US3666902A - Switch system - Google Patents

Switch system Download PDF

Info

Publication number
US3666902A
US3666902A US68971A US3666902DA US3666902A US 3666902 A US3666902 A US 3666902A US 68971 A US68971 A US 68971A US 3666902D A US3666902D A US 3666902DA US 3666902 A US3666902 A US 3666902A
Authority
US
United States
Prior art keywords
base
invention according
leaf spring
shaft
cantilevers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US68971A
Inventor
Kenneth Owen
Stephen W Kershner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delta Electronics Inc
Original Assignee
Delta Electronics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delta Electronics Inc filed Critical Delta Electronics Inc
Application granted granted Critical
Publication of US3666902A publication Critical patent/US3666902A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/12Auxiliary devices for switching or interrupting by mechanical chopper
    • H01P1/125Coaxial switches

Definitions

  • SWITCH SYSTEM [72] Inventors: Kenneth Owen, Springfield;
  • KERSHNER www 60% Patented May 30, 1972 4 Sheets-Sheet 2 INVENTORS KEN NETH OWEN STEPHEN W.
  • the present invention relates to a switch system such as that shown in U.S. Pat. No. 3,223,812 and U.S. Pat. No. 3,500,004 and is particularly made for'connecting any one of a plurality of transmitters to any ⁇ one of a plurality of antennas to directionally direct the signal.
  • the invention more particularly relates to the connection between coaxial cables in which the center conductor is shielded by the outer conductor to reduce cross-talk.
  • An object of the present invention is to provide a switch system which is relatively inexpensive and overcomes the difficulties of the prior art.
  • Another object is to provide a switch system for connecting any one of a plurality of transmitters to any one of a plurality of antennas by means of rotatable elements.
  • FIG. 1 is a perspective of the switch system showing the transmitter connection terminals at the top and two of the antenna connect terminals at the back;
  • FIG. 2 is a fragmentary section taken on line 2-2 of FIG. l, showing the manual and electrical operation structure for the rotor having cam sections at right angles made Vof a'double fork conductive element and showingthe connection of the middle antenna line to a coaxial terminal;
  • FIG. 3 is a diagrammatic perspective with the base and supporting structure omitted showing the operation of the rotor conductive cam making connection between transmitter T4 and antenna A2;
  • FIG. 4 is a fragmentary perspective with parts broken away looking from the front toward the back showing the spring contacts for grounding the conductive rotor cam when in inoperative position at ⁇ the right and showing the grounding spring out of contact with the double-forked element in crossconnecting position at the left;
  • FIG. 5 is a fragmentary perspective of the top left structure and showing the cross-point between transmitter Tl and antenna A1;
  • FIG. 6 is a fragmentary section taken on line 6,--6 of FIG. 2
  • FIG. 7 is a fragmentary detail exploded view showing the construction of the rotor cam showing the double-forked conductve element, the insulators supporting the same vancl the extension shafts for the manual and rotary solenoid operation.
  • a base plate B or main support is shown as provided with a plurality of switch receiving openings O extending in horizontal rows and vertical columns for the rotor cams shown of conductive, doubleforked elements S.
  • I-beams IH Extending horizontally on each side of the horizontal rows of openings O are I-beams IH, and extending vertically in columns are a plurality of I-beams IV secured to the base B by any suitable manner, thereby providing shielded passages for the horizontal antenna lines at the front and the vertical transmitter lines at the back.
  • postscript B means back and postscript F means front.
  • H and V mean horizontal and vertical respectivel y
  • Fixed to the outer flanges of the I-.beams IH are a plurality of face plates l0 at the front and at the back. Apertures in the face plates 10 provide bearings for the counterbored reduced ends of cylindrical insulator shafts of teflon or other suitable insulating material 11 which are snugly received in the forked ends of therotor cam S of conductive material.
  • the doubly forked rotatable conductive rotor cam element S includes a pair of forwardly extending tines S1, Sl and a pair of rearwardly extending tines S2, S2 forming flat cam sections Sl, Sl; S2, S2 at right angles to each other.
  • the rotor cam element is made from a cylindrical conductive bar which is bored inwardly from each end and then milled to provide the pairs of tines S1 and S2 of substantially the same length but the body is milled so that the cylindrical disc portion Sc is spaced from the inner end of the notch formed by the tines Sl, S1, a greater distance for contacting grounding springs 22A, 22A, hereinafter described, to prevent cross talk by grounding the rotors S in their inoperative positions.
  • the insulator shafts 1 l, 11 are held in position by roll pins R passing through aligned apertures in the shafts l 1 and the cooperating tines Sl, S1 and S2, S2, the cylindrical bore formed between the tines serving to snugly engage the cylindrical insulators l1 to prevent rocking movement about the pins R.
  • a knob carrying shaft l2 is received in the counterbore of insulator l 1 and is prevented from rotation therein by a roll pin R passing through a transverse aperture in the knob shaft 12 and received into a slot 11S in the insulator.
  • a pair of grooves 12A and 12B receive horseshoe-shaped spring washers 12S on the front and back of plates 13 mounted on the face plate l0 by means of spacers 13A.
  • a warped spring washer 12W engages the back of the plate 13 and a conventional washer is positioned between the front spring washer 12S and the front of the plate 13 to thereby maintain the knob receiving shaft l2 against axial movement.
  • ⁇ A hand operating knob 14 is mounted on the forward extension of shaft l2 by means of its axial bore which is of a length to space the inner endof the knob 14 away from the plate 13.
  • a rearwardly extending shaft l5 is received in the counterbore of the reduced portion of insulator 11 and held against rotation by a roll pin R and such shaft 15 is part of a stepping switch 16 of the rotary solenoid type such as that manufactured by Ledex, Inc., Series 312, or any other suitable type, making a complete turn in a predetermined number of activations such as l2 actuations of the rotary solenoid 16, for example.
  • the rotary solenoid 16 actuates the three wafer switches and one switch thereof causes the rotary solenoid to stop after three steps making a rotation.
  • Other wafer switches may be used to disconnectv and connect the transmitter and to indicate the position of the particular switch.
  • Other types of activators may be used to produce the 90 rotation.
  • a shaft 17 is shown to operate a two-wafer switch 18 which is arranged to operate a signal board to indicate the condition of the particular switch and another wafer is used to'control the transmitter to assure that the transmitter is turned off before the contacts are made or broken in the particular switch being operated.
  • a suitable signal board and transmitter control is shown in the prior patents referred to above.
  • Each face plate 10 is provided with a bent-over flange 19 to which is attached an insulator 20 by means kof rivets or bolts 20A and mounted on each insulator 20 are a pair of resilient conductive cantilevers or leaf spring line sections 2l in a rst plane, each leaf spring having means such as an aperture adjacent one end receiving a fastener element such as a bolt 21A- which extends through aligned apertures in the leaf spring sections 21, 21 and secured together with a nut to maintain the cantilever springs in position.
  • the cantilever springs may engage fixed insulatingly supported abutments on the fixed ends 21B of adjacent line continuing conductve cantilever springs.
  • the adjacent I-beams IH at the front of the base B are provided with slots 22 which receive electrically grounded leaf springs 22A which engage the rotatable conductive cam elements S in the inoperative position thereof to ground the elements S so that the conductive rotary element S is grounded in its inoperative position by the springs 22A, 22A to prevent cross talk.
  • Such springs are retained loosely in the slot by peening over a portion of the flange of the I-beam IH and by tapering the ends of springs to be loosely received in the slots 22 on one or both ends so that such springs 22A can assume a straight position as shown in dotted lines in FIG.
  • the I-beams IH and IV arev mounted on the front and back of the base B which has previously had openings O made therein.
  • the insulators 20 are mounted on the face plates l and the resilient conductive cantilevers or leaf spring section conductors 2l are secured to the insulators.
  • the face plates l0 with the insulators and the leaf springs are then mounted in their proper positions by means of screws or the like.
  • the leaf spring sections 2l are biased to have their free ends urged together so that the spacing therebetween is less than the height of the insulators 20 and therefore the free ends of the springs are closer than the conductive abutments or fixed ends 21B of the leaf spring previously mounted.
  • the cantilever leaf springs may engage fixed abutments insulatingly supporting the adjacent line continuing cantilever springs.
  • the face plates are provided with apertures 23 arranged in spaced relation for receiving a tool such as a U-shaped wire 23S, the tines of which are spaced apart a suicient distance to hold the free ends of cantilever leaf springs 2l, 21 of the module separated so that the module can be assembled by axial movement along shaft 11.
  • the module is held in place by suitable screws such as spacers 13A which have a threaded stud at one end and a threaded bore at the other end so that the threaded stud of spacer 13A secures the face plate 10 to a threaded opening in the l-beam while screws 13S secure the plate 13 in position.
  • suitable screws such as spacers 13A which have a threaded stud at one end and a threaded bore at the other end so that the threaded stud of spacer 13A secures the face plate 10 to a threaded opening in the l-beam while screws 13S secure the plate 13 in position.
  • the conductive rotatable element S is assembled with the insulators 11 and secured together by the roll'pins R and such unit is inserted before the back plate 10B is attached with the face plates 10 and 10B providing the bearings for the rotatable elements.
  • Each leaf spring 21 is secured intermediate its ends in a' notch 21C so that the end 21B curving inwardly acts as a fixed conductive abutment and lies outside of the notch 21C formed in insulator 20 and is adapted to be.
  • a channel shaped v conductive extension 25 is secured to the adjacent insulator 20 and outwardly of the spring sections 2l with a bolt 25A securing the channel 25 to the adjacent leaf spring sections 2l, the channel 25 being connected to a central contact 25B which is supported on a suitable insulator and projects rearwardly through a clearance opening in the base B to be attached to a female coaxial extension 25C receiving the contact 25B, an outer flange connection 25D providing the connection to the shielding conductor ofthe coaxial cable, the parts being held together by suitable bolts 25E.
  • the line sections are effectively shielded by suitable conductive plates.
  • FIG. 5 a connection from the vertical transmitter line T1 shows a channel member 26 mitered at right angles rearwardly and connected by a bolt 26A to the adjacent leaf spring section 2l and insulator 20, a horizontal portion 26B extending rearwardly and being connected to the center contact 26C for the transmitter Tl which is connected to the central conductor of a coaxial cable, the outer conductor being secured in position in a manner similar to that of the member 25D ofthe antenna connections.
  • a ⁇ switching system has been provided ⁇ in which any one of a pluforces between the bearing surfaces of the plate 10 and the reduced portion of the insulators.
  • Some insulating material such as Teflon takes on a permanent set when subjected to pressure in one direction, and by having equal radial pressure by the cantilever springs this pressure in one direction is avoided.
  • the grounding springs 22A, 22A also produce a uniform balance of radial pressure.
  • the manually operated switch 18 and the rotary solenoid operated switch 16 are secured to the plates 24 byl suitable fasteners and serve to operate an indicator board showing the position of the particular switch and'also having connections which disconnect the transmitter before the circuit is broken as previously explained.
  • the resilient conductive cantilevers or leaf spring sections 2l, 21 may be of other shapes such as a rod or the like, with provision to connect to a similar rod by means of the resiliency of the rod, or other shapes, to make and break the contact as described above.
  • 'Ihe cantilever springs may engage conductive abutments and be supported on conductive abutments, which conductive abutments are insulatingly supported on insulators such as 20.
  • One feature of the invention is the cantilever arrangement of the springs to provide for the resiliency and the spring biased closing of the free end of the cantilever with the relatively fixed end of the adjacent aligned cantilever or abutment.
  • the flow of current with the cantilever rotor spring sections has two paths with the coaxial arrangement described in detail and by using the two ⁇ fingers formed by the notch between fingers 21D at the free end of each spring four points of contact for the passage of current are provided, therebyv increasing the efficiency.
  • a balanced line arrangement may be provided in which the spring leaf' sections 2l, 2l on each module are insulated from one another by having attaching screws threaded into the insulator 20, thereby avoiding interconnecting the two leaf spring sections in the module.
  • the rotor cam conductive switching element S is then arranged to have one tine S1 connected to one tine S2 and such connections being insulated from the conductive connection between the other tine S1 and the other tine S2, thereby providing for cross-connecting the pairs of conductor lines to accomplish a similar result to that of U.S. Pat. No. 3,500,004.
  • a switch system comprising a base, first leaf spring section conductors insulatingly supported from said base and arranged in end-to-end overlapping relation forming first lines insulatingly supported from the front of said base, second leaf spring section conductors insulatingly supported from said base and arranged in end-to-end overlapping relation forming second lines insulatingly supported on the back of said base and extending transversly to and crossing the first lines, rotatable conducive elements supported from said base and overlapping the front and back crossing lines and lselectively engageable with the copperating leaf spring section conductors moving the free ends of the copperating leaf spring section conductors from the adjacent leaf spring section conductors and cross-connect the lines on the front to the lines on the back.
  • the base is a plate having apertures receiving the rotatable conductive element and partitions are arranged in parallel relation to said lines and apertured face plates are secured to said partitions substantially parallel to said base and rotatably support the rotatable elements and also cany insulators on which the leaf springs are mounted.
  • the rotatable conductive element has a body with a first pair of tines in one plane extending forwardly of the body and a second pair of tines in a plane transverse to said plane of the rst pair of tines extending rearwardly and an insulator is mounted between each pair of tines to rotatable support the rotatable conductive element.
  • a switch nodule for application to a base support having crossing channels comprising a pair of face plates, an insulator mounted on each. face plate, ⁇ a pair of leaf spring sections mounted on each insulator adjacent one end of the leaf ⁇ springs leaving cantilever portions at the other ends, a rotatable cam shaped conductive element having a body with tines extending in opposite directions positioned between said cantilever portions of said leaf springs, shaft insulators mounted in the tines of said cam shaped conductive element and serving as shafts, said shaft insulators being rotatably supported in aperture in said face plates.
  • a knob shaft extension projects outwardly from the free end of one of the insulators serving as ya shaft and a manual operating knob is mounted on said knob shaft.
  • a switch module comprising a face plate having a shaft receiving aperture therethrough, an insulator secured to one edge of said face plate, a pair of cantilever line section springs positioned on opposite sides of the axis of said shaft receiving apertures and mounted adjacent one end on said insulator, said cantilever springs having ends projecting beyond the adjacent edge of the face plate for overlapping cooperation with cantilever springs on adjacent face plates, a rotatable conductive element having conductive portions between said cantilever springs, an insulator shaft extending from said rotary conductive element and rotatably mounted in the shaft receiving aperture of said face plate, means to rotate said insulator shaft whereby a multiple line switch system may be provided by mounting the modules with the cantilever springs in registering overlapping relation to produce a switch system of any desired size.
  • a base and partition supports are provided for mounting the modules on opposite sides of a base so that lines may be provided extending in one direction on one side of said base and lines may be provided which extend transversely on the other side of said base and said rotary conductive elements provide for crossconnections between the lines on both sides of said base.
  • a channel shaped conductor embraces the f'ixed ends of the leaf springs at the end module and is connected to a terminal for connection to an antenna or transmitter.
  • the rotatable conductive element has a pair of tines for engagement with the cantilever line section springs on one side of the base and has a second pair of tines for engagement with the cantilever line section springs on the other side ofthe base.
  • the rotatable conductive element has tines engageable with the cantilever springs on one side of the base and another pair of tines extending between the line section springs on the other side of the base, the insulator shafts being positioned between the tines of each pair of tines and an extension shaft projecting from at least one insulator and means to rotate said extension shaft.
  • connection between the insulator shaft and extension shaft is a slot and pin whereby the auxiliary plate can be applied subsequently to the mounting of the face plate.
  • a switch module comprising a first pair of insulatingly supported spaced apart resilient conductive cantilevers in a first plane, a second pair of insulatingly supported spaced apart resilient conductive cantilevers in a second plane generally parallel to said first plane and spaced from said rst plane with the cantilever pairs in crossing relation, insulatingly supported conductive abutments cooperating with the free ends of said cantilevers, a rotatably insulatingly mounted rotor having its axis transverse to said planes and being embraced by said cantilevers, said rotor having a first generally flat cam section of a width greater than the spacing between said first cantilevers and engageable therewith and having a second generally flat cam section of a width greater than the spacing between said second cantilevers and substantially at right angles to said rst cam section and engageable with said second cantilevers, said cam sections being of conductive material and connected together whereby in one position of said rotor the cam sections are generally parallel to their cantilevers and the free ends of the cam
  • a switch system comprising a base, a first leaf spring section conductors insulatingly supported from said base and arranged in end to end overlapping relation and providing cantilever portions, second leaf spring section conductors insulatingly supported from said base and providing second cantilever portions and arranged in end to end overlapping relation and crossing said first leaf spring section conductors, rotatable conductive cam elements insulatingly supported

Abstract

A switch system for connecting any one of a plurality of transmitters to any one of a plurality of antennas by providing a base structure on which identical module switch elements, made of conductive resilient cantilever line sections, are mounted on the front and back of a base to provide continuous vertical line conductor elements on the back connected to transmitter terminals and provide continuous horizontal line conductor sections on the front connected to antenna terminals, rotatably mounted rotors having flat conductive cam sections at right angles to each other engage the cantilevers and cross connect any one of the transmitter lines to any one of the crossing antenna lines. Each module includes a face plate carrying an insulator supporting a pair of resilient conductive cantilever line sections embracing the cam sections of the rotor to connect with similar resilient conductive cantilever sections for line continuing relation or for cross connection by the cooperating rotatably mounted rotors insulatingly supported.

