US3666683A - Scintillation counting composition containing oxdiazole - Google Patents

Scintillation counting composition containing oxdiazole Download PDF

Info

Publication number
US3666683A
US3666683A US832881A US3666683DA US3666683A US 3666683 A US3666683 A US 3666683A US 832881 A US832881 A US 832881A US 3666683D A US3666683D A US 3666683DA US 3666683 A US3666683 A US 3666683A
Authority
US
United States
Prior art keywords
formula
oxdiazole
compound
composition
scintillation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US832881A
Inventor
Erwin Maeder
Rudolf Anliker
Karl Schmid
Adolf Emil Siegrist
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3666683A publication Critical patent/US3666683A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/204Measuring radiation intensity with scintillation detectors the detector being a liquid
    • G01T1/2042Composition for liquid scintillation systems

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Luminescent Compositions (AREA)

Abstract

WHEREIN A1 is a branched chain alkyl, B1 is hydrogen, phenyl, lower alkyl, or lower alkoxy, and m is 1 or 2. The counts per minute emitted by the material dispersed in the scintillation liquid are measured with a suitable instrument such as a liquid scintillation spectrometer.

The invention relates to a composition of matter for counting atomic disintegrations of radioactive material which is accompanied by emission of Beta -rays which contains an oxdiazole compound of the formula

