US3662092A - Cable insulated with paper - Google Patents

Cable insulated with paper Download PDF

Info

Publication number
US3662092A
US3662092A US73243A US3662092DA US3662092A US 3662092 A US3662092 A US 3662092A US 73243 A US73243 A US 73243A US 3662092D A US3662092D A US 3662092DA US 3662092 A US3662092 A US 3662092A
Authority
US
United States
Prior art keywords
category
paper
cable according
impermeability
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US73243A
Inventor
Pasini Franco
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pirelli and C SpA
Original Assignee
Pirelli SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pirelli SpA filed Critical Pirelli SpA
Application granted granted Critical
Publication of US3662092A publication Critical patent/US3662092A/en
Assigned to SOCIETA' PIRELLI S.P.A., A COMPANY OF ITALY reassignment SOCIETA' PIRELLI S.P.A., A COMPANY OF ITALY ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: INDUSTRIE PIRELLI S.P.A.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0225Three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0241Disposition of insulation comprising one or more helical wrapped layers of insulation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Abstract

Paper tape for insulating high tension cables is produced with a multi-layer construction. A low density core layer is faced on one or both sides with thin high impermeability layers. The dielectric strength is a function of the latter while the impregnability and loss factor is a function of the former.

Description

Q United States Patent 3,662,092-
Franco 1 1 May 9, 1972 s41 CABLE INSULATED WITH PAPER [56] References Cited [72] Inventor: Pasini Franco, Milan, Italy UNITED STATES PATENTS 73 Assigneez lndustrie ui s P. A, Milan, Italy 1,527,250 2/1925 15111311611 ..174/121 R X 2,289,734 7/1942 Scott 174/121 R X 1 FfledI i 1970 3,419,770 12/1968 Tomago ..l62/l38 x 21 APPL 73 243 3,427,394 2/1969 McKean ..174/25 R Related US. Application Data Primary ExaminerE. A. Goldberg [62] Division of $61. No. 711,582, Mal. s, 1968, Pat. No. Haffne 3,598,691.
ABSTRACT [52] U.S. C1. ..l74/l20 FP, 174/1 10 P, 174/25 R paper tape f insulating hi tension cables i produced with [5 1 Int. Cl. .1101!) 7/02 a multmayer construction A low density core layer is f d on [58] Fleld of Search 120 120m) 121 one or both sides with thin high impermeability layers. The
174/121 B, 110 P; l62/138 dielectric strength is a function of the latter while the impregnability and loss factor is a function of the former.
13 Claims, 4 Drawing Figures M57744. Coll 00C TOE PATENTEDMAY 9 I97? I 3,662,092
40n/ s/vs/ry papsq FIG. 2. I0
F'IG. 3.
,mh- PL y I I3 13 0 I! P4966 OF v 6.
METHL CO/VOUCTOE (aw-FLY INVENTOR FRANCO PASINI ATTORNEYS.
CABLE INSULATED WITH PAPER This application is a division of may application Ser. No. 71 1,582, filed Mar. 8, 1968, and entitled fPaper for Cable Insulation and Cables so Insulated", now US. Pat. No. 3,598,69 l.
The present invention relates to an improved type of paper suitable for insulating high tension electric cables. More particularly, it relates to paper tape which is helically wrapped about a conductor and thereafter impregnated, and to the cable so insulated.
The present trend to transmit electric energy at ever increasing voltages over 500 KV has created a need for power cables adequately insulated for this purpose. One of the main problems which is encountered in the manufacture of a very high voltage cables is-the selection of the material to be used for their electric insulation. A good cable insulator must primarily possess: (a) a high dielectric strength (in order to withstand high electric gradients and, therefore, enable cables to be fabricated with reasonable radial dimensions); and (b) a low dielectric lossfactor (in order to maintain within tolerable limits the power losses in the dielectric which, the loss factor being constant, increase proportionally with the square of the voltage).
In the case of paper which is to be impregnated, the paper must possess certain additional physical characteristics. For instance, the impermeability of the paper must not be so great as to prevent its becoming completely impregnated by the usual impregnating fluids, such as mineral oils, synthetic fluids or their mixtures. As used herein, the expression impermeability of the paper refers to the papers resistance to the passage of liquid or gaseous fluids. It is a quantity'that can be measured and represented in terms of Emanueli Units (E.U.). In addition to its impermeability the paper must possess sufficient mechanical strength and the like to permit its application to the conductor by modern wrapping machinery.
To provide insulation that can withstand higher electrical gradients, one might consider the use of thinner papers, thereby employing the known property of such papers that its dielectric strength increases with decreased thickness, all other factors remaining constant.' Unfortunately, in order to obtain an appreciable increase in the dielectric strength the paper would have to be made too thin and too weak structurally for satisfactory handling by the wrapping equipment.
A suggested solution to avoid the foregoing disadvantage is described in French Pat. No. 1,404,209. As described therein, thin paper is used and q the elementary sheets are joined together at fixed points. In this way it is possible to reach a total thickness value nearly equal to that of the normally used papers, and at the same time to impart to the resultant paper mechanical characteristics sufficient to ensure a correct wrapping operation. A paper of this type, however, besides requiring a complicated manufacturing process, does not solve the problem of reducing the dielectric loss factor since it is not affected by the variation of the paper thickness.