Description

[451 May 30, 1972 805,684 12/1958 GreatvBritain......................200/153 S Primary Examiner-Robert K. Schaefer Assistant Examiner-Robert A. Vanderhye Attorney-Milford A. Juten [5 7l ABSTRACT A switch system for connecting any one of a plurality of transmitters to any one of a plurality of antennas by providing a Stephen W. Kershner, Falls Church, both of Va.
Delta Electronics Inc., Alexandria, Va.
sept. 2, 1970 United States Patent Owen et al.
[54] SWITCH SYSTEM [72] Inventors: Kenneth Owen, Springfield;
[73] Assignee:
[22] Filed:
[2l] Appl. No.: 68,971
Patented May 3o, 1972 3,666,902
4 Sheets-Sheet 1 FIG. l. I
INVENTORS KENNETH OWEN STEPHEN W. KERSHNER www 60% Patented May 30, 1972 4 Sheets-Sheet 2 INVENTORS KEN NETH OWEN STEPHEN W. KERSHNER Patented May 3o, 1972 4 Sheets-Sheet s lul w mam/Mmmm influir mv mvENToRs F [G 3 KENNETH owEN STEPHEN w. KERSHNER Patented May 30, 1972 4 Sheets-Shoot 4 INVENTORS KENNETH O WEN KERSHNER d. SiN-bp STEPHEN W.
SWITCH SYSTEM The present invention relates to a switch system such as that shown in U.S. Pat. No. 3,223,812 and U.S. Pat. No. 3,500,004 and is particularly made for'connecting any one of a plurality of transmitters to any `one of a plurality of antennas to directionally direct the signal. The invention more particularly relates to the connection between coaxial cables in which the center conductor is shielded by the outer conductor to reduce cross-talk.
Heretofore, various switch systems have been provided, some of which have depended upon a plunger action to crossconnect crossing lines in which a plurality ofA generally parallel horizontal lines are connected to a number' of antennas and a plurality of vertical crossing lines which are located in a plane spaced from the antenna lines are connected to transmitters and plunger-like cross-connecting switches serve to connect the various antenna lines to the transmitter lines.
An object of the present invention is to provide a switch system which is relatively inexpensive and overcomes the difficulties of the prior art.
Another object is to provide a switch system for connecting any one of a plurality of transmitters to any one of a plurality of antennas by means of rotatable elements.
Other and further objects will be apparent as the description proceeds and upon reference to the accompanying drawings, wherein:
FIG. 1 is a perspective of the switch system showing the transmitter connection terminals at the top and two of the antenna connect terminals at the back;
FIG. 2 is a fragmentary section taken on line 2-2 of FIG. l, showing the manual and electrical operation structure for the rotor having cam sections at right angles made Vof a'double fork conductive element and showingthe connection of the middle antenna line to a coaxial terminal;
FIG. 3 is a diagrammatic perspective with the base and supporting structure omitted showing the operation of the rotor conductive cam making connection between transmitter T4 and antenna A2;
FIG. 4 is a fragmentary perspective with parts broken away looking from the front toward the back showing the spring contacts for grounding the conductive rotor cam when in inoperative position at `the right and showing the grounding spring out of contact with the double-forked element in crossconnecting position at the left;
FIG. 5 is a fragmentary perspective of the top left structure and showing the cross-point between transmitter Tl and antenna A1;
FIG. 6 is a fragmentary section taken on line 6,--6 of FIG. 2
showing the grounding spring engaging the rotary cam element in line continuing inoperative position;
Y FIG. 7 is a fragmentary detail exploded view showing the construction of the rotor cam showing the double-forked conductve element, the insulators supporting the same vancl the extension shafts for the manual and rotary solenoid operation.
Referring more particularly to the drawings, a base plate B or main support is shown as provided with a plurality of switch receiving openings O extending in horizontal rows and vertical columns for the rotor cams shown of conductive, doubleforked elements S. Extending horizontally on each side of the horizontal rows of openings O are I-beams IH, and extending vertically in columns are a plurality of I-beams IV secured to the base B by any suitable manner, thereby providing shielded passages for the horizontal antenna lines at the front and the vertical transmitter lines at the back. To reduce the number of reference numerals, postscript B means back and postscript F means front. H and V mean horizontal and vertical respectivel y Fixed to the outer flanges of the I-.beams IH are a plurality of face plates l0 at the front and at the back. Apertures in the face plates 10 provide bearings for the counterbored reduced ends of cylindrical insulator shafts of teflon or other suitable insulating material 11 which are snugly received in the forked ends of therotor cam S of conductive material. The doubly forked rotatable conductive rotor cam element S includes a pair of forwardly extending tines S1, Sl and a pair of rearwardly extending tines S2, S2 forming flat cam sections Sl, Sl; S2, S2 at right angles to each other. The rotor cam element is made from a cylindrical conductive bar which is bored inwardly from each end and then milled to provide the pairs of tines S1 and S2 of substantially the same length but the body is milled so that the cylindrical disc portion Sc is spaced from the inner end of the notch formed by the tines Sl, S1, a greater distance for contacting grounding springs 22A, 22A, hereinafter described, to prevent cross talk by grounding the rotors S in their inoperative positions. The insulator shafts 1 l, 11 are held in position by roll pins R passing through aligned apertures in the shafts l 1 and the cooperating tines Sl, S1 and S2, S2, the cylindrical bore formed between the tines serving to snugly engage the cylindrical insulators l1 to prevent rocking movement about the pins R. A knob carrying shaft l2 is received in the counterbore of insulator l 1 and is prevented from rotation therein by a roll pin R passing through a transverse aperture in the knob shaft 12 and received into a slot 11S in the insulator. A pair of grooves 12A and 12B receive horseshoe-shaped spring washers 12S on the front and back of plates 13 mounted on the face plate l0 by means of spacers 13A. A warped spring washer 12W engages the back of the plate 13 and a conventional washer is positioned between the front spring washer 12S and the front of the plate 13 to thereby maintain the knob receiving shaft l2 against axial movement. `A hand operating knob 14 is mounted on the forward extension of shaft l2 by means of its axial bore which is of a length to space the inner endof the knob 14 away from the plate 13.
A rearwardly extending shaft l5 is received in the counterbore of the reduced portion of insulator 11 and held against rotation by a roll pin R and such shaft 15 is part of a stepping switch 16 of the rotary solenoid type such as that manufactured by Ledex, Inc., Series 312, or any other suitable type, making a complete turn in a predetermined number of activations such as l2 actuations of the rotary solenoid 16, for example. The rotary solenoid 16 actuates the three wafer switches and one switch thereof causes the rotary solenoid to stop after three steps making a rotation. Other wafer switches may be used to disconnectv and connect the transmitter and to indicate the position of the particular switch. Other types of activators may be used to produce the 90 rotation.
A shaft 17 is shown to operate a two-wafer switch 18 which is arranged to operate a signal board to indicate the condition of the particular switch and another wafer is used to'control the transmitter to assure that the transmitter is turned off before the contacts are made or broken in the particular switch being operated. A suitable signal board and transmitter control is shown in the prior patents referred to above.
Each face plate 10 is provided with a bent-over flange 19 to which is attached an insulator 20 by means kof rivets or bolts 20A and mounted on each insulator 20 are a pair of resilient conductive cantilevers or leaf spring line sections 2l in a rst plane, each leaf spring having means such as an aperture adjacent one end receiving a fastener element such as a bolt 21A- which extends through aligned apertures in the leaf spring sections 21, 21 and secured together with a nut to maintain the cantilever springs in position. It will be apparent that the cantilever springs may engage fixed insulatingly supported abutments on the fixed ends 21B of adjacent line continuing conductve cantilever springs.
The adjacent I-beams IH at the front of the base B are provided with slots 22 which receive electrically grounded leaf springs 22A which engage the rotatable conductive cam elements S in the inoperative position thereof to ground the elements S so that the conductive rotary element S is grounded in its inoperative position by the springs 22A, 22A to prevent cross talk. Such springs are retained loosely in the slot by peening over a portion of the flange of the I-beam IH and by tapering the ends of springs to be loosely received in the slots 22 on one or both ends so that such springs 22A can assume a straight position as shown in dotted lines in FIG. 6 when the To assemble the switch system, the I-beams IH and IV arev mounted on the front and back of the base B which has previously had openings O made therein. The insulators 20 are mounted on the face plates l and the resilient conductive cantilevers or leaf spring section conductors 2l are secured to the insulators. The face plates l0 with the insulators and the leaf springs are then mounted in their proper positions by means of screws or the like. The leaf spring sections 2l are biased to have their free ends urged together so that the spacing therebetween is less than the height of the insulators 20 and therefore the free ends of the springs are closer than the conductive abutments or fixed ends 21B of the leaf spring previously mounted. If desired, the cantilever leaf springs may engage fixed abutments insulatingly supporting the adjacent line continuing cantilever springs. To provide for assembly, the face plates are provided with apertures 23 arranged in spaced relation for receiving a tool such as a U-shaped wire 23S, the tines of which are spaced apart a suicient distance to hold the free ends of cantilever leaf springs 2l, 21 of the module separated so that the module can be assembled by axial movement along shaft 11. The module is held in place by suitable screws such as spacers 13A which have a threaded stud at one end and a threaded bore at the other end so that the threaded stud of spacer 13A secures the face plate 10 to a threaded opening in the l-beam while screws 13S secure the plate 13 in position.
The conductive rotatable element S is assembled with the insulators 11 and secured together by the roll'pins R and such unit is inserted before the back plate 10B is attached with the face plates 10 and 10B providing the bearings for the rotatable elements.
The back face plates 10B are then Aapplied and the U-shaped wire 23 is used to spread the springs 21 as previously described and thereafter the plate 24 is secured in place by spacers 13A and screws 13S.
Each leaf spring 21 is secured intermediate its ends in a' notch 21C so that the end 21B curving inwardly acts as a fixed conductive abutment and lies outside of the notch 21C formed in insulator 20 and is adapted to be. contracted by the fingers 21D, 21D formed in the free end of the leaf spring section 21, dimples 21E being formed in the fingers 21D, 21D to provide contact projections on the upwardly curved free ends of the fingers 21D to contact the xed abutment formed by the curved stationary end 21B of the adjacent resilient conductive cantilever leaf spring section 21. 4
In FIG. 2 a channel shaped v conductive extension 25 is secured to the adjacent insulator 20 and outwardly of the spring sections 2l with a bolt 25A securing the channel 25 to the adjacent leaf spring sections 2l, the channel 25 being connected to a central contact 25B which is supported on a suitable insulator and projects rearwardly through a clearance opening in the base B to be attached to a female coaxial extension 25C receiving the contact 25B, an outer flange connection 25D providing the connection to the shielding conductor ofthe coaxial cable, the parts being held together by suitable bolts 25E. The line sections are effectively shielded by suitable conductive plates.
