US3660859A - Apparatus for cleaning coke oven jambs - Google Patents

Apparatus for cleaning coke oven jambs Download PDF

Info

Publication number
US3660859A
US3660859A US55163A US3660859DA US3660859A US 3660859 A US3660859 A US 3660859A US 55163 A US55163 A US 55163A US 3660859D A US3660859D A US 3660859DA US 3660859 A US3660859 A US 3660859A
Authority
US
United States
Prior art keywords
jamb
frame
shields
carriages
scraping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US55163A
Inventor
Charles D Mccullough
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krupp Wilputte Corp
Original Assignee
Wilputte Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wilputte Corp filed Critical Wilputte Corp
Application granted granted Critical
Publication of US3660859A publication Critical patent/US3660859A/en
Assigned to KKW CORPORATION; A CORP. OF DE. reassignment KKW CORPORATION; A CORP. OF DE. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: WILPUTTE CORPORATION
Assigned to KRUPP WILPUTTE CORPORATION reassignment KRUPP WILPUTTE CORPORATION CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). EFFECTIVE MARCH 22, 1982. Assignors: KKW CORPORATION, A DE CORP.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B43/00Preventing or removing incrustations
    • C10B43/02Removing incrustations
    • C10B43/04Removing incrustations by mechanical means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T409/00Gear cutting, milling, or planing
    • Y10T409/30Milling
    • Y10T409/306216Randomly manipulated, work supported, or work following device
    • Y10T409/306384Randomly manipulated, work supported, or work following device with work supported guide means

