US3660645A - Calculating display board - Google Patents

Calculating display board Download PDF

Info

Publication number
US3660645A
US3660645A US39482A US3660645DA US3660645A US 3660645 A US3660645 A US 3660645A US 39482 A US39482 A US 39482A US 3660645D A US3660645D A US 3660645DA US 3660645 A US3660645 A US 3660645A
Authority
US
United States
Prior art keywords
project
connector
count
time
staff
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US39482A
Inventor
Charles P Lecht
William O Harden
Matthew J Lavell
Stanley M Kos
Robert A Pace
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ADVANCED COMPUTER TECH CORP
ADVANCED COMPUTER TECHNIQUES CORP
Original Assignee
ADVANCED COMPUTER TECH CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ADVANCED COMPUTER TECH CORP filed Critical ADVANCED COMPUTER TECH CORP
Application granted granted Critical
Publication of US3660645A publication Critical patent/US3660645A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q30/00Commerce
    • G06Q30/04Billing or invoicing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/109Time management, e.g. calendars, reminders, meetings or time accounting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/10Office automation; Time management
    • G06Q10/109Time management, e.g. calendars, reminders, meetings or time accounting
    • G06Q10/1091Recording time for administrative or management purposes

Definitions

  • U S Cl 235/152 235/92 AC 235/92 CC The board is designed to display certain data concerning pro- 235/156 235/15 jects undertaken and the length of time various staff members [51] Int Cl "Goa 7 B9 GO6f-7 I385 G061: 15/24 are assigned thereto; and the calculator responds to the data 58 Field of Search ..340/147 PR 286, 373, 375, displayed by a numerical Pmject quantity- 340/365, 235/92 AC 92 CC 92'MX 152 156 addition to the displayed data, the calculator takes into ac- 160 1 1 3 QC P 3 count additional data relating to the various overhead factors pertaining to respective projects, and the various salary rates paid to staff members assigned to these projects.
  • Selector [56] References Cited switches permit particular projects and time periods to be in- UNITED STATES PATENTS cluded in or excluded from the cost calculation.
  • planning boards of this type were used to illustrate the assignment of personnel to various projects as a function of time, but they did not provide any direct indication of cost factors. In other words, such display boards did not have a built-in cost computation capability.
  • the present invention seeks to meet these needs by providing a management planning aid which graphically displays the allocation of personnel resources to various client projects with respect to time, and in addition has the capability of automatically calculating project costs, based upon the displayed data plus additional variable input data including project overhead rates and staff salary rates.
  • the calculation is performed on command, and in a variety of different modes selected by the operator. He can calculate the cost of one or more selected projects over any selected time period, up to all projects and the entire length of time represented on the display board.
  • the device is so designed that the necessary data as to project overhead factors, staff salary rates, and the time intervals over which respective staff members are assigned to respective projects is all inherently entered into the cost calculation as a result of the graphic display. The only additional thing the operator must do is select the projects or time periods of interest, and the calculating display board then automatically performs the desired cost calculation.
  • FIG. 1 is a perspective view of the calculating display board of this invention, illustrating how it displays client projects undertaken, and the assignment of staff members to these projects with respect to time. It also illustrates the physical relationship of the display board to a cabinet housing the computation circuitry.
  • FIG. 2A is a perspective view of the type of electrical plug which is removably and replaceably mounted in the project and staff columns of the display board to represent client projects and staff members; and FIG. 2B is a similar view of another type of electrical plug which is removably and replaceably mounted at selected locations in the time columns to indicate the intervals during which those staff members are assigned to those projects.
  • FIG. 3 is a simplified overall block diagram of the electronic circuitry for performing cost calculations using information derived from the display board.
  • FIGS. 4A through 4E together constitute a complete overall block diagram of the same circuitry.
  • FIG. 5 is a perspective view, with parts broken away for clarity of illustration, of a manual selector switch for adjusting the level of a staff salary rate category.
  • FIGS. 6 through 10 are combined logic and circuit diagrams giving additional detail of the circuitry in FIGS. 4A through 4E, according to the following table of correspondence:
  • FIGS. 4A FIGS. 6 and 7 FIGS. 4A and 4B FIG. 7
  • FIG. 4C FIG. 8
  • FIG. 4D FIG. 9
  • FIG. 4E FIG. 10
  • a calculating display device generally designated 10 comprises an upright display board 12 which accepts a plurality of plugs 29, 30 and 31 as a means of displaying and entering variable input information, and a cabinet 14 which houses electronic circuitry for calculating a cost figure from that same information.
  • the cabinet has a numerical read-out 16 for displaying the calculated cost, and a bank of manual selector switches 18 to control the mode of calculation.
  • the board 12 includes a plurality of horizontal rows forming a rectangular matrix in cooperation with a vertical project column P, a vertical staff column S, and a time field comprising 12 vertical month columns .I through D corresponding to the months January through December.
  • the column labeled C identifies the client for which a project is undertaken.
  • Each project which may be involved in the calculation of a cost figure to be displayed by the read-out I6 is represented by an electrical plug 303 having prongs inserted into appropriate openings at the intersection of one of the horizontal lines of the board 12 with the vertical project column P.
  • appropriate electrical plugs 30A are entered on that same horizontal row, and as many immediately succeeding horizontal rows as are required, to indicate one or more staff members assigned to the particular project.
  • the next horizontal row is devoted to the next project plug 30B in column P, and a similar grouping of one or more associated staff plugs 30A is added for that project.
  • a given staff member may be represented by different plugs 30A in column 5 on various horizontal lines dedicated to separate projects, since staff members may work on different projects at different eriods of time.
  • the vertical month columns J through D are subdivided into week columns, allotting four per month for the sake of circuit simplicity.
  • the user of the device inserts in the appropriate vertical week column a first electrical plug 31 to indicate the initial week of a time period in which that staff member works on that project, and a second electrical plug 31 to indicate the last week of that time period.
  • the staff member may start and stop work on a project more than once, with a hiatus of a week or more in between; in which case two or more pairs of start and stop plugs 31 would be used on the same horizontal row.