ln FIG. 5 a connection from the vertical transmitter line T1 shows a channel member 26 mitered at right angles rearwardly and connected by a bolt 26A to the adjacent leaf spring section 2l and insulator 20, a horizontal portion 26B extending rearwardly and being connected to the center contact 26C for the transmitter Tl which is connected to the central conductor of a coaxial cable, the outer conductor being secured in position in a manner similar to that of the member 25D ofthe antenna connections.
From the above description, it will be apparent that a `switching system has been provided `in which any one of a pluforces between the bearing surfaces of the plate 10 and the reduced portion of the insulators. Some insulating material such as Teflon takes on a permanent set when subjected to pressure in one direction, and by having equal radial pressure by the cantilever springs this pressure in one direction is avoided. The grounding springs 22A, 22A also produce a uniform balance of radial pressure.
The manually operated switch 18 and the rotary solenoid operated switch 16 are secured to the plates 24 byl suitable fasteners and serve to operate an indicator board showing the position of the particular switch and'also having connections which disconnect the transmitter before the circuit is broken as previously explained.
The resilient conductive cantilevers or leaf spring sections 2l, 21 may be of other shapes such as a rod or the like, with provision to connect to a similar rod by means of the resiliency of the rod, or other shapes, to make and break the contact as described above. 'Ihe cantilever springs may engage conductive abutments and be supported on conductive abutments, which conductive abutments are insulatingly supported on insulators such as 20.
One feature of the invention is the cantilever arrangement of the springs to provide for the resiliency and the spring biased closing of the free end of the cantilever with the relatively fixed end of the adjacent aligned cantilever or abutment. The flow of current with the cantilever rotor spring sections has two paths with the coaxial arrangement described in detail and by using the two `fingers formed by the notch between fingers 21D at the free end of each spring four points of contact for the passage of current are provided, therebyv increasing the efficiency. y
A balanced line arrangement may be provided in which the spring leaf' sections 2l, 2l on each module are insulated from one another by having attaching screws threaded into the insulator 20, thereby avoiding interconnecting the two leaf spring sections in the module. The rotor cam conductive switching element S is then arranged to have one tine S1 connected to one tine S2 and such connections being insulated from the conductive connection between the other tine S1 and the other tine S2, thereby providing for cross-connecting the pairs of conductor lines to accomplish a similar result to that of U.S. Pat. No. 3,500,004.
We claim:
1. A switch system comprising a base, first leaf spring section conductors insulatingly supported from said base and arranged in end-to-end overlapping relation forming first lines insulatingly supported from the front of said base, second leaf spring section conductors insulatingly supported from said base and arranged in end-to-end overlapping relation forming second lines insulatingly supported on the back of said base and extending transversly to and crossing the first lines, rotatable conducive elements supported from said base and overlapping the front and back crossing lines and lselectively engageable with the copperating leaf spring section conductors moving the free ends of the copperating leaf spring section conductors from the adjacent leaf spring section conductors and cross-connect the lines on the front to the lines on the back.
2. The invention according to claim 1 in which the base is a plate having apertures receiving the rotatable conductive element and partitions are arranged in parallel relation to said lines and apertured face plates are secured to said partitions substantially parallel to said base and rotatably support the rotatable elements and also cany insulators on which the leaf springs are mounted.
3. The invention according to claim 2 in which a manual operating knob is provided on one end of the rotatable conductive element.
4. 4The invention according to claim 3 in which a power means and a control switch is mounted on the other end of said rotatable conductive element.
5. The invention according to claim 2 in which the rotatable conductive element has a body with a first pair of tines in one plane extending forwardly of the body and a second pair of tines in a plane transverse to said plane of the rst pair of tines extending rearwardly and an insulator is mounted between each pair of tines to rotatable support the rotatable conductive element.
6. The invention according to claim 1 in which a leaf spring section is provided on each side of the rotatable conductive element to provide equal radial pressure to the opposite sides of the rotatable conductive element preventing unbalanced forces.
7. A switch nodule for application to a base support having crossing channels comprising a pair of face plates, an insulator mounted on each. face plate, `a pair of leaf spring sections mounted on each insulator adjacent one end of the leaf` springs leaving cantilever portions at the other ends, a rotatable cam shaped conductive element having a body with tines extending in opposite directions positioned between said cantilever portions of said leaf springs, shaft insulators mounted in the tines of said cam shaped conductive element and serving as shafts, said shaft insulators being rotatably supported in aperture in said face plates.
8. The invention according to claim 7 in which a knob shaft extension projects outwardly from the free end of one of the insulators serving as ya shaft and a manual operating knob is mounted on said knob shaft.
9. The invention according to claim 7 in which a power operated rotary solenoid is operatively connected to one end of one of the insulators serving as a ,shaft for rotating the rotatable conductive element to crossconnect the cooperating leaf spring sections or to open the circuit between the crossing leafspring sections. A
l0.' The invention according to claim 7 in which a manual operating knob is mounted on the free end of one of the insulators serving as a shaft and a switch is mounted on the free end of the other insulator serving as a shaft.
1l. The inventionaccording toiclaim l in which grounding leaf springs are supported from said base and engage the rotatable conductive element when the leaf spring sections are in line continuing position.
l2. A switch module comprising a face plate having a shaft receiving aperture therethrough, an insulator secured to one edge of said face plate, a pair of cantilever line section springs positioned on opposite sides of the axis of said shaft receiving apertures and mounted adjacent one end on said insulator, said cantilever springs having ends projecting beyond the adjacent edge of the face plate for overlapping cooperation with cantilever springs on adjacent face plates, a rotatable conductive element having conductive portions between said cantilever springs, an insulator shaft extending from said rotary conductive element and rotatably mounted in the shaft receiving aperture of said face plate, means to rotate said insulator shaft whereby a multiple line switch system may be provided by mounting the modules with the cantilever springs in registering overlapping relation to produce a switch system of any desired size. v
13. The invention according to claim 12 in which a base and partition supports are provided for mounting the modules on opposite sides of a base so that lines may be provided extending in one direction on one side of said base and lines may be provided which extend transversely on the other side of said base and said rotary conductive elements provide for crossconnections between the lines on both sides of said base.
14. The invention according to claim 12 in which a pair of tool receiving apertures for receiving the legs of a U-shaped member are provided on the face plate to engage and spread apart the free ends of the cantilever springs so that the face plates may be assembled.
l5. The invention according to claim 13 in which a channel shaped conductor embraces the f'ixed ends of the leaf springs at the end module and is connected to a terminal for connection to an antenna or transmitter.
16. The invention according to claim 13 in which the rotatable conductive element has a pair of tines for engagement with the cantilever line section springs on one side of the base and has a second pair of tines for engagement with the cantilever line section springs on the other side ofthe base.
17. The invention according to claim 16 in which at least one grounding spring is provided for engaging the rotary conductive element in its line continuing position.
18. The invention according to claim 13 in which the rotatable conductive element has tines engageable with the cantilever springs on one side of the base and another pair of tines extending between the line section springs on the other side of the base, the insulator shafts being positioned between the tines of each pair of tines and an extension shaft projecting from at least one insulator and means to rotate said extension shaft.
19. The invention according to claim 18 in which a second extension shaft is mounted on the other end extending from the other insulator shaft and switch means operated by said second extension shaft.
20. The invention according to claim 19 in which a rotary solenoid is provided to operate said second extension shaft and a manual knob is provided to operate said first extension shaft. l
21. The invention according to claim 18 in which an auxiliary plate is mounted outwardly of the face plate and the extension shaft is rotatably mounted in the auxiliary plate and retained therein by spring washers reacting against both faces of the auxiliary plate.
22. The invention according to claim 21 in which the connection between the insulator shaft and extension shaft is a slot and pin whereby the auxiliary plate can be applied subsequently to the mounting of the face plate.
' 23. The invention according to claim 22 in which a second auxiliary plateis mounted outwardly of the other cooperating face plate and a second extension shaft is rotatably mounted in the second auxiliary plate.
24. A switch module comprising a first pair of insulatingly supported spaced apart resilient conductive cantilevers in a first plane, a second pair of insulatingly supported spaced apart resilient conductive cantilevers in a second plane generally parallel to said first plane and spaced from said rst plane with the cantilever pairs in crossing relation, insulatingly supported conductive abutments cooperating with the free ends of said cantilevers, a rotatably insulatingly mounted rotor having its axis transverse to said planes and being embraced by said cantilevers, said rotor having a first generally flat cam section of a width greater than the spacing between said first cantilevers and engageable therewith and having a second generally flat cam section of a width greater than the spacing between said second cantilevers and substantially at right angles to said rst cam section and engageable with said second cantilevers, said cam sections being of conductive material and connected together whereby in one position of said rotor the cam sections are generally parallel to their cantilevers and the free ends of the cantilevers engage their conductive abutments and in the other position of said rotor the cam sections engage the cantilevers and move the free ends of the cantilevers out of contact with their conductive abutments and connect the first pair of cantilevers with the second pair of cantilevers.
25. The invention according to claim 24, in which a plurality of switch modules are connected together with the fixed ends of the cantilevers connected to the abutments of the adjacent module whereby a switch system of any size can be assembled.
26. The invention according to claim 24 in which grounded springs engage at least one flat cam section when the cam sections are parallel to their cantilevers to prevent coupling between the first and second pairs of cantilevers.
27. A switch system comprising a base, a first leaf spring section conductors insulatingly supported from said base and arranged in end to end overlapping relation and providing cantilever portions, second leaf spring section conductors insulatingly supported from said base and providing second cantilever portions and arranged in end to end overlapping relation and crossing said first leaf spring section conductors, rotatable conductive cam elements insulatingly supported

