance space between said rings and between said piston and cylinder, each said first piston ring being disposed between a clearance space and a combustion chamber and having an end gas permitting limited passage of gas therethrough between each said combustion chamber and its respective clearance space and vent means through a wall of said piston and directly communicating said clearance space with the engine crankcase at least during the latter parts of the high pressure portions of the combustion chamber working cycle without increasing the gas leakage path past said first piston ring to said clearance space, said vent means being capable of expelling to said crankcase a sufficient portion of the gas entering said clearance space to prevent retention therein during the expansion and exhaust strokes of gas pressure significantly higher than in the adjacent combustion chamber.
5. The combination of claim 4 wherein said vent means comprise passage means extending radially through the piston wall between said first and second piston rings.
6. The combination of claim 5 wherein said vent means further comprise two of said passage means disposed on opposite sides of the piston.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1549470A | 1970-03-02 | 1970-03-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3667443A true US3667443A (en) | 1972-06-06 |
Family
ID=21771733
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US15494A Expired - Lifetime US3667443A (en) | 1970-03-02 | 1970-03-02 | Internal combustion engine with vented piston clearance spaces and method |
Country Status (1)
Country | Link |
---|---|
US (1) | US3667443A (en) |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4058104A (en) * | 1975-04-23 | 1977-11-15 | Automation Equipment, Inc. | Hydrostatic bearing piston for a two-cycle engine |
US4105008A (en) * | 1975-09-04 | 1978-08-08 | Cornell Research Foundation, Inc. | Anti-pollution piston construction |
US4111104A (en) * | 1977-03-30 | 1978-09-05 | General Motors Corporation | Engine with low friction piston |
US4191150A (en) * | 1978-03-20 | 1980-03-04 | General Motors Corporation | Engine with selective venting of unburned mixture from the piston crevice volume |
US4253435A (en) * | 1979-02-26 | 1981-03-03 | International Harvester Company | Diesel engine and piston assembly therefor |
US4282837A (en) * | 1979-09-05 | 1981-08-11 | General Motors Corporation | Two-cycle diesel engine with piston ring stabilizing accumulator volume |
US4367702A (en) * | 1981-01-30 | 1983-01-11 | Outboard Marine Corporation | Internal combustion engine with automatic compression release |
US4462601A (en) * | 1980-02-21 | 1984-07-31 | Skoog Knut A | Piston-cylinder sealing device |
US5067453A (en) * | 1989-09-07 | 1991-11-26 | Sanshin Kogyo Kabushiki Kaisha | Piston of two-cycle engine |
US5655433A (en) * | 1995-10-10 | 1997-08-12 | Briggs & Stratton Corporation | Piston-piston ring assembly and method for reducing engine exhaust emissions |
WO2000039445A1 (en) * | 1998-12-29 | 2000-07-06 | Ab Volvo | Piston |
WO2000077351A1 (en) * | 1999-06-07 | 2000-12-21 | Volvo Personvagnar Ab | Internal combustion engine |
US6205908B1 (en) * | 1998-02-20 | 2001-03-27 | Toyota Jidosha Kabushiki Kaisha | Piston equipped with piston ring |
US6675762B2 (en) * | 2001-10-30 | 2004-01-13 | Samyung Machinery Co., Ltd. | Piston assembly having counterflow thwarting construction for use in an internal combustion engine |
US20060150940A1 (en) * | 2003-07-08 | 2006-07-13 | Salzgeber Kurt | Internal combustion engine |
US20070204747A1 (en) * | 2006-03-01 | 2007-09-06 | Shunichi Aoyama | Internal combustion engine with improved thermal efficiency |
US20110182759A1 (en) * | 2010-01-27 | 2011-07-28 | Xiaohua Yuan | Mechanism to Raise the Efficiency of a Reciprocating Air Compressor |
US20140299090A1 (en) * | 2013-04-04 | 2014-10-09 | Ecomotors, Inc. | Ventilation Slots in a Cylinder Wall |