Description

United States Patent Maeder et al. 1 May 30, 1972 [541 SCINTILLATION COUNTING 3,376,278 4/1968 Morgan ..260/93.5 COMPOSITION CONTAINING 3,444,094 5/ 1969 Krasovitsky ..252/408 OXDIAZOLE Primary Examiner-John T. G00lkasian [72] Inventors: Erwin Maeder, Eichbergweg l4, Aesch/Bl; A i n EX miner-M- E. McCamish Rudolf Anliker, Rottmannsbodenstrasse 107, Binningen; Karl Schmid, Schoenenbachstrasse 38, Reinach/Bl; Adolf Emil Slegrlst, Weissensteinstrasse 37, Base], all of Switzerland Filed: June 9, 1969 Appl. No.: 832,881
Related U.S. Application Data Division of Ser. No. 577,168, Sept., 1966, abandoned.
U.S. Cl ..252/408, 250/83, 252/301.2, 260/935, 260/309, 356/98 Int. Cl ..C07d 85/54, GOlt 1/204 Field of Search ..252/408, 301.2; 260/936, 307, 260/309, 144; 250/83, 83.6; 356/98 References Cited UNITED STATES PATENTS 7/1956 Muehlhause "252/3012 12/ 1 962 Kallmann ....252/408 Macklin ..252/408 Attomey-Harry Goldsmith, Joseph G. Kolodny and Mario A. Monaco [57] ABSTRACT The invention relates to a composition of matter for counting atomic disintegrations of radioactive material which is accompanied by emission of B-rays which contains an oxdiazole compound of the formula wherein A, is a branched chain alkyl, B is hydrogen, phenyl, lower alkyl, or lower alkoxy, and m is l or 2. The counts per minute emitted by the material dispersed in the scintillation liquid are measured with a suitable instrument such as aliquid scintillation spectrometer.
8 Claims, No Drawings SCIN'I'ILLATION COUNTING COMPOSITION CONTAINING OXDIAZOLE CROSS-REFERENCE TO RELATED APPLICATION This application is a division of Ser. No. 577,168, filed Sept. 6, 1966, and now abandoned.
The present invention relates to the use of selected oxdiazole derivatives for scintillation counting methods in atomic disintegrations.
While a number of oxdiazole derivatives have already been proposed for use in scintillation counting, especially in liquid systems, these compounds do not satisfy fully all the requirements they should satisfy. This refers above all to a high energy transfer at an extremely short extinction time combined with a low absorption coefficient for self-quenching and with a high solubility in the solvents or solvent systems preferably employed in liquid scintillation counting methods. An adequate chemical stability (stability towards the action of light and towards acids and alkalies) is moreover a precondition for their suitability anyway.
It has now been found that a small selection of certain oxdiazole derivatives satisfy all of these requirements. According to this invention there are thus used oxdiazole derivatives comprising the structural element in which A, represents an alkyl group which contains three to seven carbon atoms and at least one chain branching, and m and n each is l or 2 (n meaning that A represents one or two substituents)as scintillator substances.
Primarily, there are used in this invention oxdiazole derivatives of the formula in which A, represents an alkyl group which contains three to seven carbon atoms and at least one chain branching, and B represents a hydrogen atom, a phenyl group, an alkyl group having one to seven carbon atoms, which may be branched, or a lower alkoxy group, and m 1 or 2-as scintillation substance for use in liquid scintillation counting.
The scintillation liquids concerned are characterized in that they contain as solvent benzene or an alkylbenzene which is liquid at room temperature or a dioxanei-naphthalene-i-water mixture and 0.01 to percent by weight (referred to the total weight of the scintillation liquid) of an oxdiazole derivative of the formula (2 Of special importance within the scope of this invention is the use of oxdiazole derivatives of the formula (Ark in which B, represents a tertiary butyl group or a phenyl group-in liquid scintillation counting methods. In this case the scintillation liquids contain preferably toluene as solvent and 0.01 to 5 percent by weight (referred to the total weight of the scintillation liquid) of an oxdiazole derivative of the formula (3).
As examples from the above-mentioned types of oxdiazoles the following compounds may be mentioned:
r-QQ
From the foregoing it will be realized that the use of the said scintillation substances is of special importance to liquid scintillation counting methods in conjunction with certain solvent systems. Thus, this invention further includes a method of counting atomic disintegrations accompanied by the emission of B-rays, by means of the liquid scintillation method in predominantly aromatic hydrocarbons as scintillator solvents, characterized in that the scintillation liquid used is a solution of an oxidazole of the formula (in which A,, B and m have the above meanings) in benzene, or in an alkylbenzene liquid at room temperature, in a mixture of methanol+toluene, methylcellosolve-i-naphthalene-i-toluene or dioxane+naphthalene+water.
