US3664287A - Reinforced concrete boat hull and method of construction - Google Patents

Reinforced concrete boat hull and method of construction Download PDF

Info

Publication number
US3664287A
US3664287A US851961A US3664287DA US3664287A US 3664287 A US3664287 A US 3664287A US 851961 A US851961 A US 851961A US 3664287D A US3664287D A US 3664287DA US 3664287 A US3664287 A US 3664287A
Authority
US
United States
Prior art keywords
epoxy resin
glass fiber
hull
concrete
reinforced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US851961A
Inventor
Raymond A Duff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RAYMOND A DUFF
Original Assignee
RAYMOND A DUFF
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RAYMOND A DUFF filed Critical RAYMOND A DUFF
Application granted granted Critical
Publication of US3664287A publication Critical patent/US3664287A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B5/00Hulls characterised by their construction of non-metallic material
    • B63B5/14Hulls characterised by their construction of non-metallic material made predominantly of concrete, e.g. reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B13/00Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
    • B32B13/04Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such water setting substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B13/12Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material comprising such water setting substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/38Layered products comprising a layer of synthetic resin comprising epoxy resins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B5/00Hulls characterised by their construction of non-metallic material
    • B63B5/14Hulls characterised by their construction of non-metallic material made predominantly of concrete, e.g. reinforced
    • B63B5/16Hulls characterised by their construction of non-metallic material made predominantly of concrete, e.g. reinforced monolithic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2605/00Vehicles
    • B32B2605/12Ships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B5/00Hulls characterised by their construction of non-metallic material
    • B63B5/24Hulls characterised by their construction of non-metallic material made predominantly of plastics
    • B63B2005/242Hulls characterised by their construction of non-metallic material made predominantly of plastics made of a composite of plastics and other structural materials, e.g. wood or metal

