US3660950A - Method of controlling the actual stock removal in surface belt grinding - Google Patents

Method of controlling the actual stock removal in surface belt grinding Download PDF

Info

Publication number
US3660950A
US3660950A US25837A US3660950DA US3660950A US 3660950 A US3660950 A US 3660950A US 25837 A US25837 A US 25837A US 3660950D A US3660950D A US 3660950DA US 3660950 A US3660950 A US 3660950A
Authority
US
United States
Prior art keywords
workpiece
stock removal
grinding
thickness
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US25837A
Inventor
Hidehiko Takeyama
Kaneyoshi Miyasaka
Shinichi Miyazawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Application granted granted Critical
Publication of US3660950A publication Critical patent/US3660950A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B21/00Machines or devices using grinding or polishing belts; Accessories therefor
    • B24B21/04Machines or devices using grinding or polishing belts; Accessories therefor for grinding plane surfaces
    • B24B21/12Machines or devices using grinding or polishing belts; Accessories therefor for grinding plane surfaces involving a contact wheel or roller pressing the belt against the work

Definitions

  • ABSTRACT A method of controlling the actual stock removal in a method of belt grinding wherein the infeed and elasticity of a contact roll serve to increase the contact pressure of the abrasive belt, so as to obtain the required amount of stock removal irrespective of deterioration in the grinding performance of the belt due to repeated use and of the thickness of the workpiece.
  • the invention relates to a method of controlling the actual stock removal in surface belt grinding.
  • a method of controlling the actual stock removal in a method of belt grinding wherein the infeed and elasticity of a contact roll serve to increase the contact pressure of the abrasive belt, so as to obtain the required amount of stock removal irrespective of deterioration in the grinding performance of the belt due to repeated use and of the thickness of the workpiece.
  • the actual depth H of stock removal in a belt grinding method can be expressed by the equation l H BY (1 where Y stands for a nominal depth of cut, and B for a proportionality constant. 3 is alternatively termed the depth of cut ratio and depends on the grinding speed, feed rate of workpieces to be processed, abrasive grain to be employed, elasticity of contact roll, mechanical properties of the workpieces, grinding performance of abrasive belt, etc.
  • the depth of cut ratio is estimated on the basis of a number of grinding tests under the given conditions.
  • repeated use of the abrasive belt results in deterioration of the grinding performance making it difficult to attain the required stock removal because of the reduction in the depth of cut ratio and great pains have to be taken to compensate for this reduction.
  • the object of this invention is to provide a method of controlling a belt grinder so as to attain the required stock removal with a high degree of accuracy irrespective of deterioration in the grinding performance of the abrasive belt due to repeated use, by introducing to a computer beforehand information on the relationship between the thickness of the workpiece before and after grinding and the displacement of the grinding head necessary to accomplish the appropriate depth of stock removal for each workpiece, carrying out in-process measurement of the thickness of the workpiece and driving the grinding head in response to the output signal of the comuter.
  • FIG. la, b and show an example wherein a predetermined depth is ground from the surface of the workpiece.
  • FIG. 2 a, b and 0 show example workpieces of various thickness which are ground to the same thickness.
  • FIG. 3 shows a block diagram illustrating an embodiment of the controlling method according to the invention.
  • E stands for the error in the thickness of an unprocessed workpiece as determined from the standard value specified in the drawing. E is considered plus when the workpiece is thicker than the standard value and minus when thinner than the standard value.
  • Y is the apparent or nominal depth of cut necessary to achieve the required stock removal
  • D is the displacement of the contact roll from its zero position necessary to achieve the required stock removal. D is considered plus when the contact roll moves from the zero position toward the workpiece and minus when the contact roll moves from the zero position away from the workpiece surface.
  • H denotes the actual depth of stock removal.