Claims (28)

1. A switch system comprising a base, first leaf spring section conductors insulatingly supported from said base and arranged in end-to-end overlapping relation forming first lines insulatingly supported from the front of said base, second leaf spring section conductors insulatingly supported from said base and arranged in end-to-end overlapping relation forming second lines insulatingly supported on the back of said base and extending transversly to and crossing the first lines, rotatable conducive elements supported from said base and overlapping the front and back crossing lines and selectively engageable with the copperating leaf spring section conductors moving the free ends of the copperating leaf spring section conductors from the adjacent leaf spring section conductors and cross-connect the lines on the front to the lines on the back.
2. The invention according to claim 1 in which the base is a plate having apertures receiving the rotatable conductive element and partitions are arranged in parallel relation to said lines and apertured face plates are secured to said partitions substantially parallel to said base and rotatably support the rotatable elements and also carry insulators on which the leaf springs are mounted.
3. The invention according to claim 2 in which a manual operating knob is provided on one end of the rotatable conductive element.
4. The invention according to claim 3 in which a power means and a control switch is mounted on the other end of said rotatable conductive element.
5. The invention according to claim 2 in which the rotatable conductive element has a body with a first pair of tines in one plane extending forwardly of the body and a second pair of tines in a plane transverse to said plane of the first pair of tines extending rearwardly and an insulator is mounted between each pair of tines to rotatable support the rotatable conductive element.
6. The invention according to claim 1 in which a leaf spring section is provided on each side of the rotatable conductive element to provide equal radial pressure to the opposite sides of the rotatable conductive element preventing unbalanced forces.
7. A switch nodule for application to a base support having crossing channels comprising a pair of face plates, an insulator mounted on each face plate, a pair of leaf spring sections mounted on each insulator adjacent one end of the leaf springs leaving cantilever portions at the other ends, a rotatable cam shaped conductive element having a body with tines extending in opposite directions positioned between said cantilever portions of said leaf springs, shaft insulators mounted in the tines of said cam shaped conductive element and serving as shafts, said shaft insulators being rotatably supported in aperture in said face plates.
8. The invention according to claim 7 in which a knob shaft extension projects outwardly from the free end of one of the insulators serving as a shaft and a manual operating knob is mounted on said knob shaft.
9. The invention according to claim 7 in which a power operated rotary solenoid is operatively connected to one end of one of the insulators serving as a shaft for rotating the rotatable conductive element to crossconnect the cooperating leaf spring sections or to open the circuit between the crossing leaf spring sections.
10. The invention according to claim 7 in which a manual operating knob is mounted on the free end of one of the insulators serving as a shaft and a switch is mounted on the free end of the other insulator serving as a shaft.
11. The invention according to claim 1 in which grounding leaf springs are supported from said base and engage the rotatable conductive element when the leaf spring sections are in line continuing position.
12. A switch module comprising a face plate having a shaft receiving aperture therethrough, an insulator secured to one edge of said face plate, a pair of cantilever line section springs positioned on opposite sides of the axis of said shaft receiving apertures and mounted adjacent one end on said insulator, said cantilever springs having ends projecting beyond the adjacent edge of the face plate for overlapping cooperation with cantilever springs on adjacent face plates, a rotatable conductive element having conductive portions between said cantilever springs, an insulator shaft extending from said rotary conductive element and rotatably mounted in the shaft receiving aperture of said face plate, means to rotate said insulator shaft whereby a multiple line switch system may be provided by mounting the modules with the cantilever springs in registering overlapping relation to produce a switch system of any desired size.
13. The invention according to claim 12 in which a base and partition supports are provided for mounting the modules on opposite sides of a base so that lines may be provided extending in one direction on one side of said base and lines may be provided which extend transversely on the other side of said base and said rotary conductive elements provide for cross-connections between the lines on both sides of said base.
14. The invention according to claim 12 in which a pair of tool receiving apertures for receiving the legs of a U-shaped member are provided on the face plate to engage and spread apart the free ends of the cantilever springs so that the face plates may be assembled.
15. The invention according to claim 13 in which a channel shaped conductor embraces the fixed ends of the leaf springs at the end module and is connected to a terminal for connection to an antenna or transmitter.
16. The invention according to claim 13 in which the rotatable conductive element has a pair of tines for engagement with the cantilever line section springs on one side of the base and has a second pair of tines for engagement with the cantilever line section springs on the other side of the base.
17. The invention according to claim 16 in which at least one grounding spring is provided for engaging the rotary conductive element in its line continuing position.
18. The invention according to claim 13 in which the rotatable conductive element has tines engageable with the cantilever springs on one side of the base and another pair of tines extending between the line section springs on the other side of the base, the insulator shafts being positioned between the tines of each pair of tines and an extension shaft projecting from at least one insulator and means to rotate said extension shaft.
19. The invention according to claIm 18 in which a second extension shaft is mounted on the other end extending from the other insulator shaft and switch means operated by said second extension shaft.
20. The invention according to claim 19 in which a rotary solenoid is provided to operate said second extension shaft and a manual knob is provided to operate said first extension shaft.
21. The invention according to claim 18 in which an auxiliary plate is mounted outwardly of the face plate and the extension shaft is rotatably mounted in the auxiliary plate and retained therein by spring washers reacting against both faces of the auxiliary plate.
22. The invention according to claim 21 in which the connection between the insulator shaft and extension shaft is a slot and pin whereby the auxiliary plate can be applied subsequently to the mounting of the face plate.
23. The invention according to claim 22 in which a second auxiliary plate is mounted outwardly of the other cooperating face plate and a second extension shaft is rotatably mounted in the second auxiliary plate.
24. A switch module comprising a first pair of insulatingly supported spaced apart resilient conductive cantilevers in a first plane, a second pair of insulatingly supported spaced apart resilient conductive cantilevers in a second plane generally parallel to said first plane and spaced from said first plane with the cantilever pairs in crossing relation, insulatingly supported conductive abutments cooperating with the free ends of said cantilevers, a rotatably insulatingly mounted rotor having its axis transverse to said planes and being embraced by said cantilevers, said rotor having a first generally flat cam section of a width greater than the spacing between said first cantilevers and engageable therewith and having a second generally flat cam section of a width greater than the spacing between said second cantilevers and substantially at right angles to said first cam section and engageable with said second cantilevers, said cam sections being of conductive material and connected together whereby in one position of said rotor the cam sections are generally parallel to their cantilevers and the free ends of the cantilevers engage their conductive abutments and in the other position of said rotor the cam sections engage the cantilevers and move the free ends of the cantilevers out of contact with their conductive abutments and connect the first pair of cantilevers with the second pair of cantilevers.
25. The invention according to claim 24, in which a plurality of switch modules are connected together with the fixed ends of the cantilevers connected to the abutments of the adjacent module whereby a switch system of any size can be assembled.
26. The invention according to claim 24 in which grounded springs engage at least one flat cam section when the cam sections are parallel to their cantilevers to prevent coupling between the first and second pairs of cantilevers.
27. A switch system comprising a base, a first leaf spring section conductors insulatingly supported from said base and arranged in end to end overlapping relation and providing cantilever portions, second leaf spring section conductors insulatingly supported from said base and providing second cantilever portions and arranged in end to end overlapping relation and crossing said first leaf spring section conductors, rotatable conductive cam elements insulatingly supported from said base and overlapping cantilever portions of the crossing first leaf spring section conductors and the cantilever portions of said second leaf spring section conductors and selectively engageable with with the cooperating leaf spring section conductors from the adjacent leaf spring section conductors and cross connect the first leaf spring section conductors to the second leaf spring section conductors.
28. The invention according to claim 27 in which the first and second leaf spring section conductors extend in lines generally straight with a minimum of physical discontinuities Such as stub ends.
US68971A 1970-09-02 1970-09-02 Switch system Expired - Lifetime US3666902A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US6897170A 1970-09-02 1970-09-02