  • FIG. 2A is an illustration of the type of electrical plug 30 which is mounted in eitherthe project column P or the staff column S.
  • the plug includes a plastic body 30.1, on the rear surface 30.2 of which is displayed the name of the project or the staff member represented by the plug.
  • the plug serves an informative function relative to the display board 12, as well as an input function relative to the electrical circuitry in cabinet 14.
  • Fixed prongs 32 at the opposite ends of the plastic body 30 mate with appropriate holes in the board 12 for locating and mounting purposes. Between the fixed prongs 32 there are a plurality of prong-receiving holes numbered 1 through 10, any one of which receives a movable prong 34.
  • Each prong 34 is in reality a coaxial electrical connector having a small semiconductor diode incorporated therein, and is removable and replaceable with respect to any of the numbered holes 1 through 10.
  • the positioning of the connector prong 34 in one of the holes 1 through determines which one of 10 project factors, for example overhead rates, is assigned to the particular project represented by that plug. This factor can be varied by relocating the prong 34 to the desired one of the holes.
  • the positioning of the prong 34 represents a selection of one of ten salary rate categories assigned to the particular staff member.
  • the function of the diode incorporated in the prong 34 is to make an appropriate unidirectional electrical connection within a conductor matrix located behind the board 12.
  • the position of the prong 34 determines which of 10 possible mating holes on the board 12 will receive the prong, and thus selects one of 10 alternative matrix connections, causing the selected project factor or salary rate to be entered into the cost calculation.
  • one of the locating prongs 32 of each plug 30 is also a coaxial connector incorporating a small semiconductor diode for making a unidirectional electrical connection to a conductor matrix behind the project column P or staff column S for the purpose of entering the presence of a project plug 30B or staff plug 30A into the cost calculation.
  • the client plugs 29 are for the sole purpose of identifying the client for whom the project is undertaken, and serve no electrical input function.
  • an electrical plug 31 (FIG. 2B) is used for the start and stop indications. These plugs have fixed coaxial diode connector prongs 33; their location in the time field J-D is varied by moving the entire plug 31 to the appropriate week column and project and staff row.
  • the read-out 16 receives the results of the cost calculation from an accumulator counter 46.
  • the quantity derived from this counter 46 is actually the total number of pulses which it accumulates over a counting cycle during which the entire time filed (vertical month columns J through D) is scanned across each horizontal row to detect each possible project and staff member which can be represented on the display board 12.
  • the pulses enter the accumulator counter 46 through decade control gates 42 and a computation control gate 44.
  • the computation control gate opens and closes at appropriate times to allow relatively longer or shorter streams of pulses from a clock source 48 to enter the accumulator counter 40. Thus the open time of the gate determines the magnitude of the cost quantity accumulated.
  • Gate 44 responds to the project and staff plugs 30A and 30B and staff assignment plugs 31. It opens only when the particular horizontal row of board 12 then being scanned is one for which at least one start staff assignment plug 31 has been entered on that horizontal row, a staff plug 30A has been entered on that row, and a project plug 30B has also been entered on that row or a previous one. Since the number of pulses entering the accumulator counter 40 depends upon when gate 44 is open, it depends in turn upon the assignment of a staff member to a project.
  • Gate 44 also closes in response to a second, or stop" staff assignment plug 31, indicating the end of the staff assignment. Therefore the gate stays open a length of time which is proportional to the interval over which a staff member is assigned to a project; this staff assignment interval being represented by the spacing between start and stop plugs on the appropriate horizontal row of the board 12. It follows that the total number of pulses passed through the gate 44 depends on the number of staff man weeks assigned to each project on each horizontal row.
  • the time field represented by the vertical month columns .I through D includes a. plurality of vertical conductors 50, one for each of 48 weeks in a (simplified) year, and 56 horizontal conductors 52, one for each horizontal row which can represent the assignment of a particular staff member to a particular project. These conductors form a matrix behind the J-D columns of board 12. Additional vertical and horizontal conductors form additional matrices behind the P and S columns.
  • a first scanner circuit 49 is stepped by a stream of pulses from clock source 48 to energize each of the vertical lines 50 in succession; and a second scanner circuit 56 is stepped by successive end-of-scan outputs from scanner 54 to accept signals from successive horizontal lines 52.
  • the first horizontal conductor 52 is continuously selected by the scanner 56 during the entire time period in which the scanner 54 energizes all the vertical lines 50 in sequence to determine if there are any time field plugs 31.
  • a signal is connected from that vertical line 50 through the associated plug diode to that horizontal line 50.
  • an output from scanner 56 is applied to a selector gate 92. If a selection signal is then available to enable the gate 92, then the scanner output is applied as a start staff assignment signal to set a staff assignment flip-flop which enables a week interval gate 46, permitting a startweek interval signal on a lead 72 to set a week interval flip-flop 70 which enables the computation control gate 44.
  • the first plug 31 encountered in each horizontal row of the time field acts as a start plug; i.e., it starts the accumulation of pulses in the accumulator counter 40.
  • the next plug 31 detected in the horizontal scan causes a stop stafi' assignment pulse to be issued by scanner 56, which resets the staff assignment flip-flop 60 and disables the gate 46.
  • the second plug in the row is the stop plug; it closes the time window" during which the start week interval signal on lead 72 can set the week interval flip-flop 70 and enable gate 44.
  • circuit 54 steps the vertical scanner 56 to select the next horizontal conductor 52, representing the next staff member in column S assigned to the same project, or the first staff member in column S assigned to the next project in column P. In any event, the same scanning sequence is performed for each of the fifty-six horizontal conductors 52 in turn.
  • the week gate 46 is held open for a corresponding time interval, and a corresponding number of pulses is entered into the accumulator counter 40.
  • any particular horizontal line 52 there is no staff plug 30A in column S, or no start plug 31 in month columns .I through D, then the gate 46 will not be enabled and the accumulator counter 40 will not receive any pulses during that particular horizontal scan. If there is a staff plug 30A and a start plug 31, but no stop plug 31, a special end-of-scan pulse on lead 55 resets the staff assignment flip-flop 60 at the end of each horizontal scan.