The specific oxdiazoles mentioned in connection with the liquid scintillation counting method described above are even as such scintillators that satisfy all above-mentioned requirements. In addition, they may also be used as so-called primary solutes in the narrower sense, that is to'say as a primary substance activated to emit light by an energy-rich radiation released by an atomic disintegration; these primary substances are combined with the usual secondary solutes, that is to say substances distinguished by an emission of longer wavelength. Such suitable secondary solutes are, for example, 1 ,4-di-[2-(5- phenyloxazolyl) l-benzene l ,4-di[ 2-( 4-methyl-5-phenyloxazolyl) ]-benzene and l ,4-di-(4'-isopropylstyryl )-benzenes. Furthermore, they may be combined with neutron capture solutes, gamma conversion solutes, further solvent additives, gels, suspending assistants or solubilizers. The counting method used may, of course, be either an internal or an external method.
Suitable solvents for the liquid scintillation counting method are above all aromatic hydrocarbons that are liquid at room temperature (provided no solvent combination is used) such, for example, as benzene, toluene, a xylene, ethylbenzene, 1,3,5-triethylbenzene, cumene, a cymene, phenylcyclohexane, also ethers such as anisole, dioxane, 1,2- dimethoxyethane; non-aromatic hydrocarbons such as cyclohexane, heptane and the like; or finally solvent mixtures such as toluene-Hnethanol and possibly water, toluene-l-ethanol, naphthalene-l-dioxane, naphthalene-l-toluene and possibly water, naphthalene-ldioxanel-water, methylcellosolve-i-naphthalene-Holuene and possibly water, naphthalenei-tributylphosphate or other commercial mixtures of aromatic hydrocarbons recommended for these purposes.
The concentration of the oxdiazole derivatives to be used in the present process may principally vary within wide: limits which are defined or restricted by practical considerations. For example in the lower region it must be chosen so that an adequate transmission to the photomultiplier is ensured, whereas the upper region is delineated by the appearance of visible absorption of the selfquenching. Though thus, for example, for the preparation of stock solutions (which are suitably diluted for use) concentrations of l percent or higher are quite acceptable, the working concentrations most suitable for actual practice range approximately from 0.1 to 3 percent, preferably from 0.4 to 2 percent (all percentages are by weight, referred to the total weight of the solution).
Apart from toluene, preferred solvent systems are the systems toluenel-methanol (1:1) with the addition of about 2 percent of water, methylcellosolveHoluene-l-naphthalene (40:60:8) with addition of up to 4 percent of water, dioxane-l-toluened-naphthalene (40:60:53) with up to percent of water, or toluene-l-rnethanol-l-ethanolamine (50:44:45). The composition of the solvent system depends above all on the nature of the substrate or of the isotope to be counted. For isotope counting there are, for example, most frequently used C, H, S, P, Fe, Fe, l and 1 The technical advance residing in the oxdiazoles to be used in this invention is especially the fact that they represent as such scintillators that can be used by themselves (that is to say without a secondary solute) which not only satisfy all other requirements to a great extent but above all also display excellent solubility properties such as the hitherto known highest grade scintillators of the oxdiazole series did not possess. This is especially true of the particularly good solubility in transparent solvents having a high flash point.
In addition to the range of applicability described above the oxdiazoles defined above may be used quite generally wherever the task involved is the transformation of an energy-rich radiation into measurable light.
An important sphere of application is, for example, their use for so-called plastics scintillators. In this use the scintillator may be homogeneously dispersed in the polymers concerned (polymerizate, polycondensate or polyadduct) before proceeding to the final shaping operation (casting, drawing, moulding, injection moulding or the like), and the whole is then shaped. According to another possibility the scintillator is added to the starting materials used in the manufacture of the polymer, thus for example to the monomers, before polymerization, whereupon the whole is polymerized (exam ples: polystyrene, polyvinyltoluene). Further variants of the use of the above-mentioned scintillators result readily from the conventional operations practized in this technique.
The oxdiazoles to be used in the present process can be manufactured by known methods, for example a. by reacting 2 mols of a carboxylic acid or of an ester thereof with 1 mol of hydrazine in the presence of a phosphoric acid whose water content is inferior to that of orthophosphoric acid (especially polyphosphoric acid); this method is particularly suitable for synthesizing symmetrical oxdiazoles, that is to say those in which A, B or b. by treating a diacylhydrazine of the formula A CO-NH-NH-C 0 Bi (for m l according to formula [2]) with a non-sulphonating dehydrating agent or c. by reacting an imidoether upon a suitable carboxylic acid hydrazide at an elevated temperature in the presence of a solvent.