Definitions

  • ABSTRACT U.S. Cl ..l5/93, 90/12, 263/50, Apparatus for scraping coke Oven jambs clean of carbon-tar 202/24 substances formed thereon during a coking operation.
  • the ap- [51 I Int. Cl. ..Cl0b 43/04 pal-mus includes a i f carriages having a plurality of [58] Field Of Search 1 5/93 A; 263/59, 266/32; Scraper units thereon f0r Scraping the side Walls of the jamb 90/. 202/24 and upper and lower oscillating scraping mechanisms operat- I References Cited ing in timed relationship with said carriages, the oscillating scra ing mechanisms scra ing the to and bottom walls,
  • Coke oven jamb cleaning has in the past generally been performed manually by scraping and chipping the deposits from the sealing surfaces.
  • the cleaning performed in this manner is tedious and arduous work which is not efficiently performed because of the prevailing heat conditions in the vicinity of the coke oven door jambs. Further, such cleaning results in uneconomically long shut-down of the coke ovens between charges and, additionally, the equipment used in scraping and chipping often mars the sealing jamb surfaces.
  • the apparatus of the present invention is concerned with mechanically scraping deposits from the jamb of a coke oven, said jamb being of substantially rectangular configuration with substantially right angular surfaces extending thereabout and having a top-wall, a bottom wall, a pair of side walls and arcuate corner portions connecting the side walls with the top wall and bottom wall, respectively.
  • the apparatus includes a frame, a pair of carriages cooperatively associated with the frame and extending longitudinally in parallel relationship with each other, a plurality of scraper units located on the carriages for scraping the right angular surfaces of the side' walls of the jamb, and means for guiding the carriages along a fixed linear path.
  • An upper oscillating mechanism and a lower oscillating mechanism are disposed on the frame, each of said mechanisms provided a blade scraper unit, a drive means, and means for guiding the upper and lower oscillating head mechanisms along a fixed path.
  • First and second chain means respectively interconnect the top and bottom ends of the carriages to each other, said first and second chain means being cooperatively associated with the upper and lower oscillating head drive means respectively.
  • Means are provided for driving the carriages in opposing reciprocating linear relationship with each other thereby causing the scraper units connected thereto to scrape the jamb side walls and, simultaneously, said movement of the carriages causing the first and second chain means to drive the upper and lower oscillating head mechanisms in opposing relationship with each other for enabling the respective scraper units thereon to scrape the top and bottom walls, respectively, and the corner portions contiguous therewith.
  • FIG. 1 is a side view of the top half portion of the jamb cleaner
  • FIG. 2 is a side view of the bottom half portion of the jamb cleaner
  • FIG. 3 is a front view of the top half portion of the jamb cleaner
  • FIG. 4 is a front view of the bottom half of the jamb cleaner
  • FIG. 5 is a rear view of the bottom half portion of the jamb cleaner depicting the latching mechanism and carriage drive means
  • FIG. 6 is a plane view of the left-hand side of the jamb cleaner depicting the carriage, and reciprocating linear scraper means in contact with the jamb;
  • FIG. 7 is a plan view of the right-hand side of the jamb cleaner depicting the carriage, and reciprocating linear scraper means in contact with the jamb;
  • FIG. 8 depicts the relationship of FIGS. 6 and 7, respectivey
  • FIG. 9 is a partial cross-sectional view of the upper oscillating scraper mechanism
  • FIG. 10 is a view taken along the line l010 of FIG. 9;
  • FIG. 11 is a front view of the primary and secondary heatresistant shield assemblage
  • FIG. 12 is a front view of a primary heat-resistant shield
  • FIG. 13 is a front view of a secondary heat-resistant shield
  • FIG. 14 depicts a portion of the frame for holding the heatresistant shields
  • FIG. 15 schematically illustrates the jamb cleaner in a position whereat the oscillating and linear scraping mechanisms are midway between the top, bottom and side walls of the jamb during their scraping cycle;
  • FIG. 16 schematically illustrates the jamb cleaner whereat each of the oscillating and linear scraping mechanisms are at one end of their scraping cycle
  • FIG. 17 schematically illustrates the jamb cleaner whereat each of. the oscillating and linear scraping mechanisms are at the otherend of their scraping cycle.
  • FIGS. 1-5 of the drawings there is depicted a jamb cleaner of the instant invention which is capable of cleaning a jamb located at either the coke side or pusherside of thebattery.
  • the jamb cleaner may be mounted on a movable control apparatus (not shown) having associated therewith a door extracting means, a pusher machine, a door cleaner, etc. or any combination thereof.
  • the jamb cleaner includes a vertically extending main frame 10 of rectangular configuration having a top end 11, bottom end 12 and sides 13,14. Each of the sides 13,14 are provided with a plurality of brackets l515 mounted thereon by bolt means 16-16, each bracket having extending portions 1717 (FIG. 6) projecting therefrom.
  • a tube rail carriage 18 (FIGS. 3, 4 and 6) vertically extends along side 13 and, similarly, a tube rail carriage 19 vertically extends along side 14, each of said carriages being of substantially square crosssection and in parallel relationship to each other and main frame 10.
  • the tube rail carriages 18,19 are similar; thus, for the sake of simplicity, it is to be understood that a description of tube rail carriage 18 and its related components will suffice for a description of tube rail carriage 19 and its related components.
  • a primary rotating guide roller 20 which is normally in contact with tube rail carriage wall 18c, said roller having flanged ends 2121 which partially envelop rail carriage walls 18a,l8b.
  • the roller functions to guide tube rail carriage 18 vertically during its linear reciprocating movement, and to exert a pressure on scraper blades 2525, to be described more in detail hereinafter.
  • a pair of tracks 26a 26b extend along the entire length of tube rail carriage walls 18a,l8b, respectively.
  • Secondary rollers 27a, 27b are mounted on respective extensions 17a, 17b, which are connected to extending portions 17-17 by conven tional securing means 170, 17c, said secondary rollers rotationally traveling over respective tracks 26a, 26b to positively insure that guide rail carriage 18 is normally positioned against primary roller 20.
  • a plurality of supports 30-30 are fixedly connected to tube rail carriage wall 18d at predetermined spaced intervals for supporting a plurality of shafts 31-31 (FIGS. 1-4) which extend in axial relationship to each other and in parallel relationship with tube rail carriage 18.
  • a plurality of substantially L- shaped blade units, generally referred to at 25-25 (FIG. 6) are connected to shafts 31-31 at predetermined spaced intervals, each blade unit having a cutting edge 25a and a cutting edge 25b for scraping undesired carbon-tar substances formed on outer surface 35a and inner surface 35b, respectively, of jamb 35.
  • Torsion springs 37-37 are coiled about shafts 31- 31, each spring being connected at 37a to the shaft and at 37b to guide rail carriage 18 to hold the angle of the blade units in a first position such that each blade cutting edge 25a faces jamb surface 35a for initially striking said jamb surface when the jamb cleaner is moved by conventional means (not shown) into position with respect to the jamb.
  • each blade cutting edge 25a to exert a force against outer jamb surface 35a and, in turn, cause shafts 31-31 to rotate, thereby resulting in each blade cutting edge 25b engaging jamb surface 35b, thus causing the blade units to assume a second position such that a full contact of each blade cutting edge 25a, 25b is made with its respective jamb surface 35a, 35b.
  • Each of blade cutting edges 25a, 25b, as seen in FIG. 6, is attached to blade holders 40a, 40b, respectively, by securing means 41-41, such as the bolt-nut type, which are connected through elongated slots 42a-42a and 42b-42b of each cutting edge and holder, respectively.
  • securing means 41-41 such as the bolt-nut type
  • the blades may be adjustably positioned for contact with the jamb, Further, the cutting edges 25a,25b may be quickly and easily replaced, when worn or damaged, simply by disassembling the securing means 41-41 when the cleaner is in the retracted position.
  • a pair of springs 43a-43a and 43b-43b each are positioned within its respective holder to normally urge its blade cutting edge outwardly therefrom and provide sufficient tension through the blades against the jamb. Consequently, during a scraping operation, the cutting edges are enabled to scrape various irregular deposits of coal-tar substances formed on the jamb.
  • a pair of fluid operated cylinders 45-45 (FIGS. 2, 4 and are mounted on the main frame and provided with respective pistons 45a, 45b whose ends 46a, 46b are connected by conventional fastening means 47a, 47b to guide rail carriages 18, 19, respectively.
  • a conventional four-way valve, generally referred to at 48, causes the cylinders to operate in an opposing reciprocating linear relationship when the cylinders are activated by means (not shown).
  • piston 45a when the jamb cleaner is in position with respect to the jamb for a scraping operation, as piston 45a extends it causes guide rail carriage l8 and, in turn, scraper blade units 25-25 associated therewith to move and scrape its respective jamb surfaces 35a, 35b in an upwardly direction.
  • piston 45b retracts and causes guide rail carriage 19 and, in turn, scraper blade units 25-25 associated therewith to move and scrape its respective jamb surfaces 35a,35b in a downwardly direction.
  • valve 48 causes each piston to move in the opposite direction thereby resulting in carriage 18 moving downwardly and carriage 19 moving upwardly causing the blade units thereon to clean the bottom right-hand portion and top left-hand portion of the jamb, respectively.
  • the scraper blade units 25-25 are so spaced from each other and the extension of travel of each piston is such that each blade unit slightly overlaps the area of travel of a succeeding blade unit by approximately 2 to 3 inches to insure that the total surface area of the jambs side surfaces are totally scraped.
  • torsion springs 37-37 are caused to unwind to their normal rest positon thus permitting shafts 31-31 to rotate in the opposite direction and, in turn, pivotally return and hold the blade units 25-25 in their normally inward first position with respect to the jamb.