  • each week interval i.e., set" time of week interval flip flop 70
  • the control gate 44 is kept open only for a length'of time proportional to the project factor and and the staff daily rate factor.
  • the staff assignment flip-flop 60 is continuously set, and therefore gate 46 is con it remains set, i.e., the duration of the week intervalsare p'roportional both to the relevant project factor an the rele :nt staff salary rate. It follows that the open" tir'n c the number of pulses passing through into counter 40, are proportional to the project'fact lary rate. 4, v
  • the stop week interval signal on lead 74 flop 70 is the output of a project factor counter 76.
  • Circuit 82 divides the clock pulse repetition rate by a'factor of five, in order to adjust a daily staff salary rate to the 5-day working week which is the basic time quantum in scanning board 12.
  • a stream of pulses issuing from the clock 48, at a rate which is proportional to project cost per week, is applied directly toaccurnulate cost in the counter 40, but is divided by five in circuit 82 before being applied, as a representation of project salary cost per day, to the counter 78.
  • Counters 78' and 76 are both of the type which count down from an initial setting, the setting being variable. In the case of I the salary rate counter 78, each different salary rate has the effect of setting a different numerical start level for the countdown. This determines the number of pulses which is required to satisfy the counter 78 during each week interval.
  • a set of manual salary rate switches 86 permits a choice of a different salary rate for each of several salary categories.
  • the particular salary categor'ywhich is chosen for a particular staff member depends upon the position chosen for the movableprong 34A of the particular plug A used for that staff member.
  • the rate switches 86 are used for changes in overall salary levels, and the prongs 34A of staff plugs 30A are used to select the particular one of the current salary rate categories which applies to a particular staff member at a particular time.
  • the movable prong 34B of each project plug 30B determines the particular starting quantity which must be counted down to satisfy the project factor counter 76 for the particular project represented by that plug.
  • a stream of pulses from the clock source 48 is divided down to one fifth the clock repetition rate by circuit 82, and passes through gates 80 to enter the daily rate counter 78.
  • the amount of time required for this fix'eirepetition rate pulse stream to count down the counter 78 is determined by the particular salary rate quantity set into the counter by one of the staff plugs 30A and circuit 86. For a relatively high salary level, the salary rate counter 78 will take a longer time to be satisfied by the stream of pulses.
  • the salary rate counter 78 is stepped through a plurality of counting cycles,'each one resulting in a single output pulse applied over lead 79 to the input of the project factor counter 76.
  • the counter 76 receives a stream of pulseson lead 79, at a repetition rate inversely proportional to the salary level counted down by counter 78.
  • the amount of time required for the project factor counter 76 to count down depends uponthe project overhead factor loaded into it by one of the-pfojeet plugs 30B; i.e., at any pulse repetition rate it will take a longer time to count down from a higher overhead factor quantity.
  • the 'urtibr of pulses set into the accumulator counter 40 ch week interval is proportional to the staff salary ecit overhead factor; and the total number of rvals for wirhich pulses are accumulated in each can deteititined by the space between start and l on the Board 12; it follows that the total number 'of pulses. accumulated by the counter 40 in each horizontal scan represents the total cost attributable over twelve months jects), or so that the pulses are accumulated for one or more selected months for all projects and all staff members, or for any desired combination of particular months and particular projects, up to and including all months and all projects.
  • the manual selector switches 18 include a group of fourteen project switches (one for each project up to the maximum number that can be accommodated); a group of 12 month switches, one for each of the months represented in the vertical columns .I through D; and a total switch. These switches permit four different operating modes to be selected. In the first, or project, mode, the user presses one or more project buttons in the group 18, to select the particular project or projectsdes'ired, and the device then calculates the cost of the selected projects over a twelve month period, taking account of the different overhead factors assigned to each project, the length of time each staff member is assigned to each project, and the different salary rates which those staff members are paid.
  • the user presses one or more month switches in the group 18, and the board calculates the partial cost, for those months, of all projects entered on the board, taking the same overhead, salary, and staff assig'nment information into account.
  • the third, or hybrid mode the user presses one or more project switches and one or more month switches to calculate the partial cost of the selected projectsover the selected months, taking all information into account.
  • the fourth, or total mode the user presses the total switch, andthe board calculates the total cost of all projects for the entire twelve month period, again taking all information into account. In each case, the resulting cost figure calculated is displayed onthe read-out 16.
  • Selector circuit 94 also responds to the project plugs 308 in such a manner hat the selection gate 92 takes account of the
  • the quantity entered into the read-out 16 represents the total number of pulses accumulated by the accumulator counter 40 over a single complete scan of all horizontal lines in the board 12 (although gate 92 is not necessarily open during that entire scan).
  • a pulse on a lead 98 resets the accumulator counter 40 to zero, and a new pulse accumulation cycle begins with the start of the next scan of board 12.
  • the read-out 16 retains the total cost accumulated during the preceding scan, until it is cleared and reset when a new cost is arrived at upon the conclusion of the next scan.
  • Gates 42 progressively increase the weights of the clock pulses accumulated, by applying these pulses to successively more significant decades of counter 40.
  • the increased pulse weight permits the counting interval of counter 46, and thus the open time of gate 44, to be correspondingly reduced, provided counter 78 is also satisfied more rapidly; i.e., gates 80 must apply clock pulses at successively greater weights to successively more significant decates of counter 78.
  • Each of the counters 78 and 40 has three decades which count independently. In pre-setting counter 78, the level of the first decade is set equal to the least significant digit, the second decade to the next significant digit, and the last decade to the most significant digit, of a three digit number expressing the pre-set level.
  • a first gate in circuit 80 is enabled, to pass the clock pulses (divided by five) only to the least significant decade of circuit 78; and at the same time, only a first gate in circuit 42 is enabled, to pass clock pulses only to the least significant decade of counter 40. At this time, the pulses counted represent ten cents each.