  • I and 1' represent the first workpiece before and after processing.
  • 2 and 3 represent the second and third workpieces before processing, while 2' and 3' represent the second and third workpieces after processing.
  • FIG. 1a shows the locational relationship of the contact roll 4 and the first workpiece 1
  • FIG. lb shows the locational relationship of the contact roll 4 and the second workpiece 2
  • FIG. 1c shows the locational relationship of the contact roll 4 with the
  • FIG. la the unprocessed workpiece 1 whose thickness coincides with the standard value (E, 0) on the drawing for the preceding processing is brought into contact with an abrasive belt 5 wound on the' contact roll 4, by adjustment of the grinding head II.
  • This position is designated the zero position of the contact roll 4 and is designated by a dotted line in FIG. la. b and c.
  • Bi is a function of i, the number of the workpiece in the series of workpieces, and H0 is the required depth of stock removal for the workpiece of standard thickness.
  • Bi has been experimentally been found to be representable by the following equation:
  • the stock removal H, of the first workpiece is obtained, and from this value and I, memorized by the computer, the experimental value B, for the first workpiece is determined. Utilizing B, in place of [3,, the displacement of the grinding head for the second workpiece D is determined and the second workpiece is processed.
  • the experimental value 3' is obtained in the same way as the previous time.
  • FIG. 2 shows an example wherein the workpiece l is processed to a fixed thickness irrespective of its thickness before processing.
  • FIG. 3 An embodiment of the control method according to the invention is represented in FIG. 3.
  • unprocessed workpiece 1 whose thickness is equal to the standard value specified in the drawing is inserted in turn under the transducers 7 and 7' of, for example, the differential transformer type, and the analog outputs from the transducers are accurately adjusted to zero after activating the magnetic chuck 14 to fix the workpiece.
  • This workpiece is then laid under the contact roll 4, and the abrasive belt 5 is brought into contact therewith and this position is stored in the memory of computer 8 as the zero position of the contact roller 4.
  • the abrasive belt 5 and the conveyor belt 6 are started, and the solenoid air valve 9 of the air cylinder 10 is activated on instruction from computer 8, to place a workpiece l on the conveyor belt 6.
  • the error in the thickness of the workpiece from the standard value is measured as it passes through the gate of the transducer 7, and this information is passed on to computer 8 via the analog-digital converter.
  • the computer 8 determines the displacement Di of the contact roll 4 from the given depth of cut ratio Bi and the required stock removal Ho by means of either equation (3) or equation (6), activates motor 12 connected to the grinding head 11, the motor being a pulse motor or other type of motor of small inertia, before the workpiece has been brought in contact with the abrasive belt 5 in order to infeed the contact roll 4 by the amount Di from the zero position, and the workpiece is ground.
  • the thickness of the processed workpiece l is measured as it passes through the gate of transducer 7, and this information is passed on to the computer 8 via the analog-digital converter.
  • the computer determines stock removal H from error E measured b transducer 7 and stored in the memory, and from Y Ho/ also stored in the memory, it determines the experimental value B which is used as the value of B: for the second workpiece.
  • Rotary encoder 13 issues pulses in proportion to the movement of conveyor belt 6, so that the thickness of the workpiece at a definite distance from the initial contact of the transducer contactor and the workpiece may be measured at all times, and the analog output at that point may be transferred to the computer 8.
  • the required stock removal from the surface of the workpiece can always be obtained by grinding, and a finished workpiece of definite and constant thickness can be obtained irrespective of deterioration in the grinding perfonnance of the belt, so that a great increase in working accuracy can be expected.
  • the method for controlling the stock removal by grinding so as to grind a required definite stock or depth from the surface of the workpiece comprising,
  • the method for controlling the stock removal by grinding so as to grind a series of workpieces into a definite required thickness within a small tolerance comprising,