Publications (1)

Publication Number Publication Date
US3666902A true US3666902A (en) 1972-05-30

Family

ID=22085875

Family Applications (1)

Application Number Title Priority Date Filing Date
US68971A Expired - Lifetime US3666902A (en) 1970-09-02 1970-09-02 Switch system

Country Status (1)

Country Link
US (1) US3666902A (en)

Cited By (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873794A (en) * 1973-04-20 1975-03-25 Kenneth Owen Radio frequency modular switch system
US3885117A (en) * 1974-04-03 1975-05-20 Kenneth Owen Balanced line switch system
US3975896A (en) * 1973-12-24 1976-08-24 Citizen Watch Co., Ltd. Switching device for electronic timepiece
US4463235A (en) * 1980-04-15 1984-07-31 Gentric Alain Switch with several layers of crossing points
US4595893A (en) * 1983-05-24 1986-06-17 Adret Electronique Microwave transmission line element comprising one or more incorporated switching members for inserting one or more quadripoles
US6975178B1 (en) 2003-03-10 2005-12-13 The United States Of America As Represented By The Secretary Of The Air Force Military communications antenna switching
US20070176844A1 (en) * 2006-02-02 2007-08-02 Antenex, Inc. Removable mountable aerodynamic bayonet antenna apparatus and method
US20070229375A1 (en) * 2006-03-28 2007-10-04 Antenex, Inc. Mountable and adjustable aerodynamic antenna apparatus and method
US8299372B2 (en) 2010-06-11 2012-10-30 Laird Technologies, Inc. Antenna universal mount joint connectors
WO2017058491A1 (en) * 2015-10-02 2017-04-06 At&T Intellectual Property I, L.P. Communication system, guided wave switch and methods for use therewith
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB805684A (en) * 1956-05-01 1958-12-10 Marconi Wireless Telegraph Co Improvements in or relating to switching arrangements for coaxial cables
FR1212854A (en) * 1957-10-17 1960-03-28 Telefunken Gmbh Switch for coaxial high frequency lines
US3019323A (en) * 1960-03-21 1962-01-30 Telex Inc Electrical switch
US3120585A (en) * 1958-12-09 1964-02-04 Teleregister Corp Rotary switch with replaceable contact sets
US3223812A (en) * 1965-12-14 Switch system
US3271533A (en) * 1963-10-28 1966-09-06 Kinetics Corp Rotary switch, with vibration resistant resilient displaceable fixed contact structure
US3310733A (en) * 1963-07-29 1967-03-21 William S Fortune High voltage switching instrument
US3312792A (en) * 1966-01-28 1967-04-04 Gen Dynamics Corp Matrix switch with improved contact actuator means

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3223812A (en) * 1965-12-14 Switch system
GB805684A (en) * 1956-05-01 1958-12-10 Marconi Wireless Telegraph Co Improvements in or relating to switching arrangements for coaxial cables
FR1212854A (en) * 1957-10-17 1960-03-28 Telefunken Gmbh Switch for coaxial high frequency lines
US3120585A (en) * 1958-12-09 1964-02-04 Teleregister Corp Rotary switch with replaceable contact sets
US3019323A (en) * 1960-03-21 1962-01-30 Telex Inc Electrical switch
US3310733A (en) * 1963-07-29 1967-03-21 William S Fortune High voltage switching instrument
US3271533A (en) * 1963-10-28 1966-09-06 Kinetics Corp Rotary switch, with vibration resistant resilient displaceable fixed contact structure
US3312792A (en) * 1966-01-28 1967-04-04 Gen Dynamics Corp Matrix switch with improved contact actuator means