To obtain high electrical gradients, a further possible solution would be to exploit the fact that the dielectric strength of paper varies in proportion to its impermeability; however, this solution also has limits inits practical application. A paper having very high impermeability would have, in fact, so high a dielectric loss factor that its employment for very high voltage cables would be impossible from a practical standpoint. Moreover, such paper, on account of its considerably high impermeability, couldnot betotally impregnated when wrapped on the cable conductor in a compact manner.
An object of the presentinvention is to provide insulating papers for use in very high voltage electric cables having considerable dielectric strength,-equal to or higher than that of paper normally usedfor the insulation of electric cables, and a substantially lower dielectric loss factor.
In accordance with thepresent invention there is provided a paper for insulating high tension electric cables comprising a plurality of layers whose individual physical characteristics fall into one or the other of two categories, there being at least one layer in each category, the first category being distinguished by an apparent density less than that of the second with a maximum value of 0.7 grams per cubic centimeter, the second category being distinguished by an impermeability greater than that of the first and equal to at least l0Xl0 Emanueli Units, the ratio of the total thickness of the layers in the second category to the total thickness of the layers in the first category being no higher than I l l Although satisfactory results are obtained with the limits recited above, it is preferable that the low density of the first category not exceed 0.6 grams per cubic centimeter, that the impermeability of the second category be no lower than 50x10 EU, and that the mentioned ratio be no higher than 1:2.
As used herein, the term density as it applies to the paper means the apparent density, namely, that obtained by dividing the mass of a given paper volume by the volume itself, thereby taking into account the air gaps between the cellulose fibers.
Better values of the dielectric loss factor are obtained by gradually decreasing the density of the paper constituting the low density layers in the first category and by lowering the ratio between the total thickness of the' high impermeability layers in the second category and that of the low density layers. Very good results are obtained with density values about 0.5 g/cm and thickness ratios lower than 1:3.
As mentioned above, in the manufacture of very high voltage cables it is necessary to employ insulating paper having a dielectric loss factor as low as possible while high values of dielectric strength are required. The paper according to the present invention is admirably suited to this purpose since it can be produced with very high values of dielectric strength without exceeding the dielectric loss factor values of conventional papers used for the insulation of very high voltage electric cables. This result is obtained. by imparting to the high impermeability layers extremely high impermeability values, over 200 X 10 EU. and preferably over 500 X 10' EU.
In spite of its being characterized by values of dielectric strength analogous to those of the very high impermeability paper, the paper according to the invention can be easily impregnated when it is tightly wrapped on the conductor. To facilitate impregnation it is sufficient to impart to the low density layers in the first category an impermeability value lower than 1X10 EU. and preferably lower than 0.5 l0 E.U.'
The papers according to the invention may be constituted by two layers, namely, one high impermeability layer in the second category and one low density layer in the first category. Alternatively, it may have three layers, namely, one low density layer sandwiched between two high impermeability layers. With the two-layer type it is advantageous to dispose the paper in such a way that the layer having high dielectric strength is directed towards the conductor. The use of paper constituted by three layers is-advantageous when still better performance is required with respect to the electric gradient which can be withstood when the papers are wrapped on the cable. In the latter case, the sum of the thickness of the two high impermeability layers is equal or approximately equal to .the thickness of the single high impermeability layer used in the paper constituted by two layers. A further advantage of the three-layer'paperis its symmetry which facilitatesthe wrapping operations.
Finally, it is advisable to wrap the paper which is in the form of tape on the conductor in helical fashion with the pitch sufficiently greater than the width of the tape to leave a gap between adjacent turns.
The invention will be better understood after reading the following detailed description of the presently preferred embodiments thereof with reference to the appended drawings in which:
FIG. 1 is a sectional view through a cordance with the invention;
FIG. 2 is a view similar to FIG. 1 showing a modification of the paper therein;
FIG. 3 is a view in longitudinal half section of a conductor wrapped with the paper of FIG. 1; and
paper constructed in ac- FIG. 4 is a view in longitudinal half section of a conductor wrapped with the paper of FIG. 2.
Turning now to the drawings, the same reference numerals are used throughout to designate the same or similar parts. A two layer paper is shown in FIG. 1. The high impermeability layer is designated 10 and the low density layer is designated 11. The letters 1 and T indicate the thickness of the layers 10 and 11, respectively. Similarly, a three-layer paper is illustrated in FIG. 2.having a high impermeability layer 10 on each face of the low density layer 11.