Definitions

  • ABSTRACT A boat having a concrete hull formed of a plurality of alternate, integrally bonded layers of concrete and fiber-reinforced epoxy resin, and a method of constructing a concrete and fiber-reinforced epoxy resin boat hull.
  • the hull is a unitary structure comprised of a plurality of layers of concrete having an integrally bonded layer of fiber-reinforced epoxy resin interspaced between adjacent layers of concrete. The strength of the structure can be even further increased by the addition of a minor proportion of epoxy resin to the concrete.
  • RflYMU/VD Ol/FF REINFORCED CONCRETE BOAT HULL AND METHOD OF CONSTRUCTION
  • reinforced concrete be employed as a material of construction for boat hulls.
  • the difficulty of attaining sufficient tensile and flexural strength, the difficulty of forming specially shaped parts, the high weight and large bulk of the formed structures, and the susceptibility of many concretes to attack by sea water concrete has not gained wide acceptance as a material of construction for boat hulls, and particularly has not gained acceptance in the construction of small boats and pleasure craft.
  • a principal object of this invention is to provide a boat having a hull of relatively light weight, inexpensive construction.
  • Another object of this invention is to provide a boat having a reinforced concrete hull of superior strength and durability.
  • Still another object of this invention is to provide a boat having a relatively thin reinforced concrete hull of high strength and durability.
  • a further object of this invention is to provide a boat having a reinforced concrete hull of unitary construction.
  • a still further object of this invention is to provide a method for constructing a relatively light weight, inexpensive boat hull having superior strength and durability.
  • a yet further object of this invention is to provide a method for constructing a boat having ahull of relatively thin unitary construction that exhibits superior strength and durability.
  • FIG. I is a top view of a boat constructed with the reinforced concrete hull of this invention.
  • FIG. 2 is a side view of the boat illustrated in FIG. 1;
  • FIG. 3 is an enlarged partial cross-sectional view of the hull and deck construction of the boat illustrated in FIG. 1;
  • FIG. 4 is an enlarged partial cross-sectional view of another embodiment of hull and deck construction
  • FIG. 5 is a partial cross-sectional view of another embodiment of reinforced concrete construction employing a plurality of layers of concrete and fiber-reinforced epoxy resin;
  • FIG. 6 is a perspective view of the mold employed in the construction of the reinforced hulls of this invention.
  • FIG. 7 is a perspective view illustrating the method of constructing the reinforced concrete hulls of this invention.
  • this invention contemplates a boat having a concrete hull formed of a plurality of alternate, integrally bonded layers of concrete and fiber-reinforced epoxy resin, and a method of constructing a concrete and fiber-reinforced epoxy resin boat hull.
  • the hull is a unitary structure comprised of a plurality of layers of concrete having an integrally bonded layer of fiber-reinforced epoxy resin between adjacent layers of concrete. Also, the strength of the structure can be further increased by adding a minor proportion of epoxy resin to the concrete.
  • the numeral 10 generally designates a boat which can be seen in'its completed form illustrated in FIGS. 1 and 2; and which includes a hull 12 having a rear transom section 14 and a deck 16 partially enclosing the hull 12 to provide a covered forward section and an open cockpit 18.
  • the drawings depict a boat of the runabout class adapted to be powered by an outboard motor, not shown, mounted on rear transom 14.
  • boats of all classes such as rowboats, skifis, whaleboats, lifeboats, launches, speedboats, sailboats, houseboats and larger powered launches can be constructed in accordance with this invention, and that the power driven boats can be adapted to be powered by outboard motors, inboard-outboard motors, and by inboard motors.
  • hull 12 is a laminated structure comprised of two outer layers of concrete 20 and 22 and an inner layer 24 of fiber-reinforced epoxy resin bonding the concrete into an integral unitary structure having high strength and durability.
  • the finished hull can .vary from about lfi-inch to about 1-inch in thickness; however, an overall thickness of about /4-inch to about %-inch is preferred in most applications.
  • FIG. 3 also illustrates the construction wherein a wood stringer 26 is attached along the upper inner edge of hull 121
  • Stringer 26 can be attached by any convenient means, such as by drilling and countersinking a hole through the concrete and attaching the stringer with flathead screws 28. The screw holes can then be filled with cement or epoxy resin-cement mixture to cover the screw heads so as to provide a smoothly finished surface.
  • Deck 16 can be constructed of wood, plastic, fiber glass, or laminated concrete and fiber-reinforced epoxy resin similar to hull l2, and is secured to stringer 26, and the joint finished with metal or plastic molding 30.
  • FIG. 4 illustrates an alternative mode of construction in which both hull l2 and deck 16 are constructed of laminated concrete and fiber-reinforced epoxy resin.
  • deck 16 is formed of a generally flat section 32 and an integral downturned lip 34 adapted to fit snugly on the exterior of bull 12.
  • Deck 16 can be attached to hull 12 by any convenient means, such as by drilling a hole through both lip 34 and hull 12, and joining these sections by bolts, or, as illustrated, by rivets 38. Also, the joint can be sealed and further joined by coating the mating surfaces of the hull and deck with epoxy resin prior to adjoining them so as to form a tight bond therebetween.
  • FIG. 5 illustrates a mode of construction wherein the hull, deck, transom, bulkhead, or other relatively thick section is constructed of I a plurality of layers of concrete with intermediate layers of fiber-reinforced epoxy resin integrally bonded therebetween to provide a unitary structure.
  • the integral structure is formed of three layers of concrete 40, 42 and 44, with a layer of fiberreinforced epoxy resin 46 and 48 interposed between adjacent layers of concrete.
  • a member can be formed with as many alternate layers of concrete and fiber-reinforced epoxy resin as desired.
  • the concrete employed in the constructions of this invention is a hardened mixture of hydraulic cement, aggregate, and sufficient water to harden the cement.
  • the hydraulic cement can be any of the commercial hydraulic cements such as ASTM Type I or normal Portland cement, ASTM Type II or modified Portland cement, ASTM Type III or high-earlystrength Portland cement, ASTM Type IV or low-heat Portland cement, ASTM Type V or sulphate resistance Portland cement, ASTM Type IP or Portland-pozzolana cement, plastic cement, or gun plastic cement.
  • the cement can optionally contain additives to improve various properties, such as workability, aggregate segregation, air entrainment, and to accelerate or slow setting time.
  • the aggregate is sand, although fine pea gravel and crushed aggregate can be used in part, particularly in thicker constructions.
  • Typical concrete compositions employed in the practice of this invention are admixtures of about I25 to 175 pounds of aggregate per 94 pound sack of cement and sufficient water to harden the cement. Water in the amount of 4% to 5 gallons per sack of cement is usually sufficient to obtain maximum strength on curing. However, in any case, the water content is adjusted to obtain a wet cement mix of the proper consistency.
  • a typical cement composition useful in the constructions of this invention is as follows:
  • hydraulic cement 94 pounds aggregate 125 to pounds water 4% t0 5 gallons
  • the strength of the ultimate structure can be increased by admixing a minor proportion of epoxy resin into the wet cement mix.
  • epoxy resin Usually, from about /4 to 3 gallons of epoxy resin per sack of cement is employed, and preferably from about 2 to 3 gallons per sack.