  • a signal on cable 102 disables the first gates and enables only the second gates of both circuits 80 and 42. Thereafter the pulses counted have a dollar weighting, and are passed to the next significant decades of counters 78 and 40, until that decade of counter 78 is satisfied.
  • the time saving which is thus achieved initially takes the form of shorter week intervals, i.e., the set times offlip-flop 70.
  • the passage of clock pulses to the horizontal scanner 54 is controlled by a horizontal scanner gate 100 enabled by the reset output of flip-flop 70 to advance the scanner 54 to the next week line 50 as soon as the previous week interval terminates.
  • the set condition of flip-flop 70 interrupts the progress of the scan during the performance of each weekly count by circuits 76 and 78.
  • FIG. 3 is simplified, to permit the reader more easily to grasp the broad outlines of the system.
  • FIGS. 4A through 4E which constitute a complete block diagram, and to FIGS. 6 through 10 which show additional circuit detail.
  • the detailed circuit of the clock 48 includes a free-running multivibrator or other oscillator circuit 48.1 driving a two-stage Johnson counter formed of flip-flops 120 and 122.
  • the flip-flop outputs are decoded into four clock phases by a one-out-of-four decoder 48.3 comprising coincidence gates 124 through 127 whose input terminals are connected to the outputs of flip-flops 120 and 122 in the appropriate code pattern.
  • Clock phase 1 the output of gate 124, is used to step the horizontal scanner 54.
  • Clock phase 2 the output of gate 125, is the pulse stream passed intermittently by the computation control gate 44, and conveyed over lead 121 to the input of accumulator counter 40. It also is applied to the divide by five circuit 82, to generate a pulse stream designated phase 2/5 which steps the salary counter 78.
  • Clock phase 3 the output of gate 126, is a pulse which occurs once at the end of each complete scan of the time field matrix 50,52.
  • Clock phase 4 the output of gate 127, is a pulse which recurs at a weekly rate (in the sense in which the horizontal scan is quantized by increments regarded as weeks). These pulses are used to synchronize: the reset of a horizontal scan flip-flop; a general purpose end-of-board-scan reset signal; the start and stop week interval" signals; and the start of each week interval salary rate count.
  • the numerical read-out 16 displays the results of the cost calculation when strobed by a read-out command appearing on a lead when a coincidence gate 112 is enabled.
  • the logical condition which enables this gate is the coincidence of three signals.
  • Another signal is applied over a lead 131, and is labeled start horizontal scan; that signal appears at the start of the scan of the next horizontal line 52.
  • the third signal is a clocking pulse labeled phase 3, which is one of the four output phases available from the clock circuit 48.
  • Clock phase 3 appears once at the end of each complete scan of the entire display board 12.
  • gate 1 12 assures that the numerical read-out 16 is strobed to read out the cost calculation only after the end of the scan of the last horizontal line of the board.
  • the individual decimal digits of the cost calculation representing units of dollars through millions of dollars, are supplied in appropriately coded form by respective decades 40.2 through 40.8 of the accumulator counter 40 over respective input cables 1 13.0 through 113.6.
  • the information is then decoded according to the requirements of the read-out 16 by respective decoder circuits 114.0 through 114.6, and is supplied over cables 118.0 through 118.6 to read-out stages 16.0 through 16.6 respectively.
  • the read-out 16 displays, for example, a cost figure of $3,947,685.
  • a dime counter input coincidence gate 42.1 is enabled by an input labeled LSD unsatisfied on a lead 238, so that the pulses on lead 121 pass through the gate to be counted by the dime decade counter 40.1.
  • the overflow output pulses from dime counter 40.1 pass through a dime counter output coincidence gate 42.4 and a dollar counter input OR gate 42.2 to the input of a dollar decade counter 40.2.
  • every ten dimes counted by decade 40.1 is registered as a dollar in decade 40.2.
  • a switch-over in pulse weight occurs when the input LSD unsatisfied disappears from lead 238, thus disabling dime counter input and output gates 42.1 and 42.4 respectively, and in its place there appears on lead 240 an input labeled LSD satisfied which, together with a second input labeled NSD unsatisfied" initially appearing on lead 246, enables a dollar counter input coincidence gate 42.3.
  • This takes the dime counter 40.1 out of the counting chain, and passes the clock phase 2 pulses directly through gates 42.3 and 42.2 to the dollar counter 40.2. At this point, the same phase 2" pulses which were previously counted as dimes by decade 40.1 now go directly to decade 40.2, where they are counted as dollars.
  • a l-dollar counter input coincidence gate 42.6 is enabled to pass the overflowoutputs of dollar counter 40.2 to a ten dollar counter input OR gate 42.5 and then to a string of cascaded decade counter stages 40.3 through 40.8, which count tens through millions of dollars respectively.
  • the output of the dime counter 40.1 is not displayed on the readout 16, since there is no need to display large amounts of money to dime resolution.
  • the output of the dime counter is used only to step the dollar counter 40.2 via gate 42.4, and the dollar digit is the lowest decimal order displayed.
  • the reader's attention is directed next to the manner in which the computation control gate 44 governs the clock pulse stream in response to the start and stop plugs 31.
  • the scanning of the time field matrix 50,52 is accomplished by a horizontal scanner 54 and a vertical scanner 56.
  • the vertical scanner includes a counter 56.1, a one-out-of-57 decoder 56.2 and 56 coincidence gates 56.3.
  • the horizontal scanner includes a counter 54.1 and a one-out-of-SO decoder 54.2.
  • the counter 54.1 is driven by clock phase 1 pulses whenever the latter are able to pass through the horizontal scan coincidence gate 100.
  • This gate is enabled when it receives an input signal on a lead 172, labeled not accumulating.” This signal appears when the accumulator counter 40 is not presently accumulating cost pulses. Only at such times can the scanner 54 be advanced to the next week line without cutting short the previous week's pulse accumulation.
  • Each clock phase 1 pulse that passes through the gate 100 advances the horizontal scan counter 54.1 one increment.