Cited By (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3873794A (en) * 1973-04-20 1975-03-25 Kenneth Owen Radio frequency modular switch system
US3975896A (en) * 1973-12-24 1976-08-24 Citizen Watch Co., Ltd. Switching device for electronic timepiece
US3885117A (en) * 1974-04-03 1975-05-20 Kenneth Owen Balanced line switch system
US4463235A (en) * 1980-04-15 1984-07-31 Gentric Alain Switch with several layers of crossing points
US4595893A (en) * 1983-05-24 1986-06-17 Adret Electronique Microwave transmission line element comprising one or more incorporated switching members for inserting one or more quadripoles
US6975178B1 (en) 2003-03-10 2005-12-13 The United States Of America As Represented By The Secretary Of The Air Force Military communications antenna switching
US20070176844A1 (en) * 2006-02-02 2007-08-02 Antenex, Inc. Removable mountable aerodynamic bayonet antenna apparatus and method
US7268734B2 (en) 2006-02-02 2007-09-11 Antenex, Inc. Removable mountable aerodynamic bayonet antenna apparatus and method
US20070229375A1 (en) * 2006-03-28 2007-10-04 Antenex, Inc. Mountable and adjustable aerodynamic antenna apparatus and method
US7339548B2 (en) 2006-03-28 2008-03-04 Antenex, Inc. Mountable and adjustable aerodynamic antenna apparatus and method
US8299372B2 (en) 2010-06-11 2012-10-30 Laird Technologies, Inc. Antenna universal mount joint connectors
US9999038B2 (en) 2013-05-31 2018-06-12 At&T Intellectual Property I, L.P. Remote distributed antenna system
US10051630B2 (en) 2013-05-31 2018-08-14 At&T Intellectual Property I, L.P. Remote distributed antenna system
US9674711B2 (en) 2013-11-06 2017-06-06 At&T Intellectual Property I, L.P. Surface-wave communications and methods thereof
US9768833B2 (en) 2014-09-15 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for sensing a condition in a transmission medium of electromagnetic waves
US10063280B2 (en) 2014-09-17 2018-08-28 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9906269B2 (en) 2014-09-17 2018-02-27 At&T Intellectual Property I, L.P. Monitoring and mitigating conditions in a communication network
US9973416B2 (en) 2014-10-02 2018-05-15 At&T Intellectual Property I, L.P. Method and apparatus that provides fault tolerance in a communication network
US9685992B2 (en) 2014-10-03 2017-06-20 At&T Intellectual Property I, L.P. Circuit panel network and methods thereof
US9866276B2 (en) 2014-10-10 2018-01-09 At&T Intellectual Property I, L.P. Method and apparatus for arranging communication sessions in a communication system
US9847850B2 (en) 2014-10-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a mode of communication in a communication network
US9871558B2 (en) 2014-10-21 2018-01-16 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9912033B2 (en) 2014-10-21 2018-03-06 At&T Intellectual Property I, Lp Guided wave coupler, coupling module and methods for use therewith
US9960808B2 (en) 2014-10-21 2018-05-01 At&T Intellectual Property I, L.P. Guided-wave transmission device and methods for use therewith
US9769020B2 (en) 2014-10-21 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for responding to events affecting communications in a communication network
US9954286B2 (en) 2014-10-21 2018-04-24 At&T Intellectual Property I, L.P. Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876587B2 (en) 2014-10-21 2018-01-23 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9780834B2 (en) 2014-10-21 2017-10-03 At&T Intellectual Property I, L.P. Method and apparatus for transmitting electromagnetic waves
US9705610B2 (en) 2014-10-21 2017-07-11 At&T Intellectual Property I, L.P. Transmission device with impairment compensation and methods for use therewith
US9954287B2 (en) 2014-11-20 2018-04-24 At&T Intellectual Property I, L.P. Apparatus for converting wireless signals and electromagnetic waves and methods thereof
US9749083B2 (en) 2014-11-20 2017-08-29 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US9800327B2 (en) 2014-11-20 2017-10-24 At&T Intellectual Property I, L.P. Apparatus for controlling operations of a communication device and methods thereof
US10243784B2 (en) 2014-11-20 2019-03-26 At&T Intellectual Property I, L.P. System for generating topology information and methods thereof
US9742521B2 (en) 2014-11-20 2017-08-22 At&T Intellectual Property I, L.P. Transmission device with mode division multiplexing and methods for use therewith
US10009067B2 (en) 2014-12-04 2018-06-26 At&T Intellectual Property I, L.P. Method and apparatus for configuring a communication interface
US9742462B2 (en) 2014-12-04 2017-08-22 At&T Intellectual Property I, L.P. Transmission medium and communication interfaces and methods for use therewith
US9876571B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9876570B2 (en) 2015-02-20 2018-01-23 At&T Intellectual Property I, Lp Guided-wave transmission device with non-fundamental mode propagation and methods for use therewith
US9749013B2 (en) 2015-03-17 2017-08-29 At&T Intellectual Property I, L.P. Method and apparatus for reducing attenuation of electromagnetic waves guided by a transmission medium
US9831912B2 (en) 2015-04-24 2017-11-28 At&T Intellectual Property I, Lp Directional coupling device and methods for use therewith
US9705561B2 (en) 2015-04-24 2017-07-11 At&T Intellectual Property I, L.P. Directional coupling device and methods for use therewith
US10224981B2 (en) 2015-04-24 2019-03-05 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793955B2 (en) 2015-04-24 2017-10-17 At&T Intellectual Property I, Lp Passive electrical coupling device and methods for use therewith
US9793954B2 (en) 2015-04-28 2017-10-17 At&T Intellectual Property I, L.P. Magnetic coupling device and methods for use therewith
US9748626B2 (en) 2015-05-14 2017-08-29 At&T Intellectual Property I, L.P. Plurality of cables having different cross-sectional shapes which are bundled together to form a transmission medium
US9887447B2 (en) 2015-05-14 2018-02-06 At&T Intellectual Property I, L.P. Transmission medium having multiple cores and methods for use therewith
US9871282B2 (en) 2015-05-14 2018-01-16 At&T Intellectual Property I, L.P. At least one transmission medium having a dielectric surface that is covered at least in part by a second dielectric
US10650940B2 (en) 2015-05-15 2020-05-12 At&T Intellectual Property I, L.P. Transmission medium having a conductive material and methods for use therewith
US9917341B2 (en) 2015-05-27 2018-03-13 At&T Intellectual Property I, L.P. Apparatus and method for launching electromagnetic waves and for modifying radial dimensions of the propagating electromagnetic waves
US9912382B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US10812174B2 (en) 2015-06-03 2020-10-20 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US10797781B2 (en) 2015-06-03 2020-10-06 At&T Intellectual Property I, L.P. Client node device and methods for use therewith
US9967002B2 (en) 2015-06-03 2018-05-08 At&T Intellectual I, Lp Network termination and methods for use therewith
US9935703B2 (en) 2015-06-03 2018-04-03 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US10050697B2 (en) 2015-06-03 2018-08-14 At&T Intellectual Property I, L.P. Host node device and methods for use therewith
US9866309B2 (en) 2015-06-03 2018-01-09 At&T Intellectual Property I, Lp Host node device and methods for use therewith
US9912381B2 (en) 2015-06-03 2018-03-06 At&T Intellectual Property I, Lp Network termination and methods for use therewith
US9913139B2 (en) 2015-06-09 2018-03-06 At&T Intellectual Property I, L.P. Signal fingerprinting for authentication of communicating devices
US9997819B2 (en) 2015-06-09 2018-06-12 At&T Intellectual Property I, L.P. Transmission medium and method for facilitating propagation of electromagnetic waves via a core
US9820146B2 (en) 2015-06-12 2017-11-14 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US10069185B2 (en) 2015-06-25 2018-09-04 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a non-fundamental wave mode on a transmission medium
US9787412B2 (en) 2015-06-25 2017-10-10 At&T Intellectual Property I, L.P. Methods and apparatus for inducing a fundamental wave mode on a transmission medium
US9865911B2 (en) 2015-06-25 2018-01-09 At&T Intellectual Property I, L.P. Waveguide system for slot radiating first electromagnetic waves that are combined into a non-fundamental wave mode second electromagnetic wave on a transmission medium
US10148016B2 (en) 2015-07-14 2018-12-04 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array
US9929755B2 (en) 2015-07-14 2018-03-27 At&T Intellectual Property I, L.P. Method and apparatus for coupling an antenna to a device
US9853342B2 (en) 2015-07-14 2017-12-26 At&T Intellectual Property I, L.P. Dielectric transmission medium connector and methods for use therewith
US9847566B2 (en) 2015-07-14 2017-12-19 At&T Intellectual Property I, L.P. Method and apparatus for adjusting a field of a signal to mitigate interference
US10205655B2 (en) 2015-07-14 2019-02-12 At&T Intellectual Property I, L.P. Apparatus and methods for communicating utilizing an antenna array and multiple communication paths
US10044409B2 (en) 2015-07-14 2018-08-07 At&T Intellectual Property I, L.P. Transmission medium and methods for use therewith
US9882257B2 (en) 2015-07-14 2018-01-30 At&T Intellectual Property I, L.P. Method and apparatus for launching a wave mode that mitigates interference
US10090606B2 (en) 2015-07-15 2018-10-02 At&T Intellectual Property I, L.P. Antenna system with dielectric array and methods for use therewith
US9948333B2 (en) 2015-07-23 2018-04-17 At&T Intellectual Property I, L.P. Method and apparatus for wireless communications to mitigate interference