  • the fiber-reinforcing material for the epoxy resin layer can be metal, plastic, cloth, or glass fiber in the form of matting, woven material, or short lengths of chopped fibers.
  • Other fibers that can be employed are sisal, hemp, cotton, nylon, rayon, polyethylene terephthalate (Dacron), acrylic fibers (Orlon), and other synthetic and natural fibers. Included within the woven materials are metal, plastic, cloth or glass screen or mesh.
  • a Particularly preferred fiber-reinforcing material that imparts superior strength to the ultimate structure is woven glass fiber roving.
  • Glass fiber roving is a woventype material in which bundles of glass fibers are woven in a basket-like weave.
  • epoxy resin compositions can be employed in the practice of this invention. These are typically undiluted low viscosity liquids or more viscous resins diluted with a solvent, and are conventionally employed in a two component system, i.e., the resin and catalyst are separately packaged and admixed only at the time of use.
  • the epoxy resins preferred in the practice of this invention are low viscosity, undiluted liquids that exhibit the following properties after curing for 7 days:
  • a commercial epoxy resin exhibiting the foregoing properties and which is particularly useful in the practice of this invention is a two component epoxy resin marketed by the Adhesive Engineering Company under the trademark Concresive No. l 170, and identified as Part A and Part B.
  • This material is admixed in the ratio of about 2 parts of Part A to 3 parts of Part B to about 3 parts of Part A to 2 parts of Part B, and is preferably employed in the proportion of about equal parts of Part A and Part B.
  • the two epoxy resin components are admixed prior to adding them to wet cement mixture.
  • the hulls, decks and other concrete parts of the boats of this invention are constructed by applying the materials wet, or in their uncured form, to suitably shaped molds.
  • the concrete and epoxy resin are then hardened by curing, and the hardened member removed from the mold and assembled into the completed boat.
  • FIG. 6 illustrates a typical concave mold 50 that can be employed in the construction of the reinforced concrete hulls of this invention.
  • the mold is coated with a suitable concrete form release, mold release or separating compound to facilitate removal of the completed structure from the mold.
  • a first relatively thin layer 52 of wet cement mixture is applied to the mold 50.
  • the wet cement mixture can be readily applied by trowelling, or with a low pressure plaster gun.
  • the layer 54 of epoxy resin saturated fibers is applied, and immediately thereafter, the layer 56 of wet cement mixture is applied.
  • additional layers of epoxy saturated fibers and wet cement mixture can be applied to obtain a structure having the desired number of laminations.
  • the final layer of wet cement mixture can be finished in any conventional manner to provide the desired finish, such as by trowelling, floating, rubber floating, brooming, etc.
  • the fiber-reinforced epoxy resin layer can be formed by presaturating the fibers with epoxy resin, and applying the epoxy resin saturated fibers to the previously applied layer of wet cement mixture.
  • fiber-reinforcing material can be applied to the previously applied layer of wet cement, and the epoxy resin then applied by brushing or spraying.
  • chopped fibers are employed, it is convenient to apply the fibers with a chopper gun that simultaneously blows the chopped fibers and sprays the epoxy resin onto the surface.
  • a first layer of wet cement mixture is applied to the mold, and epoxy resin applied directly to the surface of this layer of cement.
  • a layer of epoxy resin-soaked, woven glass fiber roving is applied, and additional epoxy resin applied to this layer to obtain a layer of fiber-reinforcing material heavily saturated with the resin.
  • an additional layer of wet cement mixture is applied.
  • additional layers of epoxy resin-saturated fibers and wet cement mixture can be applied, if desired.
  • the wet cement mixture contains a minor proportion of epoxy resin.
  • the structure can be removed from the mold.
  • Larger structures such as the molded hull sections, can be effectively removed from the mold by injecting water, under pressure, between the concrete structure and the mold. The water breaks the concrete away from the mold and floats the structure in the mold. Water can be conveniently injected between the structure and the mold by connecting a water hose to a suitable hose connection in the bottom of the mold.
  • the performed hull and deck sections are assembled into the completed boat.
  • the exterior surfaces of the concrete hull and deck sections can be left unfinished, or they can be provided with one or more coats of a suitable paint.
  • a particularly durable finish is provided by coating the exterior surfaces of the concrete with epoxy paint.
  • the boat can be fitted with marine hardware and accessory equipment in conventional manner.
  • a boat hull comprising a unitary, generally hollow-form, relatively thin-walled, floatable structure comprised of altemate, integrally bonded layers of epoxy resin-containing concrete and fiber-reinforced epoxy resin, said epoxy resincontaining concrete comprising a hardened mixture of hydraulic cement, aggregate, water in an amount sufficient to harden the cement, and a minor proportion of epoxy resin.
  • fibers reinforced epoxy resin is epoxy resin reinforced with metal, plastic, cloth or glass mesh or screen; cloth, plastic or glass fiber matting; chopped cloth, plastic or glass fiber; or woven plastic or glass fiber roving.
  • a boat comprising a unitary, generally hollow-form, relatively thin-walled, floatable hull and a deck at least partially covering said hull, said hull and deck being constructed of a plurality of layers of epoxy resin-containing concrete having an integrally bonded layer of fiber-reinforced epoxy resin interspaced between adjacent layers of said epoxy resin-containing concrete, said epoxy resin-containing concrete comprising a hardened mixture of hydraulic cement, aggregate, water in an amount sufiicient to harden the cement, and a minor proportion of epoxy resin.
  • said fiber-reinforced epoxy resin is epoxy resin reinforced with metal, plastic, cloth or glass mesh or screen, plastic or glass fiber matting, chipped cloth, plastic or glass fiber, or woven plastic or glass fiber roving.
  • a boat hull comprising a unitary, generally hollow-fonn, relatively thin-walled, floatable structure comprised of a plurality of alternate layers of a hardened mixture of hydraulic cement, aggregate, water in an amount sufficient to harden the cement, and a minor proportion of epoxy resin, adjacent layers of said hardened mixture being interspaced with a layer of glass fiber-reinforced epoxy resin integrally bonded therewith.
  • the article defined in claim 12 including a deck at least partially covering said hull, said deck comprising a relatively thin-walled, molded structure comprised of a plurality of alternate layers of said hardened mixture interspaced with a layer of glass fiber-reinforced epoxy resin integrally bonded therewith.
  • a hollow-form, relatively thin-walled, floatable structure comprised of a plurality of alternate layers of a hardened mixture in the proportion of 94 pounds of hydraulic cement, about to pounds of aggregate, sufficient water to harden the cement, and about 1% to 3 gallons of epoxy resin, adjacent layers of said hardened mixture being interspaced with a layer of chopped glass fiber-reinforced epoxy resin integrally bonded therewith.
  • the article defined in claim 14, including a deck at least partially covering said hull, said deck comprising a relatively thin-walled, molded structure comprised of a plurality of alternate layers of said hardened mixture interspaced with a layer of chopped glass fiber-reinforced epoxy resin integrally bonded therewith.
  • Claim 16 line 1 delete the Comma Signed and sealed this 2nd day of January 197-3.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