  • the current quantity in the counter 54.1 is stored in six flip-flop stages 134, and read out as a six-bit binary coded word in bit parallel form on respective leads 132 going to the horizontal scan decoder 54.2.
  • This circuit decodes the quantities one through 50 as they are read out successively on the leads 132, and applies the outputs to energize in turn: a lead 131; the 48 lines 50; and a lead 133.
  • the signal on lead 131 (labeled start horizontal scan) appears once at the start of each horizontal scan to provide a synchronizing pulse employed at various places throughout the computing circuit.
  • the 48 leads 50 are the sequentially energized vertical week conductors of the time field matrix, representing the 48 weeks in a simplified year.
  • Lead 133 (labeled end of horizontal scan") is energized once at the end of each horizontal scan. After the start horizontal scan signal on lead 131 terminates, i.e., while the scan of leads 50 and 133 is in progress, an inverter stage 135 provides a horizontal scan" signal on an output lead 137 to indicate that the scan is then going on.
  • the voltage on the conductor 50 is connected unidirectionally through the diode 31C of that plug to the associated one of the 56 horizontal project and staff conductors 52. Then, if that conductor 52 has a staff plug 32, the voltage is connected by the plug diode 32A of its fixed prong 32 to the associated one of 56 leads 51 leading to the associated one of the 56 coincidence gates 56.3 which form part of the vertical scanner 56.
  • the specific choice of 56 horizontal staff lines 52 and 56 gates 56.3 means the'board 12 is designed to accommodate up to 56 different staff members. Any one project can have from one to 56 staff members assigned thereto as long as the total number of staff members assigned to all the projects does not exceed 56. Thus there is a possibility of up to 56 different week-staff assignment outputs labeled W51 through W556 issuing from the horizontal lines 52 of the time field matrix and passing over leads 51 to their respective vertical scan gates 56.3.
  • the vertical scan is accomplished by energizing each of the 56 gates 56.3 in the proper sequence to pass any signals WS1" through WS56 which may be present, in that order.
  • the enabling signals to the gates 56.3 are provided by the vertical scan counter 56.1, comprising six flip-flop stages 136 the outputs of which are decoded by the one-out-of-57 circuit 56.2 to energize each of 57 conductors 138.1 through 138.57 in that order.
  • the first 56 of these decoder output conductors 138.1 through 138.56 enable the 56 vertical scan gates 56.3 to pass the signals WSl through WS56" in succession.
  • Counter 56.1 is stepped to achieve the described gateenabling sequence by pulses applied over a lead 140, and derived from the end of horizontal scan signal on lead 133.
  • This counter stepping pulse is controlled by a vertical scan coincidence gate 142, which is enabled by a signal on lead 172 indicating a not accumulating condition of the counter 40 between horizontal scans, and the next clock phase 2 pulse after a horizontal scan.
  • the output of the gate 142 is also applied over a lead 144 as an after horizontal scan signal which performs several functions in the computing system.
  • One of these is to set a horizontal scan flip-flop 146, the set output of which enables a coincidence gate 148 so that the next clock phase 3 pulse emerges on a lead 150 to reset all the flip-flop stages 134 of the horizontal scan counter 54.1. This restores the counter to a zero count for the start of the next horizontal scan.
  • the horizontal scan flip-flop 146 is later reset by the next clock phase 4" pulse.
  • the decoder 56.2 provides an end of board scan signal on its 57th and last output lead 138.57. That signal passes through a coincidence gate 152, when it is enabled by the signal on lead 172 (indicating that the accumulator counter 40 is not accumulating between week intervals), the start horizontal scan signal on lead 131, and clock phase 4.
  • a clock phase 4 pulse enables gate 152, thus driving an amplifier 154 to provide a general purpose reset" signal on an output lead 98.2 which is employed throughout the system at the end of each complete board scan.
  • This signal is to reset all the flip-flop stages 136 of the vertical scan counter 56.1 at the end of a complete board scan. Another of its functions is to reset all the decades 40.1 through 40.8 of the accumulator counter 40 (see FIGS. 4B and 7). Other functions will appear as this description continues.
  • any pulses WSI through W856 which are passed by the vertical scan gates 56.3 appear on respective gate output leads 160.1 through 160.56 and are all funneled through an OR gate 162 and applied over an output lead 164 to the selection gate 92. That gate responds to the selection signal on a lead 166 to pass the pulses WSl through WS56 over a lead 167 in accordance with the operating mode determined by the selector circuit 94, as described below.
  • the W81 through WS56" pulses on lead 167 pass through a coincidence gate 170 when the latter is enabled by: a signal on lead 172 coming from the reset" output of the week interval flip-flop 70, representing the not accumulating condition of the accumulator counter 40; a synchronizing pulse from clock phase 3"; and the horizontal scan signal on lead 137, indicating that such a scan is in progress.
  • the latter signal which is the inverse of the start horizontal scan signal on lead 131 (FIGS. 4C and 8), insures that the signals detected on lead 167 by gate 170 are truly WSl W556" signals.
  • gate 170 is applied as the start-stop stafi assignment signal over a lead 174 to toggle a stafi assignment flip-flop 60.1.
  • This flip-flop is initially in a reset condition; therefore the first plug 31 pulse to hit the toggle input during a horizontal scan (the start staff assignment signal) sets the flip-flop.
  • the set output then appears on a lead 175 and passes through an OR gate 176 to provide one of the enabling inputs for the week interval coincidence gate 46.
  • the other logical conditions for enabling gate 46 are the not accumulating signal on lead 172, indicating that the accumulator counter 40 is not presently accumulating, and an input on a lead 178 labeled M1 M12, indicating that the currently scanned one of the twelve months in the year has been included in the computation by means of the manual selector switches 18.
  • the next clock phase 4 input (which occurs weekly on lead 72) passes through the week interval gate 46 and emerges on lead 180 as the start week interval signal to set the week interval flip-flop 70 for the current week count.
  • the set output of this flip-flop, appearing on lead 182, represents the accumulating condition of the accumulator counter 40.
  • One of its function is to enable the computation control gate 44, as discussed above in connection with FIGS. 4B and 7.