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Abstract

A method of controlling the actual stock removal in a method of belt grinding wherein the infeed and elasticity of a contact roll serve to increase the contact pressure of the abrasive belt, so as to obtain the required amount of stock removal irrespective of deterioration in the grinding performance of the belt due to repeated use and of the thickness of the workpiece.

Description

United States Patent Takeyama et al. 1 1
[54] METHOD OF CONTROLLING THE ACTUAL STOCK REMOVAL IN SURFACE BELT GRINDING [72] inventors: Hidehiko Takeyama; Kaneyoshi Miyasakn, both of Tokyo; Shinichi Miyazawa,
Kawasaki, all of Japan [73] Assignee: Agency of Industrial Science & Technology, Tokyo, Japan [22] Filed: Apr. 6, 1970 211 Appl. No.: 25,837
[30] Foreign Application Priority Data Apr. 22, i969 Japan ..44/3l I01 [521 (1.5. CI ..5i/328 [5i] Int.Cl. ..BZ4bl/00,B24b2l/l2 [58] Field ofSearch ..5l/28l, 328,165.71, l65.87,
man/11 COMPUTER 1 May9,1972
[56] I Reierences Cited UNITED STATES PATENTS 3,271,909 9/1966 Rutt ..51/13sx 2,931,145 4/1960 11111 ...5i/l65.88 2,897,638 8/1959 Maker ..5l/l65.7l
Primary Examiner-Donald 0. Kelly Attorney-Ernest G. Montague [57] ABSTRACT A method of controlling the actual stock removal in a method of belt grinding wherein the infeed and elasticity of a contact roll serve to increase the contact pressure of the abrasive belt, so as to obtain the required amount of stock removal irrespective of deterioration in the grinding performance of the belt due to repeated use and of the thickness of the workpiece.
2 Claims, 7 Drawing Figures SOLENOIDE 9 AIR VALVE PATENTEDMAY 9 I972 SHEET 1 BF 3 INVENTORS' ATTORNEY PATENT-{MAY 91972 3.660850 SHEET 2 [1F 3 fig- 2 (A) ATTORNEY PATENTEDMAY 9 I972 1 660,950
sum 3 BF 3 SOLENOIDE AIR VALVE K 9 g r\ E m 2 E a: m: I LU LU 'E E o 4% its DIGITAL COMPUTER ATTORNEY The invention relates to a method of controlling the actual stock removal in surface belt grinding. In particular it relates to a method of controlling the actual stock removal in a method of belt grinding wherein the infeed and elasticity of a contact roll serve to increase the contact pressure of the abrasive belt, so as to obtain the required amount of stock removal irrespective of deterioration in the grinding performance of the belt due to repeated use and of the thickness of the workpiece.
The actual depth H of stock removal in a belt grinding method can be expressed by the equation l H BY (1 where Y stands for a nominal depth of cut, and B for a proportionality constant. 3 is alternatively termed the depth of cut ratio and depends on the grinding speed, feed rate of workpieces to be processed, abrasive grain to be employed, elasticity of contact roll, mechanical properties of the workpieces, grinding performance of abrasive belt, etc.
According to a conventional method, in order to attain an actual cut corresponding to the required stock removal, the depth of cut ratio is estimated on the basis of a number of grinding tests under the given conditions. However, repeated use of the abrasive belt results in deterioration of the grinding performance making it difficult to attain the required stock removal because of the reduction in the depth of cut ratio and great pains have to be taken to compensate for this reduction.
The object of this invention is to provide a method of controlling a belt grinder so as to attain the required stock removal with a high degree of accuracy irrespective of deterioration in the grinding performance of the abrasive belt due to repeated use, by introducing to a computer beforehand information on the relationship between the thickness of the workpiece before and after grinding and the displacement of the grinding head necessary to accomplish the appropriate depth of stock removal for each workpiece, carrying out in-process measurement of the thickness of the workpiece and driving the grinding head in response to the output signal of the comuter. p The other objects and characteristics of the invention will be clarified by the detailed explanation with reference to the accompanying drawings in which an embodiment of the method according to the invention is represented.
FIG. la, b and show an example wherein a predetermined depth is ground from the surface of the workpiece.
FIG. 2 a, b and 0 show example workpieces of various thickness which are ground to the same thickness.
FIG. 3 shows a block diagram illustrating an embodiment of the controlling method according to the invention.
In FIG. 1, E stands for the error in the thickness of an unprocessed workpiece as determined from the standard value specified in the drawing. E is considered plus when the workpiece is thicker than the standard value and minus when thinner than the standard value. Y is the apparent or nominal depth of cut necessary to achieve the required stock removal, and D is the displacement of the contact roll from its zero position necessary to achieve the required stock removal. D is considered plus when the contact roll moves from the zero position toward the workpiece and minus when the contact roll moves from the zero position away from the workpiece surface. H denotes the actual depth of stock removal. I and 1' represent the first workpiece before and after processing. 2 and 3 represent the second and third workpieces before processing, while 2' and 3' represent the second and third workpieces after processing. FIG. 1a shows the locational relationship of the contact roll 4 and the first workpiece 1, FIG. lb shows the locational relationship of the contact roll 4 and the second workpiece 2, and FIG. 1c shows the locational relationship of the contact roll 4 with the third workpiece 3, respectively.
In FIG. la, the unprocessed workpiece 1 whose thickness coincides with the standard value (E, 0) on the drawing for the preceding processing is brought into contact with an abrasive belt 5 wound on the' contact roll 4, by adjustment of the grinding head II. This position is designated the zero position of the contact roll 4 and is designated by a dotted line in FIG. la. b and c.
Designating the errors in the thickness of the unprocessed workpieces to be:
1 2, a the displacement of the contact roll (grinding head) from the zero position denoted as D,, 0,, D D, for each workpiece is:
where Bi is a function of i, the number of the workpiece in the series of workpieces, and H0 is the required depth of stock removal for the workpiece of standard thickness. Bi has been experimentally been found to be representable by the following equation:
B (4) where K and k are constants that depend upon the conditions 'in the processing concerned.
Since )3, is the depth of cut ratio of an entirely new abrasive belt, its value is determined beforehand on the basis of a number of tests run with new belts under the same conditions. Thus the displacement D, of the grinding head for the first workpiece is determined by equation (3), and the first workpiece is processed.