A boat having a concrete hull formed of a plurality of alternate, integrally bonded layers of concrete and fiberreinforced epoxy resin, and a method of constructing a concrete and fiber-reinforced epoxy resin boat hull. The hull is a unitary structure comprised of a plurality of layers of concrete having an integrally bonded layer of fiber-reinforced epoxy resin interspaced between adjacent layers of concrete. The strength of the structure can be even further increased by the addition of a minor proportion of epoxy resin to the concrete.

Description

United States Patent Duff [54] REINFORCED CONCRETE BOAT HULL AND METHOD OF CONSTRUCTION [72] In entor: Raymond A. Duff, 1333 South Baker, Santa Ana, Calif. 92707 [22] Filed: Aug. 21, 1969 [21] App]. No.: 851,961
[52] U.S. Cl. 1 14/65 A, 52/309 [5 1 Int. Cl .B63b 5/14 [58] Field of Search ..1 14/65 A; 9/6; 52/309 [56] References Cited UNITED STATES PATENTS 2,425,079 8/1947 Billig ...1 14/65 A 2,850,890 9/1958 Rubenstein ..52/309 X [451 May 23, 1972 2,921,463 H1960 Goldfein, ..52/309X 3,443,347 5/1969 Varnellet a1. ..52/30 9X Primary Examiner-Andrew H. Farrell Attorney-Dean Sandford [57] ABSTRACT A boat having a concrete hull formed of a plurality of alternate, integrally bonded layers of concrete and fiber-reinforced epoxy resin, and a method of constructing a concrete and fiber-reinforced epoxy resin boat hull. The hull is a unitary structure comprised of a plurality of layers of concrete having an integrally bonded layer of fiber-reinforced epoxy resin interspaced between adjacent layers of concrete. The strength of the structure can be even further increased by the addition of a minor proportion of epoxy resin to the concrete.
16 Chims, 7 Drawing figures PATENTED MM 2 3 I972 SHEET 1 0F 2 INVENTOR. RAYMOND ,4. DUFF AVTTOR/VE'Y PATENTEU MAY 2 3 I972 SHEET 2 [1F 2 INVENTOR.
RflYMU/VD 4. Ol/FF REINFORCED CONCRETE BOAT HULL AND METHOD OF CONSTRUCTION This invention relates to the construction of boats, and p ticularly to the construction of boats having reinforced concrete hulls and to methods of constructing reinforced concrete boat hulls.
Because of its relatively low cost, durability and availability, it has long been proposed that reinforced concrete be employed as a material of construction for boat hulls. However, because of the difficulty of attaining sufficient tensile and flexural strength, the difficulty of forming specially shaped parts, the high weight and large bulk of the formed structures, and the susceptibility of many concretes to attack by sea water, concrete has not gained wide acceptance as a material of construction for boat hulls, and particularly has not gained acceptance in the construction of small boats and pleasure craft.
Accordingly, a principal object of this invention is to provide a boat having a hull of relatively light weight, inexpensive construction.
Another object of this invention is to provide a boat having a reinforced concrete hull of superior strength and durability.
Still another object of this invention is to provide a boat having a relatively thin reinforced concrete hull of high strength and durability.
A further object of this invention is to provide a boat having a reinforced concrete hull of unitary construction.
A still further object of this invention is to provide a method for constructing a relatively light weight, inexpensive boat hull having superior strength and durability.
A yet further object of this invention is to provide a method for constructing a boat having ahull of relatively thin unitary construction that exhibits superior strength and durability.
The manner in which the foregoing and other objects of this invention are realized will be apparent to those skilled in the art from the specification and claims considered together with the accompanying drawings, wherein like numerals refer to like parts throughout, and in which:
FIG. I is a top view of a boat constructed with the reinforced concrete hull of this invention;
FIG. 2 is a side view of the boat illustrated in FIG. 1;
FIG. 3 is an enlarged partial cross-sectional view of the hull and deck construction of the boat illustrated in FIG. 1;
FIG. 4 is an enlarged partial cross-sectional view of another embodiment of hull and deck construction;
FIG. 5 is a partial cross-sectional view of another embodiment of reinforced concrete construction employing a plurality of layers of concrete and fiber-reinforced epoxy resin;
FIG. 6 is a perspective view of the mold employed in the construction of the reinforced hulls of this invention; and
FIG. 7 is a perspective view illustrating the method of constructing the reinforced concrete hulls of this invention.
Briefly, this invention contemplates a boat having a concrete hull formed of a plurality of alternate, integrally bonded layers of concrete and fiber-reinforced epoxy resin, and a method of constructing a concrete and fiber-reinforced epoxy resin boat hull. The hull is a unitary structure comprised of a plurality of layers of concrete having an integrally bonded layer of fiber-reinforced epoxy resin between adjacent layers of concrete. Also, the strength of the structure can be further increased by adding a minor proportion of epoxy resin to the concrete.
Referring now more specifically to the drawings, the numeral 10 generally designates a boat which can be seen in'its completed form illustrated in FIGS. 1 and 2; and which includes a hull 12 having a rear transom section 14 and a deck 16 partially enclosing the hull 12 to provide a covered forward section and an open cockpit 18. For purposes of illustration, the drawings depict a boat of the runabout class adapted to be powered by an outboard motor, not shown, mounted on rear transom 14. However, it is to be realized that boats of all classes, such as rowboats, skifis, whaleboats, lifeboats, launches, speedboats, sailboats, houseboats and larger powered launches can be constructed in accordance with this invention, and that the power driven boats can be adapted to be powered by outboard motors, inboard-outboard motors, and by inboard motors.
As particularly indicated in FIG. 3, hull 12 is a laminated structure comprised of two outer layers of concrete 20 and 22 and an inner layer 24 of fiber-reinforced epoxy resin bonding the concrete into an integral unitary structure having high strength and durability. The finished hull can .vary from about lfi-inch to about 1-inch in thickness; however, an overall thickness of about /4-inch to about %-inch is preferred in most applications.
FIG. 3 also illustrates the construction wherein a wood stringer 26 is attached along the upper inner edge of hull 121 Stringer 26 can be attached by any convenient means, such as by drilling and countersinking a hole through the concrete and attaching the stringer with flathead screws 28. The screw holes can then be filled with cement or epoxy resin-cement mixture to cover the screw heads so as to provide a smoothly finished surface. Deck 16 can be constructed of wood, plastic, fiber glass, or laminated concrete and fiber-reinforced epoxy resin similar to hull l2, and is secured to stringer 26, and the joint finished with metal or plastic molding 30.