  • setting the flip-flop 60.1 starts an accumulation interval for the counter 40 when a horizontal scan of the time field matrix 50, 52 detects the first, or start plug 31, and results in a first W81 to WS56pulse.
  • a stop week interval signal appears on a lead 193. If a coincidence gate 197 is then enabled, it provides an output to reset the flip-flop 60.2.
  • the gate 197 in turn is enabled by a reset output signal from flipflop 60.1, applied over a lead 189, which becomes available when flip-flop 60.1 is reset at the start of the terminal week interval. Therefore the first of the signals appearing on lead 193 which finds both flip-flop 60.2 set and gate 197 enabled is the one occurring at the end of the terminal week interval.
  • the terminal week flip-flop 60.2 is reset at that time, to restore its initial condition and terminate the signal on lead 188. Consequently, after the terminal week neither of the input leads to OR gate 176 is energized, and there is no longer an output from that OR gate to enable the week interval gate 46. Thus the following weeks are excluded from the computation, until the next start plug 31 appears.
  • the staff assignment flip-flop 60.1 and 60.2 must always be reset at the beginning of each horizontal scan, in order for the first plug 31 of each pair to be recognized as a start plug by setting the flip-flops, and the second plug of each pair to be recognized as a stop plug by resetting them.
  • This initial condition is assured by a signal arriving over a lead 186 which resets both flip-flops if they were previously set.
  • This signal can be derived by means of an OR gate 184 in two alternative ways. One is from the after horizontal scan pulse, which appears on lead 144; thus if the user neglects to put a stop plug 31 where required on the display board 12, then after each horizontal scan of 48 weeks has been completed, flip-flops 60.1 and 60.2 will be reset.
  • This calculating display board can be used in a month mode, i.e., calculating partial costs for all projects within a selected time frame consisting of one or more consecutive months which the operator selects by means of switches 18. In that mode, it is possible for a start plug 31 to be detected before the scan of the selected time frame begins. In that case, staff assignment flip-flops 60.1 and 60.2 are set too soon, but do not take effect until the Ml-M12" signal appears on lead 178 to enable the week interval gate 46.

Landscapes

  • Business, Economics & Management (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Human Resources & Organizations (AREA)
  • General Business, Economics & Management (AREA)
  • Theoretical Computer Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • General Physics & Mathematics (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Accounting & Taxation (AREA)
  • Data Mining & Analysis (AREA)
  • Finance (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Time Recorders, Dirve Recorders, Access Control (AREA)

Abstract

A display board incorporating an electronic digital calculator. The board is designed to display certain data concerning projects undertaken and the length of time various staff members are assigned thereto; and the calculator responds to the data displayed by computing a numerical project cost quantity. In addition to the displayed data, the calculator takes into account additional data relating to the various overhead factors pertaining to respective projects, and the various salary rates paid to staff members assigned to these projects. Selector switches permit particular projects and time periods to be included in or excluded from the cost calculation.

Description

s v Ullltfl States Ptent n51 3,669,65 Lecht et ai. 1 May 2, 1972 s41 CALCULATING DISPLAY BOA 3,437,740 4/1969 Rosenberg et al. ..340/365 [72] inventors: Charles P. Lecht, New York; William O.
gl' z ggzf j g 5 gft i 3,027,548 3/1962 Vaughan. ..340/365 x RobertgA Pace i k Y p 3,475,747 10/1969 Kratomi ..340/286 X [73] Assignee: Advanced Computer Techniques Corpora- U on, New York Assistant Examiner-James F Gottman Attorney-Louis Altman [22] Filed: May 21, 1970 21] Appl. No.: 39,482 ABSTRACT A display board incorporating an electronic digital calculator. [52] U S Cl 235/152 235/92 AC 235/92 CC The board is designed to display certain data concerning pro- 235/156 235/15 jects undertaken and the length of time various staff members [51] Int Cl "Goa 7 B9 GO6f-7 I385 G061: 15/24 are assigned thereto; and the calculator responds to the data 58 Field of Search ..340/147 PR 286, 373, 375, displayed by a numerical Pmject quantity- 340/365, 235/92 AC 92 CC 92'MX 152 156 addition to the displayed data, the calculator takes into ac- 160 1 1 3 QC P 3 count additional data relating to the various overhead factors pertaining to respective projects, and the various salary rates paid to staff members assigned to these projects. Selector [56] References Cited switches permit particular projects and time periods to be in- UNITED STATES PATENTS cluded in or excluded from the cost calculation.
3,342,979 9/1967 Wright et a] ..235/92 48 Claims, 15 Drawing Figures 52 RESTORE SELECTOR STEP 52 HORIZONTAL SCANN ER START S PLUG DIODES [I LU Z 5 U (I) SELECTION READ -OUT PTA'TENIEDMAY 21912 3,660,845
SHEET 01 0F 13 INVENTORS ROBERT A. PACE STANLEY M. KOS CHARLES P. LECHT WILLIAM O. HARDEN MATTHEW J. LAVELL BY {m mm ATTY PATENTEDMM 2 I912 sum 02 m" 13 PATENTEDHAY 2 I972 sum 08 or 13 CALCULATING DISPLAY BOARD FIELD OF THE INVENTION This invention relates generally to display boards, and particularly to a project planning board which automatically calculates project costs in response to the data displayed.
THE PRIOR ART Various business enterprises find a project planning display board useful as a management tool. This is particularly true of service organizations which need to coordinate the efforts of a number of staff people, and allocate those efforts efficiently among various different projects in progress concurrently. An example of a service business which benefits from this type of display board is a computer programming or software company which typically has a plurality of client programs in progress and at various stages of completion at any given time; and which is usually concerned with the problems of assigning various different staff members to work on different program projects in accordance with the changing needs of the projects and the talents and availability of programming personnel.
In the past, planning boards of this type were used to illustrate the assignment of personnel to various projects as a function of time, but they did not provide any direct indication of cost factors. In other words, such display boards did not have a built-in cost computation capability.