  • a chain 50 interconnects the top ends of guide rail carriages 18, 19 by conventional attaching means 51-51 and, similarly, a chain 52 interconnects the bottom ends of said guide rail carriages by conventional attaching means 53-53, said chains respectively driving upper and lower oscillating head mechanisms 55, 56 (now to be described) for scraping the carbon-tar deposits located on the arcuate corners and top and bottom surfaces of the jamb.
  • oscillating head mechanisms 55 and 56 are substantially similar in structure and function; accordingly, the description of one will suffice for the other.
  • the oscillating head mechanism (FIG. 9) includes a shaft 60 which is rotationally mounted at one end in main frame 10 by mounting means, generally referred to at 61, the other end of said shaft being welded at 62 to a housing 63.
  • a sprocket 64, for driving chain 50, is connected about shaft 60 on one side by a fastener plate 65 and screws 66-66, and on the other side by a back-up ring 67 which is welded to the sprocket at 68.
  • a rectangularly shaped shaft 70 having a threaded end 71 with a spring 72 coiled thereabout.
  • One end of the spring is in contact with an internally disposed blocking surface 73 of the housing and the other end of the spring is in contact with a plate 74 associated with nut means 75 which are threadedly connected to end 71 for adjusting the desired tension on the shaft.
  • Shaft 70 is provided with a pair of elongated recessed ways 76 (FIG.
  • cam rollers 77-77 having shafts 78-78 which are mounted to the housing by fastening means 79-79. It will be seen, as described in more detail hereinafter, that the cam rollers function to minimize lateral movement of shaft 70 as it reciprocates linearly during a scraping of the corners, top and bottom surfaces of the jamb.
  • a blade cutting unit Located at the far end of shaft 70 (FIG. 9) is a blade cutting unit, generally referred to at 80, which includes an arm 81 connected to shaft 70 and having a blade holder 83 for holding blade 84 which is removably connected thereto by fastening means 85-85.
  • a spring 86 is coiled about arm 81 to insure and maintain the application of sufficient tension through blade 84 against outer jamb surface 86a for scraping various irregular deposits from the jamb surface.
  • a blade cutting unit located at the far end of shaft 70 is a blade cutting unit, generally referred to at 90, which includes a connecting member 91 attached to shaft 70 at 92-92 and having an arm 93 connected to blade holder 94 for holding blade 95 which is removably connected thereto by fastening means 96-96.
  • a spring 97 is coiled about arm 93 to insure and maintain the application of sufficient tension through blade 95 against inner jamb surface 86b to permit the blade to scrape the various irregular deposits from the jamb surface.
  • a cam roller 100 for following an inverted U-shaped cam track 101 (FIGS. 3 and 9) affixed to the top end of main frame 10 and having a configuration similar to but preferably smaller than the top and comer portions of the jamb.
  • U-shaped cam track 101 FIG. 3
  • U-shaped cam 102 FIG. 4
  • roller 100 follows cam track 101 causing blades 84 and 95 to scrape the carbon-tar substances located in their paths as they travel from one top corner portion of the jamb and along its top surface to the other top corner portion thereof.
  • shaft 70 is moved linearly under spring tension within housing 63a to permit blade'cutting units 80 and 90 to advance to the corresponding surface areas of the jamb and effectively scrape the carbon-tar substances therefrom.
  • shaft 70 reciprocates linearly in the opposite direction to permit the blade cutting units to scrape the corresponding surface area of the jamb.
  • The'aforesaid vital components of the jamb cleaner are protected against the intense heat emanating from the oven, when the jamb cleaner is in position for scraping the jamb, by a plurality of primary heat-resistant shields 110-110 (FIGS. 1, 2, 11, 12 and 13) which are successively vertically aligned and extend substantially the length of the cleaner.
  • the primary shields 110-110 are constructed of a heat-resistant material, such as stainless steel or Iconel, and are connected to a vertically extending frame 111 by bolts 112-112 passing through supporting member 113, said vertically extending frame being connected to main frame 10 by brackets 114-114.
  • the shields may be any desired configuration, preferably square or rectangular, and are of a width approximately equal to the width of the oven opening.
  • a gap or space 115-115 is provided between each successive shield 110 to provide a free area of movement for the shields as they expand due to their exposure to the intense heat of the oven, thereby preventing a warping or buckling of said shields.
  • Secondary heat shields 116-116 (FIGS. 1 and 13), constructed of a material similar to the primary shields and preferably of rectangular configuration, are located in an area slightly behind the gaps 115-115 of the primary shields and are connected to frame 11 1 by bolts 1 17- 1 17 passing through supporting members 1 18-118.
  • each of the primary and secondary heat shields are respectively provided with at least one elongated slot 120, 121 through which the bolts respectively pass for connecting the shields to frame 1 11.
  • the bolts are not tightly fastened against the elongated slots in order to permit freedom of movement of the shields, via the elongated slots, during heat expansion thereof. In this manner buckling or warping of the shields are prevented.
  • Each of the shields 110, 116 also are respectively provided with at least one relatively smaller diameter opening 122, 123 for receiving the bolts for securing the shields more tightly to frame 111.
  • supporting brackets 114 also are provided with elongated slots 125-125 for receiving bolts for securing the heat shield frame thereto, said slots providing the necessary area for movement of the frame in response to any heat expansion thereof.
  • the jamb cleaner In operation, the jamb cleaner is moved towards the oven opening by conventional moving means (not shown). As the jamb cleaner approaches the jamb, guide rollers 130-130 (FIG. 4) located near the mid-portion of the cleaner and projecting from sides 13 and 14 respectively, engage fixed guides (not shown) extending from the external surface of the oven wall. As rollers 130-130 ride over the guides, the jamb cleaner becomes vertically aligned with the jamb.
  • a tapered alignment arm 131 located at the top of the cleaner engages a complimentary V-shaped slotted member (not shown)-located at the top external surface of the oven and, simultaneously, a V-shaped slotted member 132 (FIG.
  • a latching mechanism (FIG. 5), generally referred to at 135, includes a fluid operated cylinder 136 and piston 137 which is pivotally connected at 138 to a lever 139 pivotally mounted at 140.
  • actuating cylinder 136 which causes lever 139 to partially rotate clockwise until lever ends 139a-139a engage and become locked in opposing looped lugs (not shown) extending from the external surface of the oven, thereby not only finally orienting the cleaner with the jamb but also securely locking the cleaner to prevent movement of the cleaner frame during the scraping operation.
  • the jamb cleaner is shown in varying positions during a scraping cycle.
  • the jamb cleaner is in a start position whereat tube rail carriages 18 and 19 are located approximately along the mid-sections of the jamb side walls, and upper and lower oscillating head mechanisms 55 and 56 are located approximately along the mid-sections of the top and bottom walls, respectively, of the jamb.
  • piston 45a extends to move carriage 18 upwardly which, in turn, drives chain 50 to rotate upper oscillating head mechanism 55 clockwise, thereby permitting the scraper blades associated therewith to scrape the carbon-tar substances from the adjacently disposed top surface of the jamb and the arcuate corner portion contiguous therewith, whereat the scraper units stop when said piston is fully extended.
  • piston 45b retracts and moves carriage 19 downwardly and, in turn, drives chain 52 to rotate lower oscillating head mechanism 56 clockwise, thereby permitting the scraping blades associated therewith to scrape the carbon-tar substances from the adjacently disposed bottom surface of the jamb and the arcuate corner portions contiguous therewith.
  • piston 45a has retracted and piston 45b has extended which, in turn, caused carriages 18,19 and oscillating head mechanisms 55, 56 to move in the opposite directions to the other ends of their respective jamb surfaces, the scraping units thereon scraping the carbon-tar deposits in their paths.
  • carriages 18, 19 and oscillating head mechanisms 55, 56 have reached the other ends of their respective paths, the cycle may be repeated to insure removal of all the carbon-tar deposits from the surfaces of the jamb.
  • Apparatus for mechanically scraping deposits with oscillatorily traveling scrapers from the jamb of a cokeoven said jamb being of substantially rectangular configuration with substantially right angular surfaces extending thereabout and having a top wall, a bottom wall, a pair of side walls and armate comer portions connecting the side walls with the top wall and bottom wall, respectively, said apparatus comprising:
  • an upper oscillating head mechanism having a blade scraper unit thereon for effectively scraping the top wall and upper corner portions contiguous therewith in either direction of travel, said upper oscillating mechanism including a drive means,
  • a lower oscillating head mechanism having a blade scraper unit thereon for effectively scraping the bottom wall and lower corner portions contiguous therewith in either direction of travel, said lower oscillating mechanism including a drive means,
  • first chain means interconnecting the top ends of the carriages to each other and being cooperatively associated with the upper oscillating head drive means
  • Apparatus according to claim 1 which further includes heat-resistant means connected to and extending the approximate length of the frame for preventing injury to the components of the apparatus when exposed to the intense heat emanating from the oven.
  • a plurality of shields of heat-resistant material each having at least one elongated opening therein for receiving said locking means for attaching said shields to the frame, said elongated opening permitting heat expansion of the shields without injury thereto.
  • said plurality of shields includes:
  • shields of a second type having a configuration of substantially rectangular cross-section, said shields of the second type being located between each of said shields of the first type and extending in spacial relationship thereto.