Actual tests have demonstrated that the paper in accordance with the invention has: (a) a dielectric strength very near to that of a homogeneous paper having an equal total thickness and an impermeability equal to that of the high impermeability layer; (b) dielectric losses practically equal to those of a homogeneous paper having an equal thickness and a density equal to that of the low density layer; and (c) an impregnation capacity equal to what it would have if it were constituted by the low density layer only. It is believed that the impregnation capacity is affected by the disposition of the paper layers in the winding on the conductor. In particular, referring to the arrangement of FIG. 3 in which the paper is helically wrapped on a conductor 12 with an interval or gap 13 between the turns, the path of the impregnant during the impregnating process is that indicated by the arrows 14. This path, in the low density layers 11, follows in part a longitudinal direction and in part a perpendicular direction with respect to said layers. In the longitudinal direction, the paper, which can be easily impregnated per se, offers very little resistance to the passage of the impregnant. This is due to the fact that the cellulose fibers constituting the paper lie for the most part parallel to the cable conductor and create, therefore, longitudinal ducts within which the oil may flow. Following the path indicated by the arrows 14 in F IG, 3, the impregnating agent can reach in a very short time the layers nearest to the conductor, even admitting that the layers 10 are quite impermeable.
Passage of the impregnating liquid, however, also takes place through layers 10 which, although having a high specific impermeability, even exceeding 500 l E.U., have a reduced thickness (preferably less than one-third of that of layers 1 1) so that their resistance to the passage of oil, which is directly proportional to the thickness, is very reduced. This permits the use of paper comprising a high impermeability layer on both faces of layer 11, as illustrated in FIG. 4. In this case, in view of the particular dielectric strength of the paper, the layers 10 may have a thickness of half the value of that employed in FIG. 3, and thereby further facilitate the passage of oil. This arrangement, moreover, is easier to handle since the paper tapes are symmetrical on both sides and it is not necessary to be concerned with the position of the high impermeability layer. The best feature of this arrangement is, however, its ability to withstand very high electric gradients when the cable is in service.
It is a known fact that the weak points in cables having a stratified and impregnated dielectric are the butt spaces 13 between the turns of the insulation. These spaces are also called oil gaps, since they are totally filled with the impregnating fluid. As the radial extent of the oil gaps increases,
the maximum electric gradient which can be withstood by the stratified and impregnated dielectric of an electric cable decreases. The presence of a high impermeability layer on both sides (in the radial direction) of the oil gaps 13 gives rise to a better definition of the radial extent of the latter and, therefore, increases the maximum electric gradient which can be withstood by said dielectric. In fact it is to be noted that in the case of FIG. 3, the oil gaps 13 are bounded on one side by the low density layer 11 (low impermeability layer) which can be considered as an effective extension in the radial direction ofthe oil gap.
As noted above, the papers according to the invention have a value of dielectric strength practically equal to that of the material constituting the high impermeability layers and virtually independent of the value of the dielectric strength of the low density layers. Thus, by reducing the density of the material constituting the low density layers and reducing the thickness ratio between the high impermeability layers and the low density layers, it is possible to obtain a paper whose value of dielectric strength remains unvaried and is equal to that of the high impermeability material but which is almost totally constituted of low density material. Consequently, such paper has a low dielectric loss angle and a low dielectric constant (together defining the loss factor) since, as known, these quantities decrease with decreasing paper density. These features are particularly advantageous as can be appreciated from a consideration of the formula for the dielectric power losses with alternating current, to wit:
K is a constant depending on the size of the dielectric V is the applied voltage 8 is the dielectric loss angle of the dielectric, and
g is the dielectric constant.
From the formula, it is evident that the only way of countering the rapid increase of the losses with increasing voltage is to reduce the loss factor (5X tan 8).
To illustrate the considerable advantages of the paper according to the invention, some examples are given below comparing the results of power factor and dielectric strength tests performed on capacitors perfectly impregnated and prepared from: (1) paper according to the invention, indicated with the letter C, and constituted by one high impermeability layer A and one low density layer B; (2) papers constituted by a single layer of type A or B; and (3) papers conventionally used for the insulation of cables having stratified and impregnated dielectric. In the table below the column headings are represented by letters in accordance with the following key:
D Impermeability;
E Thickness [an asterisk indicates total thickness];
F Density;
G Thickness ratio between paper layer A and paper layer H The result obtained for tan 8 at 25 C.; and
I The result obtained for dielectric strength (impulse) kV/mm.