. FIG. 4 illustrates an alternative mode of construction in which both hull l2 and deck 16 are constructed of laminated concrete and fiber-reinforced epoxy resin. In this embodiment, deck 16 is formed of a generally flat section 32 and an integral downturned lip 34 adapted to fit snugly on the exterior of bull 12. Deck 16 can be attached to hull 12 by any convenient means, such as by drilling a hole through both lip 34 and hull 12, and joining these sections by bolts, or, as illustrated, by rivets 38. Also, the joint can be sealed and further joined by coating the mating surfaces of the hull and deck with epoxy resin prior to adjoining them so as to form a tight bond therebetween.
FIG. 5 illustrates a mode of construction wherein the hull, deck, transom, bulkhead, or other relatively thick section is constructed of I a plurality of layers of concrete with intermediate layers of fiber-reinforced epoxy resin integrally bonded therebetween to provide a unitary structure. In the illustrated embodiment, the integral structure is formed of three layers of concrete 40, 42 and 44, with a layer of fiberreinforced epoxy resin 46 and 48 interposed between adjacent layers of concrete. With this mode of construction, a member can be formed with as many alternate layers of concrete and fiber-reinforced epoxy resin as desired.
The concrete employed in the constructions of this invention is a hardened mixture of hydraulic cement, aggregate, and sufficient water to harden the cement. The hydraulic cement can be any of the commercial hydraulic cements such as ASTM Type I or normal Portland cement, ASTM Type II or modified Portland cement, ASTM Type III or high-earlystrength Portland cement, ASTM Type IV or low-heat Portland cement, ASTM Type V or sulphate resistance Portland cement, ASTM Type IP or Portland-pozzolana cement, plastic cement, or gun plastic cement. Also, the cement can optionally contain additives to improve various properties, such as workability, aggregate segregation, air entrainment, and to accelerate or slow setting time. The aggregate is sand, although fine pea gravel and crushed aggregate can be used in part, particularly in thicker constructions.
Typical concrete compositions employed in the practice of this invention are admixtures of about I25 to 175 pounds of aggregate per 94 pound sack of cement and sufficient water to harden the cement. Water in the amount of 4% to 5 gallons per sack of cement is usually sufficient to obtain maximum strength on curing. However, in any case, the water content is adjusted to obtain a wet cement mix of the proper consistency. Thus, a typical cement composition useful in the constructions of this invention is as follows:
hydraulic cement 94 pounds aggregate 125 to pounds water 4% t0 5 gallons Also, the strength of the ultimate structure can be increased by admixing a minor proportion of epoxy resin into the wet cement mix. Usually, from about /4 to 3 gallons of epoxy resin per sack of cement is employed, and preferably from about 2 to 3 gallons per sack.
The fiber-reinforcing material for the epoxy resin layer can be metal, plastic, cloth, or glass fiber in the form of matting, woven material, or short lengths of chopped fibers. Other fibers that can be employed are sisal, hemp, cotton, nylon, rayon, polyethylene terephthalate (Dacron), acrylic fibers (Orlon), and other synthetic and natural fibers. Included within the woven materials are metal, plastic, cloth or glass screen or mesh. A Particularly preferred fiber-reinforcing material that imparts superior strength to the ultimate structure is woven glass fiber roving. Glass fiber roving is a woventype material in which bundles of glass fibers are woven in a basket-like weave.
Various commercial epoxy resin compositions can be employed in the practice of this invention. These are typically undiluted low viscosity liquids or more viscous resins diluted with a solvent, and are conventionally employed in a two component system, i.e., the resin and catalyst are separately packaged and admixed only at the time of use. The epoxy resins preferred in the practice of this invention are low viscosity, undiluted liquids that exhibit the following properties after curing for 7 days:
Tensile strength Tensile elongation Flexural strength Compressive yield Hardness A commercial epoxy resin exhibiting the foregoing properties and which is particularly useful in the practice of this invention is a two component epoxy resin marketed by the Adhesive Engineering Company under the trademark Concresive No. l 170, and identified as Part A and Part B. This material is admixed in the ratio of about 2 parts of Part A to 3 parts of Part B to about 3 parts of Part A to 2 parts of Part B, and is preferably employed in the proportion of about equal parts of Part A and Part B. Preferably, the two epoxy resin components are admixed prior to adding them to wet cement mixture.
The hulls, decks and other concrete parts of the boats of this invention are constructed by applying the materials wet, or in their uncured form, to suitably shaped molds. The concrete and epoxy resin are then hardened by curing, and the hardened member removed from the mold and assembled into the completed boat.
FIG. 6 illustrates a typical concave mold 50 that can be employed in the construction of the reinforced concrete hulls of this invention. Optionally, the mold is coated with a suitable concrete form release, mold release or separating compound to facilitate removal of the completed structure from the mold. As illustrated in FIG. 7, a first relatively thin layer 52 of wet cement mixture is applied to the mold 50. The wet cement mixture can be readily applied by trowelling, or with a low pressure plaster gun. Next, the layer 54 of epoxy resin saturated fibers is applied, and immediately thereafter, the layer 56 of wet cement mixture is applied. If desired, additional layers of epoxy saturated fibers and wet cement mixture can be applied to obtain a structure having the desired number of laminations. The final layer of wet cement mixture can be finished in any conventional manner to provide the desired finish, such as by trowelling, floating, rubber floating, brooming, etc.
The fiber-reinforced epoxy resin layer can be formed by presaturating the fibers with epoxy resin, and applying the epoxy resin saturated fibers to the previously applied layer of wet cement mixture. Alternatively, fiber-reinforcing material can be applied to the previously applied layer of wet cement, and the epoxy resin then applied by brushing or spraying.
Where chopped fibers are employed, it is convenient to apply the fibers with a chopper gun that simultaneously blows the chopped fibers and sprays the epoxy resin onto the surface.