Unless otherwise indicated, parts and percentages in the following manufacturing instructions and examples are by weight.
A. 10.0 Parts of hydrazine hydrate are stirred dropwise at 50 C into 400 parts of polyphosphoric acid (83% P 0 with the temperature rising to about C. Then 71.2 parts of paratertiary butylbenzoic acid are added and while excluding air the temperature is raised within 30 minutes to C. The batch is stirred for 8 hours at 125 to C, whereupon a clear, colorless solution forms. After cooling to about 50 C, the whole is vigorously stirred into 1,000 parts of cold water, the precipitated reaction product is suctioned off and washed with water until the washings run neutral to congo red. After drying, there are obtained 66.7 parts 100 percent of theory) of 2,5-bis-[4'-para-tertiary butylphenyl-( l')]-l,3,4- oxdiazole of the fonnula as an almost colorless powder which melts at to 136C. After recrystallization from ethanol-Hvater (7: i) it forms colorless flakes melting at 1 39 to 141C.
B. 29.6 parts of the diacylhydrazine of the formula Ha NH-HN are brought to the boil in parts by volume of freshly distilled thionylchloride within 1 hour while being stirred, and the whole is then refluxed for 2 hours, whereupon a clear, pale-yellow solution forms. The excess thionylchloride is then distilled off, first under atmospheric pressure and then under vacuum. The residue is triturated with ice water, whereupon it solidifies; it is filtered ofi, washed with water until the washin run neutral and dried, to yield about 27.6 parts 99.3 percent of theory) of 2-[4-tertiary butylphenyl-( l ')]-5- phenyl-l,3,4-oxdiazole of the formula (6) as a colorless powder which on recrystallization from ethanol-l-water (3: l) forms colorless flakes; it melts at 98 on 99 C and displays in an ethanolic solution three absorption maxima at 288 mu (e 30,400), 238 mp. (e' 7,550) and 232 mu 7,350). Solubility in 100 ml of ethanol at 20C: 4.00 grams.
The following 1,3,4-oxdiazole derivatives are accessible by the method described above:
a. 2-[4'-tertiary butylphenyl-(pl )1-5-[4' '-methylphenyl-( l )]-l ,3,4-oxdiazole of the formula I HaO-C-Q-C cQ-ocm 1 ll LE HaC N Colorless, fine crystals from ethanol, melting at l62.5 to l63.5C. Solubility in 100 ml of ethanol at 20C: 0.605 gram. Ultraviolet absorption in ethanol, A, 298 my. (e 32,000) and 249 mp. (e= 6,100).
c. 2,5-bis-[4'-tertiary butylphenyl-(1)]-1,3,4-oxdiazole of the formula (5) (see above).
C. A mixture of 212 g of diphenyl-4-carboxylic acid hydrazide and 2 liters of anhydrous ortho-dichlorobenzene is stirred at room temperature, then 197 g of 4-tertiary butylbenzoylchloride and 81 ml of anhydrous pyridine are added; the thick paste is heated within 1 hour to 100 to 105C and stirred at this temperature for 1 hour. Within a further hour the reaction mixture is then heated to 140 to 145C, whereupon an almost complete solution is obtained. 90 ml of thionylchloride are then dropped in within 45 minutes at 140 to 145C, whereupon a turbid solution forms which is stirred on for 15 minutes after the dropwise addition is complete.
The bulk of the solvent is then evaporated under vacuum and 1 liter of ethanol is dropped in so that the reaction mixture is kept at the reflux temperature, whereupon a crystalline precipitate soon forms which is suctioned off at room temperature, and the filter cake is washed with alcohol and dried, to yield 295 g of a greyish, crystalline powder melting at 135 to 136C.
Crystallization from n-propanol with the aid of active carbon furnishes 240 g of the compound of the formula in the form of colorless prisms melting at 136 to 137C. C H ONB2 (mol. weight: 354.43)
calculated: found:
D. 5.2 Grams of oxalic acid dihydrazide and ml of anhydrous pyridine are added at 40 to 50C to a solution of 14.5 g of 4-isopropylbenzoylchloride in 200 ml of anhydrous orthodichlorobenzene. In the course of 2 hours the reaction mixture is heated to 130 to 135C, whereupon a thinly liquid paste is obtained. Within 30 minutes at 130 to 135C 20 ml of thionylchloride are dropped in, whereupon a clear solution forms which is stirred for another minutes at this temperature and then allowed to cool.
The excess thionylchloride and the solvent are then almost completely evaporated under vacuum. The residue is stirred with 100 ml of methanol, whereupon a light-brown, crystalline precipitate is obtained which is suctioned off and washed with methanol.
Two recrystallizations from alcohol in the presence of bleaching earth furnish 7 g of the bis-oxdiazolyl compound of the formula in the form of small colorless needles melting at 175 to 176C. C H O N (mol. weight: 374.45)
calculated: C 70.57
Messrs. Packard Inst. Comp. Inc., 111.
EXAMPLE 1 20 ml each of a solution of 5 g of the compound of the formula (9) and of the formula (5) in 1 liter of toluene are introduced into a counter tube and mixed with 1 ml of a solution of benzoic acid marked with C having an activity of 0.01