0.135 mm and chosen from the types most generally used for the insulation of electric cables have given the following results:
Imperrneability E.U.
tanoat 100C (2m 2.5) l- (2.5 to 3) l0 dielectric strength (impulse) kV/mm 90 100 From the Examples it is evident that the papers according to the invention have: (a) a dielectric strength very near to that of a very high impermeability paper; and (b) a dielectric power factor equal to that of a low density paper. No paper among those at present in use shows a combination of values of high dielectric strength and low power factor comparable with that of paper constructed in accordance with present invention.
The papers described herein can be made in any suitable way. Advantageously, they can be manufactured by employing the technology already in use for conventional multi-ply papers. That is, use can be made of conventional paper machines of the multi-wire type, either equipped with Fourdrinier or cylinder forming devices. These machines, with the simultaneous manufacture of the individual layers, also provide for the uniting of said layers which, joining spontaneously to one another, results in a perfectly compact finished product.
It is to be understood that, while for the conventional multiply papers the forming wires are generally supplied with a single pulp stock, for the manufacture of paper according to the present invention each wire is to be supplied with different pulp stocks intended to provide the desired characteristics of impermeability and/or density in the individual layers and consequently'in the final product.
While the foregoing description has made reference by way of example to certain preferred embodiments of the invention, it is to be understood that various changes may be made therein, as will appear evident to one skilled in the art, without departing from the true spirit of the invention as defined in the appended claims.
What is claimed is:
1. An electric cable comprising a conductor covered with a plurality of wrappings of helically wrapped paper tape with the pitch being chosen to leave a gap between adjacent turns less than the width of said tape and with the turns of one wrapping overlapping the gaps in the turns of the adjacent wrapping, said paper tape being made of a multi-ply paper, divided internally into a plurality of adjacent layers extending generally parallel to the surfaces of the tape and each being united with the adjacent layer throughout the extent thereof, said layers having different physical characteristics which fall into two categories, there being at least one layer in each category, the first category being distinguished by an apparent density less than that of the second with a maximum value of 0.7 grams per cubic centimeter, the second category being distinguished by an impermeability greater than that of the first and equal to at least 10X 1 0 Emanueli Units, the ratio of the total thickness of the layers in the second category to the total thickness of the layers in the first category being no higher than 1: l
2. An electric cable according to claim I, wherein the layer of said paper on the side nearest the conductor is in said second category.
3. A cable according to claim 1, wherein said apparent density which distinguishes the first category does not exceed 0.6 grams per cubic centimeter.
4. A cable according to claim 3, wherein said impermeability which distinguishes the second category is equal to at least 50 10 Emanueli Units.
5. A cable according to claim 4, wherein the first category is further distinguished by a maximum impermeability of 1X10 Emanueli Units.
6. A cable according to claim 4, wherein the first category is further distinguished by a maximum impermeability of 0.5Xl0 Emanueli Units.
7. A cable according to claim 6, wherein said tape has only one layer in each of said categories.
8. A cable according to claim 6, wherein said tape consists essentially of one layer in said first category sandwiched between two layers in said second category. 9. A cable according to claim 1, wherein said impermeability which distinguishes the second category is equal to at least 50 l0 Emanueli Units.
10. A cable according to claim 1, wherein the first category is further distinguished by a maximum impermeability of 1X l O Emanueli Units.
11. A cable according to claim 1, wherein the first category is further distinguished by a maximum impermeability of 0.5 10 Emanueli Units.
12. A cable according to claim 1, wherein said tape has only one layer in each of said categories.
13. A cable according to claim 1, wherein said tape consists essentially of one layer in said first category sandwiched between two layers in said second category.
2 53? 1 I v UMTE'Q STATES PLTENT we CERTEFZQATE 03% CGRRECTEON Patent; No. 3'662'092 I Dated y 1972.
Pasirii Franco I Inventofls) It is certified that error appears in the above-identified patentand that said Letters Patent are hereby' corrected as shown below:
Inventor's name should read FRANCO PASINI Col. 1, line 2 replace "may" by -myline. l4, 'a" should be omitted Col. 2 line 7 rep lace "11:1." by -11--' Col. -4, line 56, replece"O.35" by --0.135-- e f Signed and sealed this 25th day of July 1972. I
(SEAL) Attest:
EDWARD M.FLETCHER,JR. ROBERT GOT'ISCHALK Attesting Officer Commissioner of Patents TUNE 'D S'IATES PATENT OF ICE CELIKTEFA'CATE G5 CGR MICTiON Patent No. 662 I 092 Dated y 9 I 7 Pasirii Franco Inventofls) It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Inventor's name should read FRANCO PASINI Col. 1, line 2 replace "may" by -myline l4, "a" should be omitted Col. 2 vline 7, replace "11:1" .by ll- Col. 4, line 56, replace"0.35" by "0.135"
Signed and sealed this 25th day of July 1972.
(SEAL) Attest:
EDWARD M.F'LETCHER, JR. v ROBERT GOTTSCHALK Commissioner of Patents Attesting Officer

