New! View global litigation for patent families

US3666533A - Deposition of polymeric coatings utilizing electrical excitation - Google Patents

Deposition of polymeric coatings utilizing electrical excitation Download PDF

Info

Publication number
US3666533A
US3666533A US3666533DA US3666533A US 3666533 A US3666533 A US 3666533A US 3666533D A US3666533D A US 3666533DA US 3666533 A US3666533 A US 3666533A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
material
substrate
starting
chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Inventor
Stuart M Lee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Boeing Co
Original Assignee
Boeing Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING LIQUIDS OR OTHER FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material

Abstract

AN ELECTRIC DEPOSITION PROCESS PROVIDING A GLOW DISCHARGE BY VIRTUE OF ELECTRICAL ENERGY FILEDS PROVIDED INTERNAL TO A DISPOSITION CHAMBER ENABLES WITH ON STEP TO PROVIDE A PROTECTIVE COATING OF A SURFACE OF A SUBSTRATE MATERIAL BY POLYMERIZING A DIMMER SOLID STARTING MATERIAL. A CARRIER GAS SUCH AS ARGON, XENON OR KRYPTON IS USED IN THE DEPOSITION CHAMBER FOR THE ENERGY FIELD TO ACT UPON IT, PROVIDE THE GLOW AND CAUSE THE GLOWING GAS TO VOLATILIZE PARTICLES OF THE STARTING MATERIAL AND BE DEPOSITED AS THE PROTECTIVE COATING ON THE SUBSTRATE.

Description

May 30, 972 s. M. LEE 3,666,533

DEPOSITION OF POLYMERIC COATINGS UTILIZING ELECTRICAL EXCITATION Filed Nov. 16, 1970 l6b I7 F46a 7 PIS Z/ /1 /1'//'// N WATER OUT-- 82g WATER IN I2b x I 33 34 30 M W's 7 29 3 I INVENTOR STUART M LEE g Mm AGENT United States Patent C) 3,666,533 DEPOSITION OF POLYMERIC COATINGS UTILIZING ELECTRICAL EXCITATION Stuart M. Lee, Orange County, Calif., assignor to North American Rockwell Corporation Filed Nov. 16, 1970, Ser. No. 89,970 Int. Cl. B4411 1/44 U.S. Cl. 117-931 GD 1 Claim ABSTRACT OF DISCLOSURE An electric deposition process providing a glow discharge by virtue of electrical energy fields provided internal to a deposition chamber enables with one step to provide a protective coating of a surface of a substrate material by polymerizing a dimer solid starting material. A carrier gas such as argon, xenon or krypton is used in the deposition chamber for the energy field to act upon it, provide the glow and cause the glowing gas to volatilize particles of the starting material and be deposited as the protective coating on the substrate.

BACKGROUND OF THE INVENTION 'The'invention is in the field of a process and an apparatus therefor for depositing a film on a substrate by the use of electric or glow discharge principle. Certain prior art most closely related is hereinafter described as follows:

U.S. Pat. No. 3,462,335 to Hansen utilizes a glow discharge apparatus only for roughening or preparing a surface of one of two materials to be adhesively bonded to each other. However, in this process only one of the two materials is subjected to the glow discharge occurring by introduction of the apparatus of a helium and hydrogen gas mixture. It is then removed from the apparatus and a bonding material is applied to the prepared surface and the other material attached to the material which has the bonding material applied thereto.

U.S. Pat. No. 3,475,307 to Knox utilizes a glow discharge apparatus in which is situated a material to be coated. However, the coating is accomplished by introducing a gaseous hydrocarbon monomer therein. Also the glow discharge apparatus utilizes electrodes therein with a high voltage applied thereto. Additionally, no carrier gas is used for conducting the monomer and for maintaining the glow discharge.

US. Pat. No. 3,310,424 to Wehner utilizes a glow discharge apparatus for providing a coating on a substrate surface. However, the coating starting material is a liquid, and the liquid used is a silicone. Also, the apparatus uses electrodes therein to effect a discharge therebetween, and is dependent upon a starting igniter in a mercury pool within the apparatus.

U.S. Pat. No. 3,457,156 to Fisher utilizes a glow discharge apparatus for providing a polyacetylene coating on a substrate. The apparatus has electrodes therein and an acetylene gaseous starting material is injected into the apparatus to be ignited by the apparatus. No carrier gas is used to facilitate glow discharge activity.