The design of a display board having a sophisticated computation circuit for this type of application is quite difiicult. First of all, such a circuit should take its input data directly from the display board, so far as possible, in order to make the device convenient and simple to use. Secondly, although different personnel have different salary rates, different overhead factors are assigned to different projects, and individual staff members start and stop work on particular projects at various times, all these factors must be taken into account in the computation. Finally, it is difficult to predict in advance the particular type of cost calculation which management may require at any given time. In some instances management may wish a total cost calculation, but in other instances it may wish to select particular projects and/or particular time intervals.
THE INVENTION The present invention seeks to meet these needs by providing a management planning aid which graphically displays the allocation of personnel resources to various client projects with respect to time, and in addition has the capability of automatically calculating project costs, based upon the displayed data plus additional variable input data including project overhead rates and staff salary rates. The calculation is performed on command, and in a variety of different modes selected by the operator. He can calculate the cost of one or more selected projects over any selected time period, up to all projects and the entire length of time represented on the display board.
The device is so designed that the necessary data as to project overhead factors, staff salary rates, and the time intervals over which respective staff members are assigned to respective projects is all inherently entered into the cost calculation as a result of the graphic display. The only additional thing the operator must do is select the projects or time periods of interest, and the calculating display board then automatically performs the desired cost calculation.
BRIEF DESCRIPTION OF THE DRAWINGS F IG. 1 is a perspective view of the calculating display board of this invention, illustrating how it displays client projects undertaken, and the assignment of staff members to these projects with respect to time. It also illustrates the physical relationship of the display board to a cabinet housing the computation circuitry.
FIG. 2A is a perspective view of the type of electrical plug which is removably and replaceably mounted in the project and staff columns of the display board to represent client projects and staff members; and FIG. 2B is a similar view of another type of electrical plug which is removably and replaceably mounted at selected locations in the time columns to indicate the intervals during which those staff members are assigned to those projects.
FIG. 3 is a simplified overall block diagram of the electronic circuitry for performing cost calculations using information derived from the display board.
FIGS. 4A through 4E together constitute a complete overall block diagram of the same circuitry.
FIG. 5 is a perspective view, with parts broken away for clarity of illustration, of a manual selector switch for adjusting the level of a staff salary rate category.
And FIGS. 6 through 10 are combined logic and circuit diagrams giving additional detail of the circuitry in FIGS. 4A through 4E, according to the following table of correspondence:
FIGS. 4A FIGS. 6 and 7 FIGS. 4A and 4B FIG. 7
FIG. 4C FIG. 8
FIG. 4D FIG. 9
FIG. 4E FIG. 10
The same reference characters refer to the same elements throughout the several views of the drawing.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT General System Description With reference to FIG. 1 of the drawings, a calculating display device generally designated 10 comprises an upright display board 12 which accepts a plurality of plugs 29, 30 and 31 as a means of displaying and entering variable input information, and a cabinet 14 which houses electronic circuitry for calculating a cost figure from that same information. The cabinet has a numerical read-out 16 for displaying the calculated cost, and a bank of manual selector switches 18 to control the mode of calculation.
The board 12 includes a plurality of horizontal rows forming a rectangular matrix in cooperation with a vertical project column P, a vertical staff column S, and a time field comprising 12 vertical month columns .I through D corresponding to the months January through December. The column labeled C identifies the client for which a project is undertaken.
Each project which may be involved in the calculation of a cost figure to be displayed by the read-out I6 is represented by an electrical plug 303 having prongs inserted into appropriate openings at the intersection of one of the horizontal lines of the board 12 with the vertical project column P. In the vertical staff column S appropriate electrical plugs 30A are entered on that same horizontal row, and as many immediately succeeding horizontal rows as are required, to indicate one or more staff members assigned to the particular project. After the appropriate number of horizontal rows has been marked off by staff plugs 30A in column S to account for all the staff members working on that project, the next horizontal row is devoted to the next project plug 30B in column P, and a similar grouping of one or more associated staff plugs 30A is added for that project. A given staff member may be represented by different plugs 30A in column 5 on various horizontal lines dedicated to separate projects, since staff members may work on different projects at different eriods of time.
The vertical month columns J through D are subdivided into week columns, allotting four per month for the sake of circuit simplicity. On each horizontal row corresponding to a specific staff member insofar as he is assigned to a specific project, the user of the device inserts in the appropriate vertical week column a first electrical plug 31 to indicate the initial week of a time period in which that staff member works on that project, and a second electrical plug 31 to indicate the last week of that time period. The staff member may start and stop work on a project more than once, with a hiatus of a week or more in between; in which case two or more pairs of start and stop plugs 31 would be used on the same horizontal row.
FIG. 2A is an illustration of the type of electrical plug 30 which is mounted in eitherthe project column P or the staff column S. The plug includes a plastic body 30.1, on the rear surface 30.2 of which is displayed the name of the project or the staff member represented by the plug. Thus the plug serves an informative function relative to the display board 12, as well as an input function relative to the electrical circuitry in cabinet 14. Fixed prongs 32 at the opposite ends of the plastic body 30 mate with appropriate holes in the board 12 for locating and mounting purposes. Between the fixed prongs 32 there are a plurality of prong-receiving holes numbered 1 through 10, any one of which receives a movable prong 34. Each prong 34 is in reality a coaxial electrical connector having a small semiconductor diode incorporated therein, and is removable and replaceable with respect to any of the numbered holes 1 through 10. When a plug 30 is used as a project plug 30B in vertical column P, the positioning of the connector prong 34 in one of the holes 1 through determines which one of 10 project factors, for example overhead rates, is assigned to the particular project represented by that plug. This factor can be varied by relocating the prong 34 to the desired one of the holes. When a plug 30 is used as a staff plug 30A in the staff column S, the positioning of the prong 34 represents a selection of one of ten salary rate categories assigned to the particular staff member. In either case, the function of the diode incorporated in the prong 34 is to make an appropriate unidirectional electrical connection within a conductor matrix located behind the board 12. The position of the prong 34 determines which of 10 possible mating holes on the board 12 will receive the prong, and thus selects one of 10 alternative matrix connections, causing the selected project factor or salary rate to be entered into the cost calculation.