microCurie. The counter tube is inserted into the counter and the counts per minute cpm) are counted. At a high-voltage of 900 Volts and a calibration from 100 to 600 there are recorded 13,630 cpm for compound (9) and 13,200 for compound (5 EXAMPLE 2 20 ml each of a solution of 5 g of the compound of the formula (9) and of the formula (5) in 1 liter of toluene are introduced into a counter tube, and 0.1 ml of toluene marked with H having an activity of 0.01 microCurie, is added. At a high-voltage of 1,100 Volts and a calibration from 100 to 600 there are recorded 6,600 cpm for the compound (9) and 5,930 cpm for the compound (5 EXAMPLE 3 20 ml each of a solution of 10 g of the compound of the formula (9 and of the formula (5) in 1 liter of toluene are mixed in a counter tube with 1.0 ml of an ethanolic solution of 1- butyl-3-(para-tolylsulphonyl)-urea marked with S The activity added is 0.01 microCurie. The counter tube is then inserted in the counter and the counts per minute are counted. At a high-voltage of 900 Volts and a calibration from 100 to 600 in the measuring channel there are recorded 13,200 cpm I for compound (9) and 12,950 cpm for compound (5).
EXAMPLE 4 20 ml of a solution of 10 g of the compound of the formula (9) in a mixture of 400 ml of methylcellosolve, g of naphthalene and 600 ml of toluene are introduced in a small measuring cylinder, and 0.5 ml of water marked with H", having an activity of 0.01 microCurie, is added. At a high-voltage of 1,200 Volts and a calibration from to 600, 2,200 counts per minute are counted.
EXAMPLE 5 A mixture of 1 g of 2-[4'-tertiary butylphenyl-( l ')]-5- biphenylyl-l,3,4oxdiazole of the formula (9) and 100 g of vinyltoluene distilled twice under 11 mm Hg pressure (mixture of the ortho, meta and para isomers) is introduced into a Pyrex glass tube of 25 mm diameter which is fused at one end. The tube is repeatedly evacuated to a pressure of 0.1 mm Hg and scavenged with pure nitrogen. Finally, the tube is once more evacuated to 0.1 mm Hg pressure and the tube is fused at the other end. The tube is then heated within 2 hours in a furnace to C while ensuring by carefully revolving it that the compound of the formula (9) is completely dissolved. To polymerize the batch in the tube it is maintained for 24 hours at 110C, then heated for 24 hours at C and for 48 hours at C. The following cooling and detensioning phase at 75C takes 81 hours. When the batch has cooled to room temperature, the resulting transparent polymer core is recovered by smashing the glass tube. To measure the relative count rate the core is turned down to a diameter of 20 mm, sawn up into discs 10 mm thick, and these discs are polished. The measure of the light output is the relative amplitude (RPH) of the counts produced by the Cs conversion electrons. For counting a Philips 56 AVP photomultiplier with a ratio 2,2-paraphenylene-bis-(S-phenyloxazole) terphenyl of 1.30 (photomultiplier characteristic) is used. The counting standard used is the commercial plastics scintillator NE 102 A (makers Nuclear Enterprises Ltd.) whose RPH value is taken as equal to 1.00. The plastics scintillator according to this invention displays an RPH value of 1.10. A plastics scintillator prepared in identical manner from polyvinyl-toluene, which contains 2 percent of the compound of the formula (9) and 0.1 percent of 2-[4-biphenylyl-(1')]-6-phenyl-benzoxazole, gives the high RPH value of 1.23.
What is claimed is:
1. A composition of matter for scintillation counting containing a solvent selected from the group consisting of benzene, or an alkylbenzene that is liquid at room temperature and a dioxanel-naphthalene-l-water mixture and 0.01 to 5 percent by weight, referred to the total amount of scintillation liquid, of an oxdiazole derivative of the formula in which A, represents an alkyl group containing three to seven carbon atoms and at least one chain branching, and B represents a member selected from the group consisting of hydrogen atom, a phenyl group, and an alkyl group which contains one to seven carbon atoms and may be branched or a lower alkoxy group, and m is a whole number from 1 to 2.
2, A composition of matter for scintillation counting according to claim 1 containing a solvent toluene and 0.0! to 5 percent by weight, referred to the weight of the whole liquid, of an oxdiazole derivative of the formula H30 0 -QM t as v in which B represents a member selected from the group consisting of a tertiary butyl group and a phenyl group.
3. A composition of matter according to claim 1 containing as oxdiazole derivative the compound of the formula 4. A composition of matter according to claim 1 containing as oxdiazole derivative the compound of the formula 5. A composition of matter according to claim 1 containing as oxdiazole derivative the compound of the formula 6. A composition of matter according to claim 1 containing as oxdiazole derivative the compound of the formula 7. A composition of matter according to claim 1 containing as oxdiazole derivative the compound of the formula ei -Q- 8. A composition of matter for scintillation counting method substantially consisting of a polymeric material which contains at least one compound of the general formula