Abstract

Apparatus for scraping coke oven jambs clean of carbon-tar substances formed thereon during a coking operation. The apparatus includes a pair of carriages having a plurality of scraper units thereon for scraping the side walls of the jamb, and upper and lower oscillating scraping mechanisms operating in timed relationship with said carriages, the oscillating scraping mechanisms scraping the top and bottom walls, respectively, and the corner portions contiguous therewith.

Description

iJnited States Patent 3,660,859 McCullough 1 May 9, 11972 [54] APPARATUS FOR CLEANING COKE 3,185,465 5/1965 Patton 263/44 x OVEN JAMBS I 3,557,659 l/l97l Harris ..l5/93 A x 3,199,135 819 T k 72 Inventor: Charles D. McCullough, Metropolis, m. 65 er '5/93 A [73] Assignee: Wilputte Corporation Primary Examiner-Leon G. Machlin AttorneyFrederick B. Ziesenheim and Buell, Blenko and [22] Filed. July 15, 1970 Ziesenheim [2i] Appl. No.: 55,163
[57] ABSTRACT [52] U.S. Cl ..l5/93, 90/12, 263/50, Apparatus for scraping coke Oven jambs clean of carbon-tar 202/24 substances formed thereon during a coking operation. The ap- [51 I Int. Cl. ..Cl0b 43/04 pal-mus includes a i f carriages having a plurality of [58] Field Of Search 1 5/93 A; 263/59, 266/32; Scraper units thereon f0r Scraping the side Walls of the jamb 90/. 202/24 and upper and lower oscillating scraping mechanisms operat- I References Cited ing in timed relationship with said carriages, the oscillating scra ing mechanisms scra ing the to and bottom walls,
P P P UNITED STATES PATENTS respectively, and the corner portions contiguous therewith.
3,146,475 9/1964 Balitsky et a1 ..l5/93 A 7 Claims, 17 Drawing Fi ures PATENTEBMAY 91.972 3,660,859
sum 03 [1F 10 APPARATUS FOR CLEANING COKE OVEN JAMBS BACKGROUND OF THE INVENTION Self-sealing doors for coke ovens have a sealing strip extending therearound which presents a knife edge to the machined face of the door jamb for sealing therewith. It is well known that, in order to be effective, the seal made between a self-sealing coke oven door and its jamb must be gas tight and therefore depends upon the sealing surfaces therebetween being initially clean. Thus, due to the formation of deposits of a pitchy, carbonaceous nature along the sealing strip surface and jamb during the coking operation, it is necessary to periodically clean these surfaces, preferably after each coking operation.
Coke oven jamb cleaning has in the past generally been performed manually by scraping and chipping the deposits from the sealing surfaces. The cleaning performed in this manner is tedious and arduous work which is not efficiently performed because of the prevailing heat conditions in the vicinity of the coke oven door jambs. Further, such cleaning results in uneconomically long shut-down of the coke ovens between charges and, additionally, the equipment used in scraping and chipping often mars the sealing jamb surfaces.
Various proposals have been made in the past for mechanically effecting the cleaning of the sealing surfaces of coke oven jambs, such as the use of mechanical scrapers, rotary steel bristle brushes and burrs. Such apparatus have not proved satisfactory due to wear characteristics on the sealing surfaces and their inability to meet self-cleaning requirements. Also separate complex, cumbersome mechanisms have been employed for scraping the horizontal, vertical and arcuately shaped corner portions, respectively of a jamb, such mechanism being of high costs and requiring time consuming maintenance.
SUMMARY OF THE INVENTION It is therefore an object of the present invention to provide an improved apparatus for cleaning the surfaces of a coke oven jamb cheaply, quickly, and efficiently.
Broadly, the apparatus of the present invention is concerned with mechanically scraping deposits from the jamb of a coke oven, said jamb being of substantially rectangular configuration with substantially right angular surfaces extending thereabout and having a top-wall, a bottom wall, a pair of side walls and arcuate corner portions connecting the side walls with the top wall and bottom wall, respectively. The apparatus includes a frame, a pair of carriages cooperatively associated with the frame and extending longitudinally in parallel relationship with each other, a plurality of scraper units located on the carriages for scraping the right angular surfaces of the side' walls of the jamb, and means for guiding the carriages along a fixed linear path. An upper oscillating mechanism and a lower oscillating mechanism are disposed on the frame, each of said mechanisms provided a blade scraper unit, a drive means, and means for guiding the upper and lower oscillating head mechanisms along a fixed path. First and second chain means respectively interconnect the top and bottom ends of the carriages to each other, said first and second chain means being cooperatively associated with the upper and lower oscillating head drive means respectively. Means are provided for driving the carriages in opposing reciprocating linear relationship with each other thereby causing the scraper units connected thereto to scrape the jamb side walls and, simultaneously, said movement of the carriages causing the first and second chain means to drive the upper and lower oscillating head mechanisms in opposing relationship with each other for enabling the respective scraper units thereon to scrape the top and bottom walls, respectively, and the corner portions contiguous therewith.
BRIEF DESCRIPTION OF THE DRAWINGS Other objects and a fuller understanding of the invention may be had by referring to the drawings in which:
FIG. 1 is a side view of the top half portion of the jamb cleaner;
FIG. 2 is a side view of the bottom half portion of the jamb cleaner;
FIG. 3 is a front view of the top half portion of the jamb cleaner;
FIG. 4 is a front view of the bottom half of the jamb cleaner;
FIG. 5 is a rear view of the bottom half portion of the jamb cleaner depicting the latching mechanism and carriage drive means;
FIG. 6, is a plane view of the left-hand side of the jamb cleaner depicting the carriage, and reciprocating linear scraper means in contact with the jamb;
FIG. 7, is a plan view of the right-hand side of the jamb cleaner depicting the carriage, and reciprocating linear scraper means in contact with the jamb;
FIG. 8 depicts the relationship of FIGS. 6 and 7, respectivey;
FIG. 9 is a partial cross-sectional view of the upper oscillating scraper mechanism;
FIG. 10 is a view taken along the line l010 of FIG. 9;
' FIG. 11 is a front view of the primary and secondary heatresistant shield assemblage;
FIG. 12 is a front view of a primary heat-resistant shield;
FIG. 13 is a front view of a secondary heat-resistant shield;
FIG. 14 depicts a portion of the frame for holding the heatresistant shields;
FIG. 15 schematically illustrates the jamb cleaner in a position whereat the oscillating and linear scraping mechanisms are midway between the top, bottom and side walls of the jamb during their scraping cycle;
FIG. 16 schematically illustrates the jamb cleaner whereat each of the oscillating and linear scraping mechanisms are at one end of their scraping cycle; and
FIG. 17 schematically illustrates the jamb cleaner whereat each of. the oscillating and linear scraping mechanisms are at the otherend of their scraping cycle.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring more particularly to FIGS. 1-5 of the drawings, there is depicted a jamb cleaner of the instant invention which is capable of cleaning a jamb located at either the coke side or pusherside of thebattery. The jamb cleaner may be mounted on a movable control apparatus (not shown) having associated therewith a door extracting means, a pusher machine, a door cleaner, etc. or any combination thereof.
The jamb cleaner, includes a vertically extending main frame 10 of rectangular configuration having a top end 11, bottom end 12 and sides 13,14. Each of the sides 13,14 are provided with a plurality of brackets l515 mounted thereon by bolt means 16-16, each bracket having extending portions 1717 (FIG. 6) projecting therefrom. A tube rail carriage 18 (FIGS. 3, 4 and 6) vertically extends along side 13 and, similarly, a tube rail carriage 19 vertically extends along side 14, each of said carriages being of substantially square crosssection and in parallel relationship to each other and main frame 10. The tube rail carriages 18,19 are similar; thus, for the sake of simplicity, it is to be understood that a description of tube rail carriage 18 and its related components will suffice for a description of tube rail carriage 19 and its related components.
As seen in FIG. 6, the far ends of extending portions 17--l7 project slightly beyond the walls 18a, 18b of tube rail carriage 18, and fixedly positioned between the rear ends of said extending portions 17-17 is a primary rotating guide roller 20 which is normally in contact with tube rail carriage wall 18c, said roller having flanged ends 2121 which partially envelop rail carriage walls 18a,l8b. The roller functions to guide tube rail carriage 18 vertically during its linear reciprocating movement, and to exert a pressure on scraper blades 2525, to be described more in detail hereinafter.
A pair of tracks 26a 26b extend along the entire length of tube rail carriage walls 18a,l8b, respectively. Secondary rollers 27a, 27b are mounted on respective extensions 17a, 17b, which are connected to extending portions 17-17 by conven tional securing means 170, 17c, said secondary rollers rotationally traveling over respective tracks 26a, 26b to positively insure that guide rail carriage 18 is normally positioned against primary roller 20.