In a preferred method of constructing the reinforced concrete structures of this invention, a first layer of wet cement mixture is applied to the mold, and epoxy resin applied directly to the surface of this layer of cement. Next, a layer of epoxy resin-soaked, woven glass fiber roving is applied, and additional epoxy resin applied to this layer to obtain a layer of fiber-reinforcing material heavily saturated with the resin. Next, an additional layer of wet cement mixture is applied. As before, additional layers of epoxy resin-saturated fibers and wet cement mixture can be applied, if desired. In a preferred embodiment of the invention, the wet cement mixture contains a minor proportion of epoxy resin.
After the wet cement mixture and epoxy resin has set suffi ciently that the structure has sufficient strength to be handled, the structure can be removed from the mold. Larger structures, such as the molded hull sections, can be effectively removed from the mold by injecting water, under pressure, between the concrete structure and the mold. The water breaks the concrete away from the mold and floats the structure in the mold. Water can be conveniently injected between the structure and the mold by connecting a water hose to a suitable hose connection in the bottom of the mold.
The performed hull and deck sections are assembled into the completed boat. The exterior surfaces of the concrete hull and deck sections can be left unfinished, or they can be provided with one or more coats of a suitable paint. A particularly durable finish is provided by coating the exterior surfaces of the concrete with epoxy paint. The boat can be fitted with marine hardware and accessory equipment in conventional manner.
While various embodiments of the invention have been described, it will be obvious to those skilled in the art that it is not so limited, but is susceptible of various changes and modifications, which are considered within the spirit and scope of the invention as defined by the attached claims.
Having now described my invention, I claim:
l. A boat hull comprising a unitary, generally hollow-form, relatively thin-walled, floatable structure comprised of altemate, integrally bonded layers of epoxy resin-containing concrete and fiber-reinforced epoxy resin, said epoxy resincontaining concrete comprising a hardened mixture of hydraulic cement, aggregate, water in an amount sufficient to harden the cement, and a minor proportion of epoxy resin.
2. The article defined in claim 1 wherein said concrete is a hardened mixture in the proportion of 94 pounds of hydraulic cement, about to 1'75 pounds of aggregate, about 4% to 5 gallons of water, and about V4. to 3 gallons of epoxy resin.
3. The article defined in claim 1 wherein said fibers reinforced epoxy resin is epoxy resin reinforced with metal, plastic, cloth or glass mesh or screen; cloth, plastic or glass fiber matting; chopped cloth, plastic or glass fiber; or woven plastic or glass fiber roving.
4. The article defined in claim 1 wherein said structure is comprised of a plurality of layers of epoxy resin-containing concrete having an integrally bonded layer of fiber-reinforced epoxy resin interspaced between adjacent layers of said epoxy resin-containing concrete.
5. The article defined in claim 1 wherein said structure is comprised of two layers of epoxy resin-containing concrete and a layer of fiber-reinforced epoxy resin therebetween.
6. The article defined in claim 1 wherein the exterior surface of said hull is coated with epoxy paint.
7. A boat comprising a unitary, generally hollow-form, relatively thin-walled, floatable hull and a deck at least partially covering said hull, said hull and deck being constructed of a plurality of layers of epoxy resin-containing concrete having an integrally bonded layer of fiber-reinforced epoxy resin interspaced between adjacent layers of said epoxy resin-containing concrete, said epoxy resin-containing concrete comprising a hardened mixture of hydraulic cement, aggregate, water in an amount sufiicient to harden the cement, and a minor proportion of epoxy resin.
8. The article defined in claim 7, wherein said fiber-reinforced epoxy resin is epoxy resin reinforced with metal, plastic, cloth or glass mesh or screen, plastic or glass fiber matting, chipped cloth, plastic or glass fiber, or woven plastic or glass fiber roving.
9. The article defined in claim 7, wherein the exterior surfaces of the boat are coated with epoxy paint. 7
10. A boat hull comprising a unitary, generally hollow-fonn, relatively thin-walled, floatable structure comprised of a plurality of alternate layers of a hardened mixture of hydraulic cement, aggregate, water in an amount sufficient to harden the cement, and a minor proportion of epoxy resin, adjacent layers of said hardened mixture being interspaced with a layer of glass fiber-reinforced epoxy resin integrally bonded therewith.
11. The article defined in claim 12 including a deck at least partially covering said hull, said deck comprising a relatively thin-walled, molded structure comprised of a plurality of alternate layers of said hardened mixture interspaced with a layer of glass fiber-reinforced epoxy resin integrally bonded therewith.
12. The article defined in claim 11, wherein said glass fiber reinforcing is woven glass fiber roving.
13. The article defined in claim 11, wherein said glass fiber reinforcing is chopped glass fiber.
14. A hollow-form, relatively thin-walled, floatable structure comprised of a plurality of alternate layers of a hardened mixture in the proportion of 94 pounds of hydraulic cement, about to pounds of aggregate, sufficient water to harden the cement, and about 1% to 3 gallons of epoxy resin, adjacent layers of said hardened mixture being interspaced with a layer of chopped glass fiber-reinforced epoxy resin integrally bonded therewith.
15. The article defined in claim 14, including a deck at least partially covering said hull, said deck comprising a relatively thin-walled, molded structure comprised of a plurality of alternate layers of said hardened mixture interspaced with a layer of chopped glass fiber-reinforced epoxy resin integrally bonded therewith.
16. The article defined in claim 14, wherein said structure is comprised of two layers of said hardened mixture and a layer of chopped glass fiber-reinforced epoxy resin therebetween.
R UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 3,664,128? I I Dated May 23, 1972 It is certifiedfl1atwjerroeaiypears in the bove-idn-tified patent and that seid, Letters-Patent areuhexeby corrected as shown below;
v Claim 3; line 1-, "fibers reinforced". should be fiberreinforced Claim 8, 'linel, delete the come and line 4, "chipped should chopped claims," line 1, delete the' c o'm'a.
Claim ll',- line i, "12' "should be 1o Claim 12; line 1, delete the com Claim 13', line 1, delete the co r ne Claim 14, line 1," after "A" insert boat hull comprisir e. unitary, generally and line 5, f should be 1/4 Claim 15, line 1, delete the co r nma h).
Claim 16 line 1, delete the Comma Signed and sealed this 2nd day of January 197-3.
(SEAL) Attest:
EDWARD M.FLETCHER,JR. n -'ROBERT GOTTSC HALK Attesting Officer 7 Commissioner of Patents FORM Po-wso (IO-69) USCOMWDC 603w \l S. GOVIINIU" IIHH'ING OM06 1989 0-56