:UJS. Pat. No. 3,406,040 to Da Silva utilizes an apparatus having an electron beam structure therein. The starting material is a non-volatile evaporant which is evaporated by heating in a stream and subjected to the electron beam which causes the stream of evaporated material to be formed as a coating on the substrate positioned in the apparatus.

U. S. Pat. No. 3,449,154 to Katz utilizes a glow discharge apparatus having electrodes therein to create the electrical discharge therebetween, for providing a coating on a substrate. However, the starting material is a liquid which is vaporized into a gas for vapor deposition on the surface of the substrate. The starting materials are lactams and lactones in liquid form.

U.S. Pat. No. 3,318,790 to Carbajal shows an electric discharge apparatus embodying the principle of the vacuum tube. An electric arc is created between a cathode and an anode, and the perforated cathode permits electrons, or part of the arc to pass therethrough and impinge on the surface of the substrate in the apparatus. Simultaneously, a starting material in the form of an organic gaseous source material is injected into the apparatus upon which the arc portions passing through the cathode act for deposition of a film on the substrate.

U.S. Pat. No. 3,472,679 to lug shows an apparatus used for deposition of starting material as a film on a substrate. The starting material is an unpolymerized solid consisting of selenium, arsenic, tellurium, antimony, bismuth, thallium, sulphur and mixtures thereof. Also usable are halogens such as chlorine and iodine plasmas in connection with the starting materials. A plasma is created by ignition of a carrier gas in the vicinity of the substrate, and the starting material is vaporized depositing as a tfilm on the substrate.

U.S. Pat. No. 3,069,283 to Coleman provides in part a method utilizing an evacuated apparatus and an electric discharge principle for providing a polymerized coating on a substrate. However, there, the starting material used to provide the coating is a gaseous monomer supplied by an external tank into the apparatus.

U.S. Pat. No. 3,068,510 to Coleman provides in part a method utilizing an evacuated apparatus and means for producing electric discharge in the apparatus to provide a polymerized coating on a substrate having an electrically conductive surface. Power is provided for polymerization of the gaseous material, which is contained in an external tank. The substrate to be coated being conductive is part of the electrical circuit to which the power source is connected. The gaseous material introduced into the apparatus provides the medium through which an electric discharge occurs, depositing the gaseous starting material previously introduced into the apparatus on the electrically conductive substrate.

INVENTION SUMMARY Briefly, according to the invention, an electric deposition process is utilized to provide an organic coating on a substrate material. The process uses a dimer starting material positioned, with respect to a substrate material which surfaces are desired to be coated, in an evacuated chamber into which a carrier gas of argon, krypton or xenon, or mixtures thereof are injected into the chamber. The chamber is provided with means for electrically exciting the carrier gas, and setting up a glow therein of the carrier gas. The starting material is bombarded with the electrically excited carrier gas which volatilizes portions of the dimer starting material which passes into the glow zone. This action causes deposition of the volatilized material on the surface of the substrate material forming a polymerized coating of the dimer starting material on such substrate surface.

An object is to overcome the disadvantages of the prior art, which is mainly possible by utilization of radio frequency energy creating a glow of the inert carrier gas used in the process acting on the solid dimer starting material, and not possible by any other process.

BRIEF DESCRIPTION OF DRAWING The figure is a schematic representation of a processing chamber energizable with radio frequency energy, evacuated, and into which a carrier gas is injected for ice maintaining a glow discharge to act upon the dimer solid material in the chamber and to provide the deposition of a polymerized protective layer on the substrate prepositioned in the chamber.

EXEMPLARY EMBODIMENT Referring to the figure, chamber 11 made of glass or other insulating material is provided to practice the process.

Radio frequency radiator 12 generally having external surfaces made of, or covered with electrically insulating material such as a ceramic, is attached to the upper surface of the inner chamber wall. Radiator 12 has a holder 13 made of suitable material such as a ceramic for holding in place the dimer solid material 14.

Examples of dimer solid materials are of the di-paraxylene, di-chloro-para-xylylene and di-chloro-paraxylylene but are not limited necessarily thereto.

One advantage of placing material 14 near radiator 12 is to enable greater efliciency in transmitting or saturating the material with radio frequency energy, The carrier gas injected in chamber 11 is excited by the radio frequency energy emanating from radiator 12, sets up a field in the chamber generally resulting in a glow due to excitation of the gas between the radiator and the substrate material to be hereinafter described.