A plurality of supports 30-30 are fixedly connected to tube rail carriage wall 18d at predetermined spaced intervals for supporting a plurality of shafts 31-31 (FIGS. 1-4) which extend in axial relationship to each other and in parallel relationship with tube rail carriage 18. A plurality of substantially L- shaped blade units, generally referred to at 25-25 (FIG. 6), are connected to shafts 31-31 at predetermined spaced intervals, each blade unit having a cutting edge 25a and a cutting edge 25b for scraping undesired carbon-tar substances formed on outer surface 35a and inner surface 35b, respectively, of jamb 35. Torsion springs 37-37 are coiled about shafts 31- 31, each spring being connected at 37a to the shaft and at 37b to guide rail carriage 18 to hold the angle of the blade units in a first position such that each blade cutting edge 25a faces jamb surface 35a for initially striking said jamb surface when the jamb cleaner is moved by conventional means (not shown) into position with respect to the jamb. Continued forward movement of the jamb cleaner causes each blade cutting edge 25a to exert a force against outer jamb surface 35a and, in turn, cause shafts 31-31 to rotate, thereby resulting in each blade cutting edge 25b engaging jamb surface 35b, thus causing the blade units to assume a second position such that a full contact of each blade cutting edge 25a, 25b is made with its respective jamb surface 35a, 35b.
Each of blade cutting edges 25a, 25b, as seen in FIG. 6, is attached to blade holders 40a, 40b, respectively, by securing means 41-41, such as the bolt-nut type, which are connected through elongated slots 42a-42a and 42b-42b of each cutting edge and holder, respectively. With this arrangement the blades may be adjustably positioned for contact with the jamb, Further, the cutting edges 25a,25b may be quickly and easily replaced, when worn or damaged, simply by disassembling the securing means 41-41 when the cleaner is in the retracted position.
A pair of springs 43a-43a and 43b-43b each are positioned within its respective holder to normally urge its blade cutting edge outwardly therefrom and provide sufficient tension through the blades against the jamb. Consequently, during a scraping operation, the cutting edges are enabled to scrape various irregular deposits of coal-tar substances formed on the jamb.
A pair of fluid operated cylinders 45-45 (FIGS. 2, 4 and are mounted on the main frame and provided with respective pistons 45a, 45b whose ends 46a, 46b are connected by conventional fastening means 47a, 47b to guide rail carriages 18, 19, respectively. A conventional four-way valve, generally referred to at 48, causes the cylinders to operate in an opposing reciprocating linear relationship when the cylinders are activated by means (not shown). Thus, when the jamb cleaner is in position with respect to the jamb for a scraping operation, as piston 45a extends it causes guide rail carriage l8 and, in turn, scraper blade units 25-25 associated therewith to move and scrape its respective jamb surfaces 35a, 35b in an upwardly direction. Simultaneously, piston 45b retracts and causes guide rail carriage 19 and, in turn, scraper blade units 25-25 associated therewith to move and scrape its respective jamb surfaces 35a,35b in a downwardly direction. As a result the top right half portion and the bottom left half portion of the jamb is cleaned. After piston 45a is fully extended and piston 45b is fully retracted, valve 48 causes each piston to move in the opposite direction thereby resulting in carriage 18 moving downwardly and carriage 19 moving upwardly causing the blade units thereon to clean the bottom right-hand portion and top left-hand portion of the jamb, respectively. The scraper blade units 25-25 are so spaced from each other and the extension of travel of each piston is such that each blade unit slightly overlaps the area of travel of a succeeding blade unit by approximately 2 to 3 inches to insure that the total surface area of the jambs side surfaces are totally scraped.
After a scraping operation, further described in detail hereinafter, as the jamb cleaner retracts from the jamb, torsion springs 37-37 are caused to unwind to their normal rest positon thus permitting shafts 31-31 to rotate in the opposite direction and, in turn, pivotally return and hold the blade units 25-25 in their normally inward first position with respect to the jamb.
As seen in FIGS. l-4, a chain 50 interconnects the top ends of guide rail carriages 18, 19 by conventional attaching means 51-51 and, similarly, a chain 52 interconnects the bottom ends of said guide rail carriages by conventional attaching means 53-53, said chains respectively driving upper and lower oscillating head mechanisms 55, 56 (now to be described) for scraping the carbon-tar deposits located on the arcuate corners and top and bottom surfaces of the jamb.
As more particularly depicted in FIGS. 1, 3 and 9, oscillating head mechanisms 55 and 56 are substantially similar in structure and function; accordingly, the description of one will suffice for the other. The oscillating head mechanism (FIG. 9) includes a shaft 60 which is rotationally mounted at one end in main frame 10 by mounting means, generally referred to at 61, the other end of said shaft being welded at 62 to a housing 63. A sprocket 64, for driving chain 50, is connected about shaft 60 on one side by a fastener plate 65 and screws 66-66, and on the other side by a back-up ring 67 which is welded to the sprocket at 68.
Located within a housing 63a (FIG. 9), which is threadedly connected to housing 63 by coupling 69, is a rectangularly shaped shaft 70 having a threaded end 71 with a spring 72 coiled thereabout. One end of the spring is in contact with an internally disposed blocking surface 73 of the housing and the other end of the spring is in contact with a plate 74 associated with nut means 75 which are threadedly connected to end 71 for adjusting the desired tension on the shaft. Shaft 70 is provided with a pair of elongated recessed ways 76 (FIG. 10) located on opposing surfaces thereof, said ways being cooperatively associated with two pairs of cam rollers 77-77 having shafts 78-78 which are mounted to the housing by fastening means 79-79. It will be seen, as described in more detail hereinafter, that the cam rollers function to minimize lateral movement of shaft 70 as it reciprocates linearly during a scraping of the corners, top and bottom surfaces of the jamb.
Located at the far end of shaft 70 (FIG. 9) is a blade cutting unit, generally referred to at 80, which includes an arm 81 connected to shaft 70 and having a blade holder 83 for holding blade 84 which is removably connected thereto by fastening means 85-85. A spring 86 is coiled about arm 81 to insure and maintain the application of sufficient tension through blade 84 against outer jamb surface 86a for scraping various irregular deposits from the jamb surface.
Also located at the far end of shaft 70 is a blade cutting unit, generally referred to at 90, which includes a connecting member 91 attached to shaft 70 at 92-92 and having an arm 93 connected to blade holder 94 for holding blade 95 which is removably connected thereto by fastening means 96-96. A spring 97 is coiled about arm 93 to insure and maintain the application of sufficient tension through blade 95 against inner jamb surface 86b to permit the blade to scrape the various irregular deposits from the jamb surface.
Also located near the far end of shaft 70 is a cam roller 100 for following an inverted U-shaped cam track 101 (FIGS. 3 and 9) affixed to the top end of main frame 10 and having a configuration similar to but preferably smaller than the top and comer portions of the jamb. It is to be noted that while the U-shaped cam track 101 (FIG. 3) at the top of the frame is inverted, a similar U-shaped cam 102 (FIG. 4) located at the bottom end of the frame and cooperatively associated with oscillating head mechanism 56 is not inverted and has a configuration similar to but preferably smaller than the bottom and comer portions of the jamb,
As chain 50 is driven in response to the movement of carriages 18 and 19, roller 100 follows cam track 101 causing blades 84 and 95 to scrape the carbon-tar substances located in their paths as they travel from one top corner portion of the jamb and along its top surface to the other top corner portion thereof. As roller 100 travels towards and over the arcuate comer portions 101a (FIG. 3) of track 101, shaft 70 is moved linearly under spring tension within housing 63a to permit blade'cutting units 80 and 90 to advance to the corresponding surface areas of the jamb and effectively scrape the carbon-tar substances therefrom. As roller 100 travels towards and over the mid-section lb of the cam track, shaft 70 reciprocates linearly in the opposite direction to permit the blade cutting units to scrape the corresponding surface area of the jamb.
During the linear reciprocating movement of shaft 70, lateral' movement of the shaft is substantially prevented by cam rollers 77-77, previously described.