Claims (7)

  1. 2. A composition of matter for scintillation counting according to claim 1 containing a solvent toluene and 0.01 to 5 percent by weight, referred to the weight of the whole liquid, of an oxdiazole derivative of the formula
  2. 3. A composition of matter according to claim 1 containing as oxdiazole derivative the compound of the formula
  3. 4. A composition of matter according to claim 1 containing as oxdiazole derivative the compound of the formula
  4. 5. A composition of matter according to claim 1 containing as oxdiazole derivative the compound of the formula
  5. 6. A composition of matter according to claim 1 containing as oxdiazole derivative the compound of the formula
  6. 7. A composition of matter according to claim 1 containing as oxdiazole derivative the compound of the formula
  7. 8. A composition of matter for scintillation Counting method substantially consisting of a polymeric material which contains at least one compound of the general formula
US832881A 1969-06-09 1969-06-09 Scintillation counting composition containing oxdiazole Expired - Lifetime US3666683A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83288169A 1969-06-09 1969-06-09

Publications (1)

Publication Number Publication Date
US3666683A true US3666683A (en) 1972-05-30

Family

ID=25262844

Family Applications (1)

Application Number Title Priority Date Filing Date
US832881A Expired - Lifetime US3666683A (en) 1969-06-09 1969-06-09 Scintillation counting composition containing oxdiazole

Country Status (1)

Country Link
US (1) US3666683A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017738A (en) * 1974-06-26 1977-04-12 Hyman Jr Mark Scintillator
US4275300A (en) * 1978-10-23 1981-06-23 Varian Associates, Inc. Fluorescent composition, a process for synthesizing the fluorescent composition, and methods of use of the fluorescent composition
WO1982000527A1 (en) * 1980-07-25 1982-02-18 Corp Bicron Radiochromic liquid solution
US4396528A (en) * 1978-10-23 1983-08-02 Varian Associates, Inc. Fluorescent composition, a process for synthesizing the fluorescent composition
US5110500A (en) * 1988-09-02 1992-05-05 University Of Florida Polysiloxane scintillator composition
US5370953A (en) * 1991-11-28 1994-12-06 Mita Industrial Co., Ltd. Electrophotosensitive material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2755253A (en) * 1952-11-25 1956-07-17 Carl O Muehlhause Neutron scintillation detector
US3068178A (en) * 1959-10-14 1962-12-11 Leonard E Ravich Scintillator solution enhancers
US3170884A (en) * 1962-02-19 1965-02-23 Richard L Macklin Naphthalene derivative scintillators
US3376278A (en) * 1964-11-06 1968-04-02 Minnesota Mining & Mfg Process for the chemical modification of the solid surface of a polymer
US3444094A (en) * 1966-06-14 1969-05-13 Boris Mordukhovich Krasovitsky Scintillator liquid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2755253A (en) * 1952-11-25 1956-07-17 Carl O Muehlhause Neutron scintillation detector
US3068178A (en) * 1959-10-14 1962-12-11 Leonard E Ravich Scintillator solution enhancers
US3170884A (en) * 1962-02-19 1965-02-23 Richard L Macklin Naphthalene derivative scintillators
US3376278A (en) * 1964-11-06 1968-04-02 Minnesota Mining & Mfg Process for the chemical modification of the solid surface of a polymer
US3444094A (en) * 1966-06-14 1969-05-13 Boris Mordukhovich Krasovitsky Scintillator liquid