To achieve the radio frequency energy field, one end of a coaxial cable 15 is connected to the input of radiator member 12, by connecting center conductor 16 to metallic radiator element 12a, insulation holder 12b electrically insulates element 12a from the starting material 14, and outer conductor shield 16a which is part of cable 15 is grounded as at 17. The other end of center conductor 16 and outer conductor shield 16a, which is grounded at 17, is connected to the radio frequency power source (not shown). Insulator 16b electrically insulates shield center conductor 16 from shield 16a.

The chamber is provided internally with a pedestal 18 on which the substrate material 19 desired to be coated is positioned.

The chamber is provided with a port at 20 to which is attached one end of flowmeter 21. The flowmeter is calibrated to measure flow rates of carrier gas by means of a floating ball 22 internally thereto. The higher the floating ball rises by virtue of carrier gas passage through the flowmeter, the greater the flow rate of the carrier gas.

Flow regulating valve 23 is attached to the other end of flowmeter 21 for controlling the flow rate of carrier gases injected therein as diagrammatically indicated by arrow 24. Carrier gases normally used in this process may include argon, krypton and/or xenon, and are injected at the rate of 300 cc./ min. during the process.

Port 25 is provided in the chamber for attaching one end of a vacuum control valve 26 for regulating speed of evacuation of the chamber or for completely shutting off the evacuation of the chamber.

Pump 27 is attached to the other end of valve 26, and is used to maintain the desired amount of vacuum. Typical vacuum range has between 0.01-0.03 millimeter of mercury.

. Port 28 is provided in the chamber for attaching bleed valve 29 thereto which is closed during deposition cycle of the process and is opened at completion of the deposition cycle to release the vacuum in the chamber.

Port 30 is provided in the chamber for both loading the the starting material and the substrate into the chamber at the beginning of the process, and is also used to remove the substrate material at the end of the process and also any unused portion of the starting material. Door 31 is a vacuum tight cover preventing leakage during the process and is opened after release of vacuum. Naturally,

it is opened in order to load the chamber with the starting and substrate materials.

Water inlet is provided at input of pipe 33 for circulating water over the surface element 12a so as to cool same since about 300 watts of electrical power will be supplied from the RF power supply, and pipe 34 is provided for dumping the water after circulating in cavity 350i radiator member 12 between the glass chamber 11, member 12a and insulation holder 12b.

Typical experimental examples including parameters used, successfully accomplishing the objectives of this process, are given in the following table, but are not; limited to the examples shown in such table:

1 In millimeter of mercury to maintain glow of carrier gas.

Hence, in the experimental examples stated above, wi substrate and starting materials in place, door 31 closed," valve 29 closed, valve 26 open, pump 27 in operation evacuating the chamber to the required pressure as given. in the table in order to maintain the glow, power supplied to terminals 16-17 and water is supplied to pipe 33, valve 23 is opened to allow carrier gas 24 to be injected in the chamber and adjusted to provide maximum glow of the RF excited carrier gas.

The excited carrier gas, now glowing, bombards the dimer starting material 14, knocking out or volatilizing. the molecules of materiaI 14 into glow zone 32 and results in a polymerized coating on such sunfaces of substrate which are exposed.

-I claim:

1. An electric deposition process for providing an organic coating on a substrate material, said process utiliz-- ing an organic dimer starting material preselectably positioned with respect to said substrate material in an evacue ated chamber into which an inert carrier'- gas selected from the group of at least one gas consisting of argon, krypton and xenon injected into the chamber, said chamber being provided with means for electrically exciting said carrier gas therein, the improvement comprising:

bombarding said dimer starting material with the excited carrier gas thereby volatilizing portions of said starting dimer material which pass into the glow zone of the chamber thereby depositing the volatilized material on a surface of said substrate material in the form of a polymerized coating of said starting material, the organic starting material being at least one dimer selected from the class consisting of di-para-xylylene, di-chloro-para-xylylene and didichloro-para-xylylene.

References Cited Robbins et a. 117-93101) ALFRED L. LEAVI'IT, Primary Examiner' J. (H. NEWSOME, Assistant Examiner I US. 01. XR.