US20150152758A1 (en) * | 2013-12-03 | 2015-06-04 | Ecomotors, Inc. | Precision Lubrication of a Reciprocating Piston Within a Cylinder |
US20160040622A1 (en) * | 2014-08-05 | 2016-02-11 | General Electric Company | Piston assembly for a reciprocating engine |
US9334830B2 (en) | 2014-06-06 | 2016-05-10 | General Electric Company | Piston assembly for a reciprocating engine |
US9470179B2 (en) | 2014-06-06 | 2016-10-18 | General Electric Company | Piston assembly for a reciprocating engine |
US9845765B2 (en) | 2015-01-12 | 2017-12-19 | General Electric Company | Piston assembly for a reciprocating engine |
WO2019236405A1 (en) * | 2018-06-06 | 2019-12-12 | Wisconsin Alumni Research Foundation | Self-cleaning combustion engine window |
US12104551B1 (en) * | 2024-01-30 | 2024-10-01 | Caterpillar Inc. | Piston having baffle ring for limiting abnormal combustion and piston and cylinder liner assembly |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1115176A (en) * | 1914-10-27 | Moses Ely | Piston for gas-engines. | |
US1221840A (en) * | 1916-12-19 | 1917-04-10 | Moses Ely | Rotary gas-engine. |
US1398178A (en) * | 1920-11-08 | 1921-11-22 | Lukacsevics Charles De | Piston |
US1778200A (en) * | 1927-12-17 | 1930-10-14 | Electric Boat Co | Piston and ring mounting therefor |
US2072623A (en) * | 1934-10-24 | 1937-03-02 | Illmer Louis | High speed piston ring system |
US2318599A (en) * | 1940-07-16 | 1943-05-11 | Davis Alvin Gilbert | Multiple firing x type four cycle internal combustion engine |
US2425156A (en) * | 1943-03-12 | 1947-08-05 | Lloyd O Knight | Internal-combustion engine |
US3181515A (en) * | 1963-10-03 | 1965-05-04 | Royal Hotel | Internal combustion engine |
-
1970
- 1970-03-02 US US15494A patent/US3667443A/en not_active Expired - Lifetime
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1115176A (en) * | 1914-10-27 | Moses Ely | Piston for gas-engines. | |
US1221840A (en) * | 1916-12-19 | 1917-04-10 | Moses Ely | Rotary gas-engine. |
US1398178A (en) * | 1920-11-08 | 1921-11-22 | Lukacsevics Charles De | Piston |
US1778200A (en) * | 1927-12-17 | 1930-10-14 | Electric Boat Co | Piston and ring mounting therefor |
US2072623A (en) * | 1934-10-24 | 1937-03-02 | Illmer Louis | High speed piston ring system |
US2318599A (en) * | 1940-07-16 | 1943-05-11 | Davis Alvin Gilbert | Multiple firing x type four cycle internal combustion engine |
US2425156A (en) * | 1943-03-12 | 1947-08-05 | Lloyd O Knight | Internal-combustion engine |
US3181515A (en) * | 1963-10-03 | 1965-05-04 | Royal Hotel | Internal combustion engine |
Cited By (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4058104A (en) * | 1975-04-23 | 1977-11-15 | Automation Equipment, Inc. | Hydrostatic bearing piston for a two-cycle engine |
US4105008A (en) * | 1975-09-04 | 1978-08-08 | Cornell Research Foundation, Inc. | Anti-pollution piston construction |
US4111104A (en) * | 1977-03-30 | 1978-09-05 | General Motors Corporation | Engine with low friction piston |
US4191150A (en) * | 1978-03-20 | 1980-03-04 | General Motors Corporation | Engine with selective venting of unburned mixture from the piston crevice volume |
US4253435A (en) * | 1979-02-26 | 1981-03-03 | International Harvester Company | Diesel engine and piston assembly therefor |
US4282837A (en) * | 1979-09-05 | 1981-08-11 | General Motors Corporation | Two-cycle diesel engine with piston ring stabilizing accumulator volume |
US4462601A (en) * | 1980-02-21 | 1984-07-31 | Skoog Knut A | Piston-cylinder sealing device |
US4367702A (en) * | 1981-01-30 | 1983-01-11 | Outboard Marine Corporation | Internal combustion engine with automatic compression release |
US5067453A (en) * | 1989-09-07 | 1991-11-26 | Sanshin Kogyo Kabushiki Kaisha | Piston of two-cycle engine |
US5655433A (en) * | 1995-10-10 | 1997-08-12 | Briggs & Stratton Corporation | Piston-piston ring assembly and method for reducing engine exhaust emissions |
US6205908B1 (en) * | 1998-02-20 | 2001-03-27 | Toyota Jidosha Kabushiki Kaisha | Piston equipped with piston ring |
WO2000039445A1 (en) * | 1998-12-29 | 2000-07-06 | Ab Volvo | Piston |