The'aforesaid vital components of the jamb cleaner are protected against the intense heat emanating from the oven, when the jamb cleaner is in position for scraping the jamb, by a plurality of primary heat-resistant shields 110-110 (FIGS. 1, 2, 11, 12 and 13) which are successively vertically aligned and extend substantially the length of the cleaner. The primary shields 110-110 are constructed of a heat-resistant material, such as stainless steel or Iconel, and are connected to a vertically extending frame 111 by bolts 112-112 passing through supporting member 113, said vertically extending frame being connected to main frame 10 by brackets 114-114. The shields may be any desired configuration, preferably square or rectangular, and are of a width approximately equal to the width of the oven opening.
A gap or space 115-115, of about 1 inch or more, is provided between each successive shield 110 to provide a free area of movement for the shields as they expand due to their exposure to the intense heat of the oven, thereby preventing a warping or buckling of said shields. Secondary heat shields 116-116 (FIGS. 1 and 13), constructed of a material similar to the primary shields and preferably of rectangular configuration, are located in an area slightly behind the gaps 115-115 of the primary shields and are connected to frame 11 1 by bolts 1 17- 1 17 passing through supporting members 1 18-118.
As seen in FIGS. 12 and 13, each of the primary and secondary heat shields are respectively provided with at least one elongated slot 120, 121 through which the bolts respectively pass for connecting the shields to frame 1 11. The bolts are not tightly fastened against the elongated slots in order to permit freedom of movement of the shields, via the elongated slots, during heat expansion thereof. In this manner buckling or warping of the shields are prevented. Each of the shields 110, 116 also are respectively provided with at least one relatively smaller diameter opening 122, 123 for receiving the bolts for securing the shields more tightly to frame 111. Finally, as seen in FIG. 14, supporting brackets 114 also are provided with elongated slots 125-125 for receiving bolts for securing the heat shield frame thereto, said slots providing the necessary area for movement of the frame in response to any heat expansion thereof.
In operation, the jamb cleaner is moved towards the oven opening by conventional moving means (not shown). As the jamb cleaner approaches the jamb, guide rollers 130-130 (FIG. 4) located near the mid-portion of the cleaner and projecting from sides 13 and 14 respectively, engage fixed guides (not shown) extending from the external surface of the oven wall. As rollers 130-130 ride over the guides, the jamb cleaner becomes vertically aligned with the jamb. A tapered alignment arm 131 (FIG. 1) located at the top of the cleaner engages a complimentary V-shaped slotted member (not shown)-located at the top external surface of the oven and, simultaneously, a V-shaped slotted member 132 (FIG. 2) located at the bottom of the cleaner engages a nib (not shown) projecting from the bottom external surface of the oven, thereby permitting the cleaner to be not only more positively aligned with the jamb but also to secure it from lateral movement during operation of the cleaner. Forward movement of the jamb cleaner is finally stopped when a pair of upper stops 133-133 (FIG. 3) and a pair of lower stops 134-134 (FIG. 4), each of the pairs being located on the front of the cleaner, make full contact with the external surface of the oven thereby indicating that the cleaner is oriented with respect to the jamb.
A latching mechanism (FIG. 5), generally referred to at 135, includes a fluid operated cylinder 136 and piston 137 which is pivotally connected at 138 to a lever 139 pivotally mounted at 140. When the jamb cleaner is in ready position with respect to the jamb, it is positively secured to the oven front by actuating cylinder 136 which causes lever 139 to partially rotate clockwise until lever ends 139a-139a engage and become locked in opposing looped lugs (not shown) extending from the external surface of the oven, thereby not only finally orienting the cleaner with the jamb but also securely locking the cleaner to prevent movement of the cleaner frame during the scraping operation.
As schematically illustrated in FIGS. 15, 16 and 17, the jamb cleaner is shown in varying positions during a scraping cycle. In FIG. 15, it can be assumed that the jamb cleaner is in a start position whereat tube rail carriages 18 and 19 are located approximately along the mid-sections of the jamb side walls, and upper and lower oscillating head mechanisms 55 and 56 are located approximately along the mid-sections of the top and bottom walls, respectively, of the jamb.
As seen in FIG. 16, upon actuation of cylinders 45-45, piston 45a extends to move carriage 18 upwardly which, in turn, drives chain 50 to rotate upper oscillating head mechanism 55 clockwise, thereby permitting the scraper blades associated therewith to scrape the carbon-tar substances from the adjacently disposed top surface of the jamb and the arcuate corner portion contiguous therewith, whereat the scraper units stop when said piston is fully extended. Simultaneously with and similarly to the aforesaid movement, piston 45b retracts and moves carriage 19 downwardly and, in turn, drives chain 52 to rotate lower oscillating head mechanism 56 clockwise, thereby permitting the scraping blades associated therewith to scrape the carbon-tar substances from the adjacently disposed bottom surface of the jamb and the arcuate corner portions contiguous therewith.
As seen in FIG. 17, piston 45a has retracted and piston 45b has extended which, in turn, caused carriages 18,19 and oscillating head mechanisms 55, 56 to move in the opposite directions to the other ends of their respective jamb surfaces, the scraping units thereon scraping the carbon-tar deposits in their paths. When carriages 18, 19 and oscillating head mechanisms 55, 56 have reached the other ends of their respective paths, the cycle may be repeated to insure removal of all the carbon-tar deposits from the surfaces of the jamb.
Iclaim:
1. Apparatus for mechanically scraping deposits with oscillatorily traveling scrapers from the jamb of a cokeoven, said jamb being of substantially rectangular configuration with substantially right angular surfaces extending thereabout and having a top wall, a bottom wall, a pair of side walls and armate comer portions connecting the side walls with the top wall and bottom wall, respectively, said apparatus comprising:
a frame,
a pair of carriages cooperatively associated with the frame and extending longitudinally in parallel relationship with each other,
a plurality of scraper units located on the carriages for effectively scraping the right angular surfaces of the side walls of the jamb in either direction of travel,
means for guiding the carriages along a fixed linear path parallel to said jambs side wall surfaces,
an upper oscillating head mechanism having a blade scraper unit thereon for effectively scraping the top wall and upper corner portions contiguous therewith in either direction of travel, said upper oscillating mechanism including a drive means,
a lower oscillating head mechanism having a blade scraper unit thereon for effectively scraping the bottom wall and lower corner portions contiguous therewith in either direction of travel, said lower oscillating mechanism including a drive means,
means for guiding the upper and lower oscillating head mechanism along a fixed path parallel to said jambs upper and lower wall surfaces,
first chain means interconnecting the top ends of the carriages to each other and being cooperatively associated with the upper oscillating head drive means,
second chain means interconnecting the bottom ends of the carriages to each other and being cooperatively associated with the lower oscillating head drive means, and
means for driving the carriages in opposing reciprocating linear relationship with each other thereby causing the scraper units connected thereto to scrape the jamb side walls and, simultaneously, said movement of the carriages causing the first and second chain means to drive said upper and lower oscillating head mechanisms in opposing relationship with each other for enabling the respective scraper units thereon to scrape the top wall and bottom wall, respectively, and the corner portions contiguous therewith.
2. Apparatus according to claim 1 which further includes heat-resistant means connected to and extending the approximate length of the frame for preventing injury to the components of the apparatus when exposed to the intense heat emanating from the oven.
3. Apparatus according to claim 2 wherein said heat-resistant mans includes:
locking means;
a plurality of shields of heat-resistant material each having at least one elongated opening therein for receiving said locking means for attaching said shields to the frame, said elongated opening permitting heat expansion of the shields without injury thereto.
4. Apparatus according to claim 3 wherein said plurality of shields includes:
a plurality of shields of a first type having a configuration of substantially square cross-section, and
a plurality of shields of a second type having a configuration of substantially rectangular cross-section, said shields of the second type being located between each of said shields of the first type and extending in spacial relationship thereto.
5. Apparatus according to claim 4 wherein said frame is provided with elongated openings, each of which are aligned with respective elongated openings in said shields, said elongated frame openings permitting heat expansion of the frame without causing any injury thereto.