117-106 R, 161 UEF

US3666533A 1970-11-16 1970-11-16 Deposition of polymeric coatings utilizing electrical excitation Expired - Lifetime US3666533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US8997070 true 1970-11-16 1970-11-16

Publications (1)

Publication Number Publication Date
US3666533A true US3666533A (en) 1972-05-30

Family

ID=22220449

Family Applications (1)

Application Number Title Priority Date Filing Date
US3666533A Expired - Lifetime US3666533A (en) 1970-11-16 1970-11-16 Deposition of polymeric coatings utilizing electrical excitation

Country Status (4)

Country Link
US (1) US3666533A (en)
DE (1) DE2153526A1 (en)
FR (1) FR2114716A5 (en)
NL (1) NL7115250A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901994A (en) * 1974-02-04 1975-08-26 Rca Corp Metallized video disc having a dielectric coating thereon
US4013532A (en) * 1975-03-03 1977-03-22 Airco, Inc. Method for coating a substrate
US4018945A (en) * 1975-06-19 1977-04-19 Rca Corporation Method of making a metallized video disc having an insulating layer thereon
US4326898A (en) * 1978-11-13 1982-04-27 Massachusetts Institute Of Technology Method for forming material surfaces
US4465738A (en) * 1983-06-15 1984-08-14 Borg-Warner Corporation Wettable coatings for inorganic substrates
US4500562A (en) * 1983-03-02 1985-02-19 The United States Of America As Represented By The United States Department Of Energy Di-p-xylylene polymer and method for making the same
US20050008919A1 (en) * 2003-05-05 2005-01-13 Extrand Charles W. Lyophilic fuel cell component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3901994A (en) * 1974-02-04 1975-08-26 Rca Corp Metallized video disc having a dielectric coating thereon
US4013532A (en) * 1975-03-03 1977-03-22 Airco, Inc. Method for coating a substrate
US4018945A (en) * 1975-06-19 1977-04-19 Rca Corporation Method of making a metallized video disc having an insulating layer thereon
US4326898A (en) * 1978-11-13 1982-04-27 Massachusetts Institute Of Technology Method for forming material surfaces
US4500562A (en) * 1983-03-02 1985-02-19 The United States Of America As Represented By The United States Department Of Energy Di-p-xylylene polymer and method for making the same
US4465738A (en) * 1983-06-15 1984-08-14 Borg-Warner Corporation Wettable coatings for inorganic substrates
US20050008919A1 (en) * 2003-05-05 2005-01-13 Extrand Charles W. Lyophilic fuel cell component

Also Published As

Publication number Publication date Type
NL7115250A (en) 1972-05-18 application
FR2114716A5 (en) 1972-06-30 application
DE2153526A1 (en) 1972-05-18 application

Similar Documents

Publication Publication Date Title
US3560364A (en) Method for preparing thin unsupported films of silicon nitride
US3475307A (en) Condensation of monomer vapors to increase polymerization rates in a glow discharge
US3515932A (en) Hollow cathode plasma generator
US3291715A (en) Apparatus for cathode sputtering including a plasmaconfining chamber
US3309302A (en) Method of preparing an electron tube including sputtering a suboxide of titanium on dielectric components thereof
US3425864A (en) Method for making electric resistance heaters
US5055319A (en) Controlled high rate deposition of metal oxide films
US4925542A (en) Plasma plating apparatus and method
US4116791A (en) Method and apparatus for forming a deposit by means of ion plating using a magnetron cathode target as source of coating material
US6383345B1 (en) Method of forming indium tin oxide thin film using magnetron negative ion sputter source
US4491496A (en) Enclosure for the treatment, and particularly for the etching of substrates by the reactive plasma method
US4624859A (en) Method of producing silicon dioxide films
US5302266A (en) Method and apparatus for filing high aspect patterns with metal
US5059292A (en) Single-chamber apparatus for in-situ generation of dangerous polyatomic gases and radicals from a source material contained within a porous foamed structure
US4960753A (en) Magnetron deposition of ceramic oxide-superconductor thin films
US3297465A (en) Method for producing organic plasma and for depositing polymer films
US3329601A (en) Apparatus for coating a cathodically biased substrate from plasma of ionized coatingmaterial
US3756193A (en) Coating apparatus
US4250428A (en) Bonded cathode and electrode structure with layered insulation, and method of manufacture
US4448802A (en) Method and apparatus for evaporating material under vacuum using both an arc discharge and electron beam
US4420385A (en) Apparatus and process for sputter deposition of reacted thin films
US3892650A (en) Chemical sputtering purification process
US3625848A (en) Arc deposition process and apparatus
US3415986A (en) Process for masking a para-xylylene polymer and selectively etching it by a gaseous electrical glow discharge
US4915810A (en) Target source for ion beam sputter deposition