US6378482B2 (en) | 1998-12-29 | 2002-04-30 | Volvo Car Corporation | Piston |
US6431157B1 (en) | 1999-06-07 | 2002-08-13 | Volvo Car Corporation | Internal combustion engine |
WO2000077351A1 (en) * | 1999-06-07 | 2000-12-21 | Volvo Personvagnar Ab | Internal combustion engine |
US6675762B2 (en) * | 2001-10-30 | 2004-01-13 | Samyung Machinery Co., Ltd. | Piston assembly having counterflow thwarting construction for use in an internal combustion engine |
US20060150940A1 (en) * | 2003-07-08 | 2006-07-13 | Salzgeber Kurt | Internal combustion engine |
US7428889B2 (en) * | 2003-07-08 | 2008-09-30 | Avl List Gmbh | Internal combustion engine |
US20070204747A1 (en) * | 2006-03-01 | 2007-09-06 | Shunichi Aoyama | Internal combustion engine with improved thermal efficiency |
US7594467B2 (en) * | 2006-03-01 | 2009-09-29 | Nissan Motor Co., Ltd. | Internal combustion engine with improved thermal efficiency |
US20110182759A1 (en) * | 2010-01-27 | 2011-07-28 | Xiaohua Yuan | Mechanism to Raise the Efficiency of a Reciprocating Air Compressor |
US9145845B2 (en) * | 2013-04-04 | 2015-09-29 | Ecomotors, Inc. | Ventilation slots in a cylinder wall |
US20140299090A1 (en) * | 2013-04-04 | 2014-10-09 | Ecomotors, Inc. | Ventilation Slots in a Cylinder Wall |
US20150152758A1 (en) * | 2013-12-03 | 2015-06-04 | Ecomotors, Inc. | Precision Lubrication of a Reciprocating Piston Within a Cylinder |
US9334830B2 (en) | 2014-06-06 | 2016-05-10 | General Electric Company | Piston assembly for a reciprocating engine |
US9470179B2 (en) | 2014-06-06 | 2016-10-18 | General Electric Company | Piston assembly for a reciprocating engine |
US20160040622A1 (en) * | 2014-08-05 | 2016-02-11 | General Electric Company | Piston assembly for a reciprocating engine |
US9845765B2 (en) | 2015-01-12 | 2017-12-19 | General Electric Company | Piston assembly for a reciprocating engine |
WO2019236405A1 (en) * | 2018-06-06 | 2019-12-12 | Wisconsin Alumni Research Foundation | Self-cleaning combustion engine window |
US12104551B1 (en) * | 2024-01-30 | 2024-10-01 | Caterpillar Inc. | Piston having baffle ring for limiting abnormal combustion and piston and cylinder liner assembly |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3667443A (en) | Internal combustion engine with vented piston clearance spaces and method | |
EP0003439B1 (en) | Internal combustion engine | |
US3895614A (en) | Split piston two-stroke four cycle internal combustion engine | |
US4244553A (en) | Hydraulic actuation system for engine valves | |
US5737999A (en) | Blowby pressure control above an oil control ring in a reciprocating internal combustion engine | |
CA1094409A (en) | Piston and ring for reducing hc emissions | |
US4020806A (en) | Hydraulic valve lifter for internal combustion engine | |
US5027757A (en) | Two-stroke cycle engine cylinder construction | |
US4478180A (en) | Crankchamber precompression type two-cycle internal combustion engine | |
EP1147302B1 (en) | Piston | |
US4938192A (en) | Piston cylinder combination with engine cylinder wall having valve ports and combustion chamber | |
US4282837A (en) | Two-cycle diesel engine with piston ring stabilizing accumulator volume | |
US4105008A (en) | Anti-pollution piston construction | |
US2937630A (en) | Compound internal combustion engine | |
CA1329370C (en) | Two cycle engine with cylinder liner and exhaust bridge lubrication and cooling | |
US2722924A (en) | Internal combustion engine | |
US4138971A (en) | Crankchamber precompression type two-cycle internal combustion engines | |
CA1281291C (en) | Two cycle engine with exhaust bridge lubrication | |
US7296544B2 (en) | Internal combustion engine | |
US4776308A (en) | Piston engines | |
US1906251A (en) | Internal combustion engine | |
US2692591A (en) | Combustion chamber | |
CA1285837C (en) | Steam purge of a piston/cylinder gap in a diesel engine | |
US2105272A (en) | Sleeve valve for a four stroke opposed piston engine | |
US3191584A (en) | Internal combustion engine |