Claims (13)

1. An electric cable comprising a cOnductor covered with a plurality of wrappings of helically wrapped paper tape with the pitch being chosen to leave a gap between adjacent turns less than the width of said tape and with the turns of one wrapping overlapping the gaps in the turns of the adjacent wrapping, said paper tape being made of a multi-ply paper, divided internally into a plurality of adjacent layers extending generally parallel to the surfaces of the tape and each being united with the adjacent layer throughout the extent thereof, said layers having different physical characteristics which fall into two categories, there being at least one layer in each category, the first category being distinguished by an apparent density less than that of the second with a maximum value of 0.7 grams per cubic centimeter, the second category being distinguished by an impermeability greater than that of the first and equal to at least 10 X 106 Emanueli Units, the ratio of the total thickness of the layers in the second category to the total thickness of the layers in the first category being no higher than 1:1.
2. An electric cable according to claim 1, wherein the layer of said paper on the side nearest the conductor is in said second category.
3. A cable according to claim 1, wherein said apparent density which distinguishes the first category does not exceed 0.6 grams per cubic centimeter.
4. A cable according to claim 3, wherein said impermeability which distinguishes the second category is equal to at least 50 X 106 Emanueli Units.
5. A cable according to claim 4, wherein the first category is further distinguished by a maximum impermeability of 1 X 106 Emanueli Units.
6. A cable according to claim 4, wherein the first category is further distinguished by a maximum impermeability of 0.5 X 106 Emanueli Units.
7. A cable according to claim 6, wherein said tape has only one layer in each of said categories.
8. A cable according to claim 6, wherein said tape consists essentially of one layer in said first category sandwiched between two layers in said second category.
9. A cable according to claim 1, wherein said impermeability which distinguishes the second category is equal to at least 50 X 106 Emanueli Units.
10. A cable according to claim 1, wherein the first category is further distinguished by a maximum impermeability of 1 X 106 Emanueli Units.
11. A cable according to claim 1, wherein the first category is further distinguished by a maximum impermeability of 0.5 X 106 Emanueli Units.
12. A cable according to claim 1, wherein said tape has only one layer in each of said categories.
13. A cable according to claim 1, wherein said tape consists essentially of one layer in said first category sandwiched between two layers in said second category.
US73243A 1968-03-08 1970-09-17 Cable insulated with paper Expired - Lifetime US3662092A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US71158268A 1968-03-08 1968-03-08
US7324370A 1970-09-17 1970-09-17

Publications (1)