Before processing of the second workpiece is started, the stock removal H, of the first workpiece is obtained, and from this value and I,, memorized by the computer, the experimental value B, for the first workpiece is determined. Utilizing B, in place of [3,, the displacement of the grinding head for the second workpiece D is determined and the second workpiece is processed. The experimental value 3': is obtained in the same way as the previous time.
This experimental value )3, is used as the value of 3,.
Since the depth of cut ratios for the workpieces wherein N equalled l, 2, 3 were experimentally determined to be B',, 3' 5' the undetermined constants K and k in the equation (4) are detennined by the least square method, and k is obtained. Thus in determining the value of Bi from B; on, the experimental values of the depth of cut ratios up to the (n l workpiece, B',, B',, B',, B',, are calculated by the least square method to determine the unknowns of equation (4). The experimental values are not applied as they are because these values include the effects of disturbance and measurement errors.
FIG. 2 shows an example wherein the workpiece l is processed to a fixed thickness irrespective of its thickness before processing.
If E is the error in the thickness of the unprocessed workpiece relative to the standard value specified in the drawing for the preceding process and H0 is the stock removal relative to the standard thickness of the workpiece specified in the drawing, the displacement Di of the contact roll 4 is:
The procedure for setting the zero point of the contact roll and determining the depth of cut ratios B B B B,, are the same as in the previous case where a predetermined depth is removed from the surface of each workpiece.
An embodiment of the control method according to the invention is represented in FIG. 3.
With the abrasive belt 5 and the conveyor belt 6 kept in the stationary state, unprocessed workpiece 1 whose thickness is equal to the standard value specified in the drawing is inserted in turn under the transducers 7 and 7' of, for example, the differential transformer type, and the analog outputs from the transducers are accurately adjusted to zero after activating the magnetic chuck 14 to fix the workpiece. This workpiece is then laid under the contact roll 4, and the abrasive belt 5 is brought into contact therewith and this position is stored in the memory of computer 8 as the zero position of the contact roller 4. Further stored in computer 8 are the initial depth of cut ratio B,, the required stock removal Ho, the number of workpieces to be processed i, and whether the grinding is to be controlled so as to remove a predetermined definite depth from each surface or to grind each workpiece into a definite thickness.
After the completion of the above-mentioned preparation, the abrasive belt 5 and the conveyor belt 6 are started, and the solenoid air valve 9 of the air cylinder 10 is activated on instruction from computer 8, to place a workpiece l on the conveyor belt 6. The error in the thickness of the workpiece from the standard value is measured as it passes through the gate of the transducer 7, and this information is passed on to computer 8 via the analog-digital converter. The computer 8 determines the displacement Di of the contact roll 4 from the given depth of cut ratio Bi and the required stock removal Ho by means of either equation (3) or equation (6), activates motor 12 connected to the grinding head 11, the motor being a pulse motor or other type of motor of small inertia, before the workpiece has been brought in contact with the abrasive belt 5 in order to infeed the contact roll 4 by the amount Di from the zero position, and the workpiece is ground.
The thickness of the processed workpiece l is measured as it passes through the gate of transducer 7, and this information is passed on to the computer 8 via the analog-digital converter. The computer determines stock removal H from error E measured b transducer 7 and stored in the memory, and from Y Ho/ also stored in the memory, it determines the experimental value B which is used as the value of B: for the second workpiece.
On completion of the calculation of B automatic loader 15 is instructed to feed the second workpiece onto the conveyor belt 6. This procedure is repeated as many times as required, and on the completion of the processing of the predetermined number of workpieces, the computer brings the automatic loader and the belt grinder to a halt. Here, the determination of the depth of cut ratio is accomplished in the same way as mentioned previously.
Rotary encoder 13 issues pulses in proportion to the movement of conveyor belt 6, so that the thickness of the workpiece at a definite distance from the initial contact of the transducer contactor and the workpiece may be measured at all times, and the analog output at that point may be transferred to the computer 8.
By this invention, the required stock removal from the surface of the workpiece can always be obtained by grinding, and a finished workpiece of definite and constant thickness can be obtained irrespective of deterioration in the grinding perfonnance of the belt, so that a great increase in working accuracy can be expected.
We claim:
1. In surface belt grinding wherein the grinding pressure is exerted by means of the displacement and the elasticity of a contact roll, the method for controlling the stock removal by grinding so as to grind a required definite stock or depth from the surface of the workpiece comprising,
carrying out in-process measurement of the thickness of each workpiece before and after grinding processing, computing the amount of stock removal,
calculating Bi for a next workpiece by utilizing the data and the function form obtained by said before and after inprocess measurement and including the computed amount of stock removal, where Bi is the depth of cut ratio, and
controlling the degree of displacement for the i"' workpiece Di of the contact roll from its zero position so as to conform with the equation Di (Ho/B i Ei, wherein Ei is the error in the thickness of the i"' workpiece before processing, H0 is the depth of stock removal required in reference to the standard value specified on the drawings.
2. In surface belt grinding wherein the grinding pressure is exerted by means of the displacement and the elasticity of a contact roll, the method for controlling the stock removal by grinding so as to grind a series of workpieces into a definite required thickness within a small tolerance comprising,
carrying out in-process measurement of the thickness of each workpiece before and after grinding processing, computing the amount of stock removal calculating Bi by utilizing the data and the function form obtained by said before and after in-process measurement and including the computed amount of stock removal, where Bi is the depth of cut ratio, and
controlling the degree of displacement for the i'" workpiece Di of the contact roll from its zero position so as to conform with the equation Di Ei