US9912027B2 (en) 2015-07-23 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9806818B2 (en) 2015-07-23 2017-10-31 At&T Intellectual Property I, Lp Node device, repeater and methods for use therewith
US9749053B2 (en) 2015-07-23 2017-08-29 At&T Intellectual Property I, L.P. Node device, repeater and methods for use therewith
US9871283B2 (en) 2015-07-23 2018-01-16 At&T Intellectual Property I, Lp Transmission medium having a dielectric core comprised of plural members connected by a ball and socket configuration
US9838078B2 (en) 2015-07-31 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for exchanging communication signals
US9735833B2 (en) 2015-07-31 2017-08-15 At&T Intellectual Property I, L.P. Method and apparatus for communications management in a neighborhood network
US9967173B2 (en) 2015-07-31 2018-05-08 At&T Intellectual Property I, L.P. Method and apparatus for authentication and identity management of communicating devices
US9904535B2 (en) 2015-09-14 2018-02-27 At&T Intellectual Property I, L.P. Method and apparatus for distributing software
US9769128B2 (en) 2015-09-28 2017-09-19 At&T Intellectual Property I, L.P. Method and apparatus for encryption of communications over a network
US9729197B2 (en) 2015-10-01 2017-08-08 At&T Intellectual Property I, L.P. Method and apparatus for communicating network management traffic over a network
US10224590B2 (en) 2015-10-02 2019-03-05 At&T Intellectual Property I, L.P. Communication system, guided wave switch and methods for use therewith
US10535911B2 (en) 2015-10-02 2020-01-14 At&T Intellectual Property I, L.P. Communication system, guided wave switch and methods for use therewith
WO2017058491A1 (en) * 2015-10-02 2017-04-06 At&T Intellectual Property I, L.P. Communication system, guided wave switch and methods for use therewith
US9876264B2 (en) 2015-10-02 2018-01-23 At&T Intellectual Property I, Lp Communication system, guided wave switch and methods for use therewith
US10355367B2 (en) 2015-10-16 2019-07-16 At&T Intellectual Property I, L.P. Antenna structure for exchanging wireless signals
US9860075B1 (en) 2016-08-26 2018-01-02 At&T Intellectual Property I, L.P. Method and communication node for broadband distribution
US10811767B2 (en) 2016-10-21 2020-10-20 At&T Intellectual Property I, L.P. System and dielectric antenna with convex dielectric radome
US10374316B2 (en) 2016-10-21 2019-08-06 At&T Intellectual Property I, L.P. System and dielectric antenna with non-uniform dielectric
US10312567B2 (en) 2016-10-26 2019-06-04 At&T Intellectual Property I, L.P. Launcher with planar strip antenna and methods for use therewith
US10340573B2 (en) 2016-10-26 2019-07-02 At&T Intellectual Property I, L.P. Launcher with cylindrical coupling device and methods for use therewith
US10498044B2 (en) 2016-11-03 2019-12-03 At&T Intellectual Property I, L.P. Apparatus for configuring a surface of an antenna
US10225025B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Method and apparatus for detecting a fault in a communication system
US10291334B2 (en) 2016-11-03 2019-05-14 At&T Intellectual Property I, L.P. System for detecting a fault in a communication system
US10224634B2 (en) 2016-11-03 2019-03-05 At&T Intellectual Property I, L.P. Methods and apparatus for adjusting an operational characteristic of an antenna
US10178445B2 (en) 2016-11-23 2019-01-08 At&T Intellectual Property I, L.P. Methods, devices, and systems for load balancing between a plurality of waveguides
US10340601B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Multi-antenna system and methods for use therewith
US10340603B2 (en) 2016-11-23 2019-07-02 At&T Intellectual Property I, L.P. Antenna system having shielded structural configurations for assembly
US10090594B2 (en) 2016-11-23 2018-10-02 At&T Intellectual Property I, L.P. Antenna system having structural configurations for assembly
US10535928B2 (en) 2016-11-23 2020-01-14 At&T Intellectual Property I, L.P. Antenna system and methods for use therewith
US10305190B2 (en) 2016-12-01 2019-05-28 At&T Intellectual Property I, L.P. Reflecting dielectric antenna system and methods for use therewith
US10361489B2 (en) 2016-12-01 2019-07-23 At&T Intellectual Property I, L.P. Dielectric dish antenna system and methods for use therewith
US10637149B2 (en) 2016-12-06 2020-04-28 At&T Intellectual Property I, L.P. Injection molded dielectric antenna and methods for use therewith
US10694379B2 (en) 2016-12-06 2020-06-23 At&T Intellectual Property I, L.P. Waveguide system with device-based authentication and methods for use therewith
US10135145B2 (en) 2016-12-06 2018-11-20 At&T Intellectual Property I, L.P. Apparatus and methods for generating an electromagnetic wave along a transmission medium
US10326494B2 (en) 2016-12-06 2019-06-18 At&T Intellectual Property I, L.P. Apparatus for measurement de-embedding and methods for use therewith
US10439675B2 (en) 2016-12-06 2019-10-08 At&T Intellectual Property I, L.P. Method and apparatus for repeating guided wave communication signals
US10382976B2 (en) 2016-12-06 2019-08-13 At&T Intellectual Property I, L.P. Method and apparatus for managing wireless communications based on communication paths and network device positions
US10727599B2 (en) 2016-12-06 2020-07-28 At&T Intellectual Property I, L.P. Launcher with slot antenna and methods for use therewith
US10755542B2 (en) 2016-12-06 2020-08-25 At&T Intellectual Property I, L.P. Method and apparatus for surveillance via guided wave communication
US9927517B1 (en) 2016-12-06 2018-03-27 At&T Intellectual Property I, L.P. Apparatus and methods for sensing rainfall
US10819035B2 (en) 2016-12-06 2020-10-27 At&T Intellectual Property I, L.P. Launcher with helical antenna and methods for use therewith
US10020844B2 (en) 2016-12-06 2018-07-10 T&T Intellectual Property I, L.P. Method and apparatus for broadcast communication via guided waves
US10446936B2 (en) 2016-12-07 2019-10-15 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system and methods for use therewith
US10243270B2 (en) 2016-12-07 2019-03-26 At&T Intellectual Property I, L.P. Beam adaptive multi-feed dielectric antenna system and methods for use therewith
US10027397B2 (en) 2016-12-07 2018-07-17 At&T Intellectual Property I, L.P. Distributed antenna system and methods for use therewith
US9893795B1 (en) 2016-12-07 2018-02-13 At&T Intellectual Property I, Lp Method and repeater for broadband distribution
US10389029B2 (en) 2016-12-07 2019-08-20 At&T Intellectual Property I, L.P. Multi-feed dielectric antenna system with core selection and methods for use therewith
US10139820B2 (en) 2016-12-07 2018-11-27 At&T Intellectual Property I, L.P. Method and apparatus for deploying equipment of a communication system
US10168695B2 (en) 2016-12-07 2019-01-01 At&T Intellectual Property I, L.P. Method and apparatus for controlling an unmanned aircraft
US10359749B2 (en) 2016-12-07 2019-07-23 At&T Intellectual Property I, L.P. Method and apparatus for utilities management via guided wave communication
US10547348B2 (en) 2016-12-07 2020-01-28 At&T Intellectual Property I, L.P. Method and apparatus for switching transmission mediums in a communication system
US10601494B2 (en) 2016-12-08 2020-03-24 At&T Intellectual Property I, L.P. Dual-band communication device and method for use therewith
US9911020B1 (en) 2016-12-08 2018-03-06 At&T Intellectual Property I, L.P. Method and apparatus for tracking via a radio frequency identification device
US10530505B2 (en) 2016-12-08 2020-01-07 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves along a transmission medium
US10938108B2 (en) 2016-12-08 2021-03-02 At&T Intellectual Property I, L.P. Frequency selective multi-feed dielectric antenna system and methods for use therewith
US9998870B1 (en) 2016-12-08 2018-06-12 At&T Intellectual Property I, L.P. Method and apparatus for proximity sensing
US10916969B2 (en) 2016-12-08 2021-02-09 At&T Intellectual Property I, L.P. Method and apparatus for providing power using an inductive coupling
US10326689B2 (en) 2016-12-08 2019-06-18 At&T Intellectual Property I, L.P. Method and system for providing alternative communication paths
US10411356B2 (en) 2016-12-08 2019-09-10 At&T Intellectual Property I, L.P. Apparatus and methods for selectively targeting communication devices with an antenna array
US10103422B2 (en) 2016-12-08 2018-10-16 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10389037B2 (en) 2016-12-08 2019-08-20 At&T Intellectual Property I, L.P. Apparatus and methods for selecting sections of an antenna array and use therewith
US10777873B2 (en) 2016-12-08 2020-09-15 At&T Intellectual Property I, L.P. Method and apparatus for mounting network devices
US10069535B2 (en) 2016-12-08 2018-09-04 At&T Intellectual Property I, L.P. Apparatus and methods for launching electromagnetic waves having a certain electric field structure
US9838896B1 (en) 2016-12-09 2017-12-05 At&T Intellectual Property I, L.P. Method and apparatus for assessing network coverage
US10340983B2 (en) 2016-12-09 2019-07-02 At&T Intellectual Property I, L.P. Method and apparatus for surveying remote sites via guided wave communications
US10264586B2 (en) 2016-12-09 2019-04-16 At&T Mobility Ii Llc Cloud-based packet controller and methods for use therewith
US9973940B1 (en) 2017-02-27 2018-05-15 At&T Intellectual Property I, L.P. Apparatus and methods for dynamic impedance matching of a guided wave launcher
US10298293B2 (en) 2017-03-13 2019-05-21 At&T Intellectual Property I, L.P. Apparatus of communication utilizing wireless network devices