Claims (15)

  1. 2. The article defined in claim 1 wherein said concrete is a hardened mixture in the proportion of 94 pounds of hydraulic cement, about 125 to 175 pounds of aggregate, about 4 1/2 to 5 gallons of water, and about 1/4 to 3 gallons of epoxy resin.
  2. 3. The article defined in claim 1 wherein said fibers reinforced epoxy resin is epoxy resin reinforced with metal, plastic, cloth or glass mesh or screen; cloth, plastic or glass fiber matting; chopped cloth, plastic or glass fiber; or woven plastic or glass fiber roving.
  3. 4. The article defined in claim 1 wherein said structure is comprised of a plurality of layers of epoxy resin-containing concrete having an integrally bonded layer of fiber-reinforced epoxy resin interspaced between adjacent layers of said epoxy resin-containing concrete.
  4. 5. The article defined in claim 1 wherein said structure is comprised of two layers of epoxy resin-containing concrete and a layer of fiber-reinforced epoxy resin therebetween.
  5. 6. The article defined in claim 1 wherein the exterior surface of said hull is coated with epoxy paint.
  6. 7. A boat comprising a unitary, generally hollow-form, relatively thin-walled, floatable hull and a deck at least partially covering said hull, said hull and deck being constructed of a plurality of layers of epoxy resin-containing concrete having an integrally bonded layer of fiber-reinforced epoxy resin interspaced between adjacent layers of said epoxy resin-containing concrete, said epoxy resin-containing concrete comprising a hardened mixture of hydraulic cement, aggregate, water in an amount sufficient to harden the cement, and a minor proportion of epoxy resin.
  7. 8. The article defined in claim 7, wherein said fiber-reinforced epoxy resin is epoxy resin reinforced with metal, plastic, cloth or glass mesh or screen, plastic or glass fiber matting, chipped cloth, plastic or glass fiber, or woven plastic or glass fiber roving.
  8. 9. The article defined in claim 7, wherein the exterior surfaces of the boat are coated with epoxy paint.
  9. 10. A boat hull comprising a unitary, generally hollow-form, relatively thin-walled, floatable structure comprised of a plurality of alternate layers of a hardened mixture of hydraulic cement, aggregate, water in an amount sufficient to harden the cement, and a minor proportion of epoxy resin, adjacent layers of said hardened mixture being interspaced with a layer of glass fiber-reinforced epoxy resin integrally bonded therewith.
  10. 11. The article defined in claim 12 including a deck at least partially covering said hull, said deck comprising a relatively thin-walled, molded structure comprised of a plurality of alternate layers of said hardened mixture interspaced with a layer of glass fiber-reinforced epoxy resin integrally bonded therewith.
  11. 12. The article defined in claim 11, wherein said glass fiber reinforcing is woven glass fiber roving.
  12. 13. The article defined in claim 11, wherein said glass fiber reinforcing is chopped glass fiber.
  13. 14. A hollow-form, relatively thin-walled, floatable structure comprised of a plurality of alternate layers of a hardened mixture in the proportion of 94 pounds of hydraulic cement, about 125 to 175 pounds of aggregate, sufficient water to harden the cement, and about 1/2 to 3 gallons of epoxy resin, adjacent layers of said hardened mixture being interspaced with a layer of chopped glass fiber-reinforced epoxy resin integrally bonded therewith.
  14. 15. The article defined in claim 14, including a deck at least partially covering said hull, said deck comprising a relatively thin-walled, molded structure comprised of a plurality of alternate layers of said hardened mixture interspaced with a layer of chopped glass fiber-reinforced epoxy resin integrally bonded therewith.
  15. 16. The articLe defined in claim 14, wherein said structure is comprised of two layers of said hardened mixture and a layer of chopped glass fiber-reinforced epoxy resin therebetween.
US851961A 1969-08-21 1969-08-21 Reinforced concrete boat hull and method of construction Expired - Lifetime US3664287A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US85196169A 1969-08-21 1969-08-21