Claims (2)

1. In surface belt grinding wherein the grinding pressure is exerted by means of the displacement and the elasticity of a contact roll, the method for controlling the stock removal by grinding so as to grind a required definite stock or depth from the surface of the workpiece comprising, carrying out in-process measurement of the thickness of each workpiece before and after grinding processing, computing the amount of stock removal, calculating Beta i for a next workpiece by utilizing the data and the function form obtained by said before and after inprocess measurement and including the computed amount of stock removal, where Beta i is the depth of cut ratio, and controlling the degree of displacement for the ith workpiece Di of the contact roll from its zero position so as to conform with the equation Di (Ho/ Beta i)- Ei, wherein Ei is the error in the thickness of the ith workpiece before processing, Ho is the depth of stock removal required in reference to the standard value specified on the drawings.
2. In surface belt grinding wherein the grinding pressure is exerted by means of the displacement and the elasticity of a contact roll, the method for controlling the stock removal by grinding so as to grind a series of workpieces into a definite required thickness within a small tolerance comprising, carrying out in-process measurement of the thickness of each workpiece before and after grinding processing, computing the amount of stock removal calculating Beta i by utilizing the data and the function form obtained by said before and after in-process measurement and including the computed amount of stock removal, where Beta i is the depth of cut ratio, and controlling the degree of displacement for the ith workpiece Di of the contact roll from its zero position so as to conform with the equation wherein Ei is the error in the thickness of the ith workpiece before processing, Ho is the depth of stock removal required in reference to the standard value specified on the drawings.
US25837A 1969-04-22 1970-04-06 Method of controlling the actual stock removal in surface belt grinding Expired - Lifetime US3660950A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP44031101A JPS5131396B1 (en) 1969-04-22 1969-04-22

Publications (1)

Publication Number Publication Date
US3660950A true US3660950A (en) 1972-05-09

Family

ID=12321994

Family Applications (1)

Application Number Title Priority Date Filing Date
US25837A Expired - Lifetime US3660950A (en) 1969-04-22 1970-04-06 Method of controlling the actual stock removal in surface belt grinding

Country Status (2)