Similar Documents

Publication Publication Date Title
US3666902A (en) Switch system
US3024334A (en) Ball contacting device
US3463967A (en) Panelboard load center
JPH09512949A (en) Microwave multiport transfer switch
US3185761A (en) Fabricated circuit structure
US3026494A (en) Electrical connector block for interconnecting circuits
US4523165A (en) Contact arrangement for relays
US3215954A (en) Radio frequency matrix switch with integral automatic stub disconnect
US2341029A (en) Switching mechanism
US2930020A (en) Mounting and connecting means for electric circuit controlling devices
US3248491A (en) Slider switch construction with interfitting shaft members
US3089010A (en) Switching assembly
US3268840A (en) Magnetic switch contact assembly
US2859311A (en) Electrical switch
US4468081A (en) Terminal assembly for circuit interrupter
US3772486A (en) Side selector switch with segmented terminals and collector means
US2435978A (en) Coaxial switch
US2847522A (en) Electric switches
US2137503A (en) Switching apparatus
US3873794A (en) Radio frequency modular switch system
US3336455A (en) Push button operated switch structure
US3239628A (en) Teflon coated contact separator
US2135832A (en) Multicontact device
US3869192A (en) Circuit breaker with pre-loaded terminal connectors
US3896276A (en) Matrix type slide switch assembly