Claims (7)

1. Apparatus for mechanically scraping deposits with oscillatorily traveling scrapers from the jamb of a coke oven, said jamb being of substantially rectangular configuration with substantially right angular surfaces extending thereabout and having a top wall, a bottom wall, a pair of side walls and arcuate corner portions connecting the side walls with the top wall and bottom wall, respectively, said apparatus comprising: a frame, a pair of carriages cooperatively associated with the frame and extending longitudinally in parallel relationship with each other, a plurality of scraper units located on the carriages for effectively scraping the right angular surfaces of the side walls of the jamb in either direction of travel, means for guiding the carriages along a fixed linear path parallel to said jamb''s side wall surfaces, an upper oscillating head mechanism having a blade scraper unit thereon for effectively scraping the top wall and upper corner portions contiguous therewith in either direction of travel, said upper oscillating mechanism including a drive means, a lower oscillating head mechanism having a blade scraper unit thereon for effectively scraping the bottom wall and lower corner portions contiguous therewith in either direction of travel, said lower oscillating mechanism including a drive means, means for guiding the upper and lower oscillating head mechanism along a fixed path parallel to said jamb''s upper and lower wall surfaces, first chain means interconnecting the top ends of the carriages to each other and being cooperatively associated with the upper oscillating head drive means, second chain means interconnecting the bottom ends of the carriages to each other and being cooperatively associated with the lower oscillating head drive means, and means for driving the carriages in opposing reciprocating linear relationship with each other thereby causing the scraper units connected thereto to scrape the jamb side walls and, simultaneously, said movement of the carriages causing the first and second chain means to drive said upper and lower oscillating head mechanisms in opposing relationship with each other for enabling the respective scraper units thereon to scrape the top wall and bottom wall, respectively, and the corner portions contiguous therewith.
2. Apparatus according to claim 1 which further includes heat-resistant means connected to and extending the approximate length of the frame for preventing injury to the components of the apparatus when exposed to the intense heat emanating from the oven.
3. Apparatus according to claim 2 wherein said heat-resistant mans includes: locking means; a plurality of shields of heat-resistant material each having at least one elongated opening therein for receiving said locking means for attaching said shields to the frame, said elongated opening permitting heat expansion of the shields without injury thereto.
4. Apparatus according to claim 3 wherein said plurality of shields includes: a plurality of shields of a first type having a configuration of substantially square cross-section, and a plurality of shields of a second type having a configuration of substantially rectangular cross-section, said shields of the second type being located between each of said shields of the first type and extending in spacial relationship thereto.
5. Apparatus according to claim 4 wherein said frame is provided with elongated openings, each of which are aligned with respective elongated openings in said shields, said elongated frame openings permitting heat expansion of the frame without causing any injury thereto.
6. Apparatus according to claim 2 which further includes: guide means connected to the frame for guiding and orienting the frame with the jamb prior to the scraping thereof.
7. Apparatus according to claim 6 which further includes: a latching mechanism attached to the frame and operable to securely lock the frame to the external surface of the coke oven to maintain said frame in its oriented position with the jamb and to prevent any movement thereof during a scraping operation.
US55163A 1970-07-15 1970-07-15 Apparatus for cleaning coke oven jambs Expired - Lifetime US3660859A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US5516370A 1970-07-15 1970-07-15