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017738A (en) * 1974-06-26 1977-04-12 Hyman Jr Mark Scintillator
US4275300A (en) * 1978-10-23 1981-06-23 Varian Associates, Inc. Fluorescent composition, a process for synthesizing the fluorescent composition, and methods of use of the fluorescent composition
US4396528A (en) * 1978-10-23 1983-08-02 Varian Associates, Inc. Fluorescent composition, a process for synthesizing the fluorescent composition
WO1982000527A1 (en) * 1980-07-25 1982-02-18 Corp Bicron Radiochromic liquid solution
US5110500A (en) * 1988-09-02 1992-05-05 University Of Florida Polysiloxane scintillator composition
US5370953A (en) * 1991-11-28 1994-12-06 Mita Industrial Co., Ltd. Electrophotosensitive material

Similar Documents

Publication Publication Date Title
US3749679A (en) Carboalkoxy substituted bis-phenyl oxalates as superior chemiluminescent materials
Terenin et al. Sensitized phosphorescence in organic solutions at low temperature. Energy transfer between triplet states
Lechkten et al. Thermal rearrangement of Dewar benzenes to benzene triplet states. Examples of spin forbidden nonadiabatic pericyclic reactions
US5298189A (en) Proton transfer bis-benzazole fluors and their use in scintillator detectors
US3666683A (en) Scintillation counting composition containing oxdiazole
Freeman et al. Spectra and decay times of the luminescences observed from chelated rare earth ions1a
US2985593A (en) Scintillator composition
US3010908A (en) Fluorescent plastic scintillators
JPS62201966A (en) Novel coloring matter for plane light condensation
US3600445A (en) Organic scintillators
US3650973A (en) Method for scintillation counting
TW396205B (en) Fluorene-based compounds with unsymmetrical substituents and their uses
US3314894A (en) Scintillators, compounds useful therein, and method of making the same
US3729426A (en) Chemiluminescent fluorescer comprising phenylethynyl substituted organic compounds
US3041287A (en) Heavy metal loaded plastic scintillating compositions
Ware et al. Intramolecular Proton Transfer in the Excited Singlet State of 3‐Hydroxy‐2‐naphthoic Acid
US3580924A (en) 2-diphenylbenzoxazoles
US3644211A (en) Distyrylbenzene-derivative scintillator solutions
Alpha et al. Optical activity and conformation of the cation carrier X537A
Bedrik et al. Plastic scintillator with gadolinium phenylpropionate
US2755253A (en) Neutron scintillation detector
Hoff et al. Triboluminescence in cis-4-Octene1
Fujisawa et al. Rates of termination of radicals in solution. VI. Ketyl radicals derived from methyl-substituted phenylglyoxylic acids
Bross et al. Radiation damage to 2-(2′-hydroxyphenyl) benzothiazoles
RU2798227C1 (en) Tellurium-containing liquid scintillator