Publication Number Publication Date
US3662092A true US3662092A (en) 1972-05-09

Family

ID=26754275

Family Applications (1)

Application Number Title Priority Date Filing Date
US73243A Expired - Lifetime US3662092A (en) 1968-03-08 1970-09-17 Cable insulated with paper

Country Status (1)

Country Link
US (1) US3662092A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914532A (en) * 1974-04-11 1975-10-21 Anaconda Co Sector cable
US4415761A (en) * 1980-06-06 1983-11-15 Societa Cavi Pirelli Societa Per Azioni Taped electric cable
US4602121A (en) * 1984-01-17 1986-07-22 Societa' Cavi Pirelli S.P.A. Oil-filled electric cable with alternate layers of plastic and paper tape insulation
US4783576A (en) * 1987-10-01 1988-11-08 Pirelli Cable Corporation High voltage gas filled pipe type cable
US5363208A (en) * 1989-11-01 1994-11-08 Minolta Camera Kabushiki Kaisha Image forming apparatus comprising integrating means for integrating image density data
US11037699B2 (en) * 2017-03-30 2021-06-15 Ls Cable & System Ltd. Power cable

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1527250A (en) * 1921-11-22 1925-02-24 Pirelli Cable for conveyance of electrical energy with graduated insulation
US2289734A (en) * 1938-01-11 1942-07-14 Int Standard Electric Corp Electric power cable
US3419770A (en) * 1967-02-08 1968-12-31 Matsushita Electric Ind Co Ltd Metallized paper condensers
US3427394A (en) * 1966-11-14 1969-02-11 Phelps Dodge Copper Prod High voltage cable

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1527250A (en) * 1921-11-22 1925-02-24 Pirelli Cable for conveyance of electrical energy with graduated insulation
US2289734A (en) * 1938-01-11 1942-07-14 Int Standard Electric Corp Electric power cable
US3427394A (en) * 1966-11-14 1969-02-11 Phelps Dodge Copper Prod High voltage cable
US3419770A (en) * 1967-02-08 1968-12-31 Matsushita Electric Ind Co Ltd Metallized paper condensers

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3914532A (en) * 1974-04-11 1975-10-21 Anaconda Co Sector cable
US4415761A (en) * 1980-06-06 1983-11-15 Societa Cavi Pirelli Societa Per Azioni Taped electric cable
US4602121A (en) * 1984-01-17 1986-07-22 Societa' Cavi Pirelli S.P.A. Oil-filled electric cable with alternate layers of plastic and paper tape insulation
US4783576A (en) * 1987-10-01 1988-11-08 Pirelli Cable Corporation High voltage gas filled pipe type cable
US5363208A (en) * 1989-11-01 1994-11-08 Minolta Camera Kabushiki Kaisha Image forming apparatus comprising integrating means for integrating image density data
US11037699B2 (en) * 2017-03-30 2021-06-15 Ls Cable & System Ltd. Power cable

Similar Documents

Publication Publication Date Title
US3749812A (en) High voltage cable
US3662092A (en) Cable insulated with paper
US3427394A (en) High voltage cable
US3783180A (en) Fluted cable
US2836744A (en) Insulated coil
US3594489A (en) Extra high voltage cables
US3598691A (en) Multi-ply paper for insulating high tension electric cables
US3078333A (en) High voltage power cable
EP0001494A1 (en) Electric cables
US2131987A (en) Electric cable with air space insulation
US2268223A (en) Multiple conductor cable
US2213922A (en) Insulator
US1937054A (en) Oil-filled cable
US2196026A (en) Fluid filled cable
US2281111A (en) Nonmetallic sheath cable
US2717917A (en) High voltage insulated conductor and method of manufacturing the same
US3691498A (en) Resin impregnated transformer coil assembly
EP0048760A1 (en) Insulating paper
US1775072A (en) Assiqnob to general cable
GB1033816A (en) Improvements in or relating to electrical capacitors
US2379756A (en) Insulating sheath on electrical conductor strands
US2038894A (en) High tension electric cable
US1814102A (en) Vax weiset
US592441A (en) William r
US473352A (en) Island

Legal Events

Date Code Title Description
AS Assignment

Owner name: SOCIETA PIRELLI S.P.A., PIAZZALE CADORNA 5, 20123

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:INDUSTRIE PIRELLI S.P.A.;REEL/FRAME:003847/0084

Effective date: 19810101