Country Link
US (1) US3660950A (en)
JP (1) JPS5131396B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3045234A1 (en) * 1980-12-01 1982-07-01 Wesero Maschinenbau GmbH, 4322 Sprockhövel Thin sheet grinding machine - has grinding cylinders vertically adjustable above endless work transport belt supported by fixed table
DE3402104A1 (en) * 1984-01-21 1985-08-01 Karl Heesemann Maschinenfabrik GmbH & Co KG, 4970 Bad Oeynhausen BELT GRINDING MACHINE
US20080182491A1 (en) * 2003-08-22 2008-07-31 Kundig Ag Device and control unit for belt sanding systems
US20120096817A1 (en) * 2010-10-20 2012-04-26 Siemens Industry, Inc. Film-Wrapped Bundle Opener
USD874205S1 (en) * 2018-03-27 2020-02-04 Gideon Williams Duvall Beverage brewing machine external surface belt configuration

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5475595U (en) * 1977-11-08 1979-05-29

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2897638A (en) * 1956-06-13 1959-08-04 Bryant Chucking Grinder Co Process control apparatus
US2931145A (en) * 1957-02-28 1960-04-05 Norton Co Grinding machine
US3271909A (en) * 1964-03-13 1966-09-13 Carborundum Co Grinding apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2897638A (en) * 1956-06-13 1959-08-04 Bryant Chucking Grinder Co Process control apparatus
US2931145A (en) * 1957-02-28 1960-04-05 Norton Co Grinding machine
US3271909A (en) * 1964-03-13 1966-09-13 Carborundum Co Grinding apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3045234A1 (en) * 1980-12-01 1982-07-01 Wesero Maschinenbau GmbH, 4322 Sprockhövel Thin sheet grinding machine - has grinding cylinders vertically adjustable above endless work transport belt supported by fixed table
DE3402104A1 (en) * 1984-01-21 1985-08-01 Karl Heesemann Maschinenfabrik GmbH & Co KG, 4970 Bad Oeynhausen BELT GRINDING MACHINE
EP0155380A1 (en) * 1984-01-21 1985-09-25 Karl Heesemann Maschinenfabrik GmbH & Co KG Belt sanding machine
US4601134A (en) * 1984-01-21 1986-07-22 Karl Heesemann Maschinenfabrik Gmbh & Co. Kg Belt grinder having pressure pads with individually variable contact pressures
US20080182491A1 (en) * 2003-08-22 2008-07-31 Kundig Ag Device and control unit for belt sanding systems
US7438628B2 (en) * 2003-08-22 2008-10-21 Stephan Kundig Device and control unit for belt sanding systems
US20120096817A1 (en) * 2010-10-20 2012-04-26 Siemens Industry, Inc. Film-Wrapped Bundle Opener
US9637263B2 (en) * 2010-10-20 2017-05-02 Siemens Industry, Inc. Film-wrapped bundle opener
USD874205S1 (en) * 2018-03-27 2020-02-04 Gideon Williams Duvall Beverage brewing machine external surface belt configuration

Also Published As

Publication number Publication date
JPS5131396B1 (en) 1976-09-06

Similar Documents

Publication Publication Date Title
US4053289A (en) Grinding method and apparatus with metal removal rate control
US5562523A (en) Method and apparatus for grinding a workpiece
US4926337A (en) Automatic workpart centering mechanism for a chuck
EP0352635B1 (en) Numerically controlled grinding machine
US3353302A (en) Roll grinders
US4640057A (en) Dressing-grinding process and electronically controlled grinding machine
US4653235A (en) Superabrasive grinding with variable spark-out and wheel dressing intervals
US3811228A (en) Method and apparatus for controlling the accuracy of machining of a machine tool
US3964210A (en) Grinding apparatus
US3660950A (en) Method of controlling the actual stock removal in surface belt grinding
GB1461307A (en) Method and device for checking the working conditions during grinding in centreless grinders
US3676960A (en) Optical surface generating apparatus
US3818642A (en) Grinding machine
US3640030A (en) Method for grinding toothed faced members
US4085554A (en) Method to dress a grinding wheel
GB1512663A (en) Method and apparatus for adaptively controlling the feed speed of a machine tool
CA1213961A (en) Workpiece profile-following control system for conditioning grinders
US4628643A (en) Grinding wheel infeed control method
US4223484A (en) Electronic control device for grinding machines, based on the evaluation of truing diamond position relative to workpiece
US3653162A (en) Apparatus for turning workpieces
US4110938A (en) Infeeding method for internal grinders
JP3396341B2 (en) Automatic bead grinding control method and apparatus
JPH01246072A (en) Grinding surface dressing method for grinding stone
JPH06339859A (en) Dressing timing judging method for super abrasive grain wheel and device thereof
SU1024245A1 (en) Apparatus for grinding