Publications (1)

Publication Number Publication Date
US3664287A true US3664287A (en) 1972-05-23

Family

ID=25312147

Family Applications (1)

Application Number Title Priority Date Filing Date
US851961A Expired - Lifetime US3664287A (en) 1969-08-21 1969-08-21 Reinforced concrete boat hull and method of construction

Country Status (1)

Country Link
US (1) US3664287A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3793975A (en) * 1969-08-21 1974-02-26 R Duff Reinforced concrete boat hull
US4715307A (en) * 1982-11-08 1987-12-29 Rock Dock, Inc. Concrete marine float and method of fabricating same
GB2230746A (en) * 1989-04-25 1990-10-31 Nordmar Limited Lamination
US20140157715A1 (en) * 2011-07-17 2014-06-12 Philipp Wagner Method and Sliding Form for Producing a Structure and Corresponding Structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2425079A (en) * 1943-05-27 1947-08-05 Billig Kurt Reinforced concrete shell construction and method of manufacture therefor
US2850890A (en) * 1951-06-04 1958-09-09 Rubenstein David Precast element and reinforced facing layer bonded thereto
US2921463A (en) * 1952-08-20 1960-01-19 Goldfein Solomon Concrete structural element reinforced with glass fibers
US3443347A (en) * 1968-03-22 1969-05-13 Concrete Dev Corp Structures made from polyester resin concrete

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2425079A (en) * 1943-05-27 1947-08-05 Billig Kurt Reinforced concrete shell construction and method of manufacture therefor
US2850890A (en) * 1951-06-04 1958-09-09 Rubenstein David Precast element and reinforced facing layer bonded thereto
US2921463A (en) * 1952-08-20 1960-01-19 Goldfein Solomon Concrete structural element reinforced with glass fibers
US3443347A (en) * 1968-03-22 1969-05-13 Concrete Dev Corp Structures made from polyester resin concrete

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3793975A (en) * 1969-08-21 1974-02-26 R Duff Reinforced concrete boat hull
US4715307A (en) * 1982-11-08 1987-12-29 Rock Dock, Inc. Concrete marine float and method of fabricating same
GB2230746A (en) * 1989-04-25 1990-10-31 Nordmar Limited Lamination
GB2230746B (en) * 1989-04-25 1992-11-04 Nordmar Limited Lamination
US20140157715A1 (en) * 2011-07-17 2014-06-12 Philipp Wagner Method and Sliding Form for Producing a Structure and Corresponding Structure
US9657722B2 (en) * 2011-07-17 2017-05-23 X-Tower Consructions GmbH Method and sliding form for producing a structure and corresponding structure

Similar Documents

Publication Publication Date Title
US3922413A (en) Lightweight, high strength, reinforced concrete constructions
CN106585873B (en) The manufacturing process of anti-settling glass-reinforced plastic boat
US4365580A (en) Hull construction
US4483267A (en) Wooden boat hull constructions, and method for such constructions
JP2002355806A (en) System for substituting timber
US3664287A (en) Reinforced concrete boat hull and method of construction
US5277145A (en) Transom for a boat
US3793975A (en) Reinforced concrete boat hull
US4800114A (en) Fiber and resin construction
CN200948871Y (en) Steel truss cement bottom board glass steel floater ship structure
US3773581A (en) A method of building unitary-impregnated fiber-glass structure
US5372763A (en) Method of forming a transom for a boat
US3705228A (en) Ferro-concrete molding process
CN104386212A (en) Decorative structure of glass fiber reinforced plastic panel and construction process thereof
GB2061177A (en) Moulding articles which include embedded mesh-like material
CN108569381A (en) A kind of fiberglass reinforced plastics section combination buoyant raft
US3135976A (en) Boat hull
Spaulding Jr Fiberglass boats in naval service
Brauer Ferrocement for boats and craft
CN1110657A (en) Manufacture method of sandwich glass fibre reinforced plastic hull
KR20030008963A (en) A Prefabricated FRP Boat
CN2222125Y (en) Plastic foam boat body with coating
US20230278267A1 (en) Unitary boat hull and methods of manufacture
CN209426981U (en) A kind of fibre reinforced plastic speed boat bulkhead high intensity connector
GB1398731A (en) Laminated construction formed in part from cementitious material