Publications (1)

Publication Number Publication Date
US3660859A true US3660859A (en) 1972-05-09

Family

ID=21996047

Family Applications (1)

Application Number Title Priority Date Filing Date
US55163A Expired - Lifetime US3660859A (en) 1970-07-15 1970-07-15 Apparatus for cleaning coke oven jambs

Country Status (1)

Country Link
US (1) US3660859A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892250A (en) * 1972-08-11 1975-07-01 Ind High Pressure Systems Inc Hydraulic cleaner for doors and the like
DE2651107A1 (en) * 1975-11-10 1977-05-18 British Steel Corp METHOD AND DEVICE FOR CLEANING COK OVEN DOORS
US5350262A (en) * 1993-02-12 1994-09-27 Citizens Gas & Coke Utility Door seal machining device
US5670025A (en) * 1995-08-24 1997-09-23 Saturn Machine & Welding Co., Inc. Coke oven door with multi-latch sealing system
US5941445A (en) * 1997-11-24 1999-08-24 Bethlehem Steel Corporation Apparatus for refurbishing a coke oven doorjamb
US20030009872A1 (en) * 2001-07-10 2003-01-16 Self Leveling Machines, Inc. Symmetrical mill

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3146475A (en) * 1961-04-18 1964-09-01 K Bureau Koksohimmash Giprokok Mechanism for cleaning coke-oven door frames and shells
US3185465A (en) * 1963-10-28 1965-05-25 Edward T Patton Locking device for blast furnace cooling plates
US3199135A (en) * 1964-01-29 1965-08-10 Koppers Co Inc Combined coke oven door jamb cleaning apparatus and pusher
US3557659A (en) * 1969-05-08 1971-01-26 United States Steel Corp Apparatus for machining coke oven door jambs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3146475A (en) * 1961-04-18 1964-09-01 K Bureau Koksohimmash Giprokok Mechanism for cleaning coke-oven door frames and shells
US3185465A (en) * 1963-10-28 1965-05-25 Edward T Patton Locking device for blast furnace cooling plates
US3199135A (en) * 1964-01-29 1965-08-10 Koppers Co Inc Combined coke oven door jamb cleaning apparatus and pusher
US3557659A (en) * 1969-05-08 1971-01-26 United States Steel Corp Apparatus for machining coke oven door jambs

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3892250A (en) * 1972-08-11 1975-07-01 Ind High Pressure Systems Inc Hydraulic cleaner for doors and the like
DE2651107A1 (en) * 1975-11-10 1977-05-18 British Steel Corp METHOD AND DEVICE FOR CLEANING COK OVEN DOORS
US4097304A (en) * 1975-11-10 1978-06-27 British Steel Corporation Cleaning coke oven doors
US5350262A (en) * 1993-02-12 1994-09-27 Citizens Gas & Coke Utility Door seal machining device
US5670025A (en) * 1995-08-24 1997-09-23 Saturn Machine & Welding Co., Inc. Coke oven door with multi-latch sealing system
US5941445A (en) * 1997-11-24 1999-08-24 Bethlehem Steel Corporation Apparatus for refurbishing a coke oven doorjamb
US20030009872A1 (en) * 2001-07-10 2003-01-16 Self Leveling Machines, Inc. Symmetrical mill
US6827530B2 (en) * 2001-07-10 2004-12-07 Self Leveling Machines, Inc. Symmetrical mill
US6832424B2 (en) * 2001-07-10 2004-12-21 Self Leveling Machines, Inc. Symmetrical mill

Similar Documents

Publication Publication Date Title
US3199135A (en) Combined coke oven door jamb cleaning apparatus and pusher
US3660859A (en) Apparatus for cleaning coke oven jambs
US3696004A (en) Oscillating scraping mechanisms for coke oven jambs
US3681201A (en) Linear reciprocating scraping mechanisms for coke oven jambs
US2190297A (en) Coke-oven door operating mechanism
US3955232A (en) Coke oven cleaner
US2986758A (en) Cleaning of sealing surfaces for doors on the door frames of horizontal coke ovens
US3758910A (en) Coke oven door cleaner
CN201165506Y (en) Sweeping device of coke furnace firedoor frame
US3605155A (en) Latching mechanism for apparatus utilized in cleaning coke oven doors
US3611466A (en) Cleaner head for apparatus utilized for cleaning coke oven doors
US3741806A (en) Method of cleaning the sealing surfaces of doors and door jambs of by-product coke ovens
US1759014A (en) Door-cleaning apparatus
US3633233A (en) Carriage assembly for apparatus utilized in cleaning coke oven doors
US3633232A (en) Scraper mechanism for apparatus utilized in cleaning coke oven doors
US1759015A (en) Doorframe-cleaning apparatus
US3609786A (en) Apparatus for cleaning the sealing surfaces of doors and door jambs of by-product coke ovens
US3398416A (en) Apparatus for mechanically cleaning door frames of horizontal coke ovens
US4025979A (en) Apparatus for cleaning the sealing surfaces of coke oven doors and door jambs
RU2727439C1 (en) Coke door cleaning mechanism
US4277312A (en) Ascension pipe cleaning apparatus
US5941445A (en) Apparatus for refurbishing a coke oven doorjamb
US4552622A (en) Cleaning apparatus for the sealing surfaces of leveling doors and leveling door frames of battery-type coke ovens
US3543322A (en) Apparatus for cleaning the sealing surfaces of coke oven doors and door jambs
US4248562A (en) Coke guide car

Legal Events

Date Code Title Description
AS Assignment

Owner name: KKW CORPORATION; 152 FLORAL AVE., MURRAY HILL, NJ.

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:WILPUTTE CORPORATION;REEL/FRAME:003979/0491

Effective date: 19820319

AS Assignment

Owner name: KRUPP WILPUTTE CORPORATION

Free format text: CHANGE OF NAME;ASSIGNOR:KKW CORPORATION, A DE CORP.;REEL/FRAME:003979/0664

Effective date: 19820320