In addition, one of the locating prongs 32 of each plug 30 is also a coaxial connector incorporating a small semiconductor diode for making a unidirectional electrical connection to a conductor matrix behind the project column P or staff column S for the purpose of entering the presence of a project plug 30B or staff plug 30A into the cost calculation.
The client plugs 29 are for the sole purpose of identifying the client for whom the project is undertaken, and serve no electrical input function.
In the time field represented by the month columns I through D, an electrical plug 31 (FIG. 2B) is used for the start and stop indications. These plugs have fixed coaxial diode connector prongs 33; their location in the time field J-D is varied by moving the entire plug 31 to the appropriate week column and project and staff row.
As seen in FIG. 3, the simplified block diagram of the computing circuit, the read-out 16 receives the results of the cost calculation from an accumulator counter 46. The quantity derived from this counter 46 is actually the total number of pulses which it accumulates over a counting cycle during which the entire time filed (vertical month columns J through D) is scanned across each horizontal row to detect each possible project and staff member which can be represented on the display board 12. The pulses enter the accumulator counter 46 through decade control gates 42 and a computation control gate 44. The computation control gate opens and closes at appropriate times to allow relatively longer or shorter streams of pulses from a clock source 48 to enter the accumulator counter 40. Thus the open time of the gate determines the magnitude of the cost quantity accumulated.
Gate 44 responds to the project and staff plugs 30A and 30B and staff assignment plugs 31. It opens only when the particular horizontal row of board 12 then being scanned is one for which at least one start staff assignment plug 31 has been entered on that horizontal row, a staff plug 30A has been entered on that row, and a project plug 30B has also been entered on that row or a previous one. Since the number of pulses entering the accumulator counter 40 depends upon when gate 44 is open, it depends in turn upon the assignment of a staff member to a project.
Gate 44 also closes in response to a second, or stop" staff assignment plug 31, indicating the end of the staff assignment. Therefore the gate stays open a length of time which is proportional to the interval over which a staff member is assigned to a project; this staff assignment interval being represented by the spacing between start and stop plugs on the appropriate horizontal row of the board 12. It follows that the total number of pulses passed through the gate 44 depends on the number of staff man weeks assigned to each project on each horizontal row.
The time field represented by the vertical month columns .I through D includes a. plurality of vertical conductors 50, one for each of 48 weeks in a (simplified) year, and 56 horizontal conductors 52, one for each horizontal row which can represent the assignment of a particular staff member to a particular project. These conductors form a matrix behind the J-D columns of board 12. Additional vertical and horizontal conductors form additional matrices behind the P and S columns.
A first scanner circuit 49 is stepped by a stream of pulses from clock source 48 to energize each of the vertical lines 50 in succession; and a second scanner circuit 56 is stepped by successive end-of-scan outputs from scanner 54 to accept signals from successive horizontal lines 52. Thus, in a typical scanning cycle the first horizontal conductor 52 is continuously selected by the scanner 56 during the entire time period in which the scanner 54 energizes all the vertical lines 50 in sequence to determine if there are any time field plugs 31. When it energizes the vertical line 50 having the first such plug on the currently selected horizontal line 52, a signal is connected from that vertical line 50 through the associated plug diode to that horizontal line 50. If there is a staff plug 30A and diode 32A on that line 50, then an output from scanner 56 is applied to a selector gate 92. If a selection signal is then available to enable the gate 92, then the scanner output is applied as a start staff assignment signal to set a staff assignment flip-flop which enables a week interval gate 46, permitting a startweek interval signal on a lead 72 to set a week interval flip-flop 70 which enables the computation control gate 44. Thus, the first plug 31 encountered in each horizontal row of the time field acts as a start plug; i.e., it starts the accumulation of pulses in the accumulator counter 40.
The next plug 31 detected in the horizontal scan causes a stop stafi' assignment pulse to be issued by scanner 56, which resets the staff assignment flip-flop 60 and disables the gate 46. Thus the second plug in the row is the stop plug; it closes the time window" during which the start week interval signal on lead 72 can set the week interval flip-flop 70 and enable gate 44. There is no physical difference between start and stop plugs 31; they merely have a different sequence of positions on the board 12.
At the end of each horizontal scan, circuit 54 steps the vertical scanner 56 to select the next horizontal conductor 52, representing the next staff member in column S assigned to the same project, or the first staff member in column S assigned to the next project in column P. In any event, the same scanning sequence is performed for each of the fifty-six horizontal conductors 52 in turn. During a complete scan of the board 12, whenever plugs 31 indicate that a particular staff member is assigned to a particular project for one or more weeks, the week gate 46 is held open for a corresponding time interval, and a corresponding number of pulses is entered into the accumulator counter 40. If on any particular horizontal line 52 there is no staff plug 30A in column S, or no start plug 31 in month columns .I through D, then the gate 46 will not be enabled and the accumulator counter 40 will not receive any pulses during that particular horizontal scan. If there is a staff plug 30A and a start plug 31, but no stop plug 31, a special end-of-scan pulse on lead 55 resets the staff assignment flip-flop 60 at the end of each horizontal scan.
In order to take account of particular overhead factors and daily salary rates whichare appropriate to eachproject and staff member respectively, during each week interval (i.e., set" time of week interval flip flop 70) the control gate 44 is kept open only for a length'of time proportional to the project factor and and the staff daily rate factor. The staff assignment flip-flop 60 is continuously set, and therefore gate 46 is con it remains set, i.e., the duration of the week intervalsare p'roportional both to the relevant project factor an the rele :nt staff salary rate. It follows that the open" tir'n c the number of pulses passing through into counter 40, are proportional to the project'fact lary rate. 4, v The stop week interval signal on lead 74 flop 70 is the output of a project factor counter 76.-
counts a stream of pulses received from the 'otit'p'iitof'a aily salary rate counter 78, which in turn counts a stream of pulses arriving from decade control gates 80 and a modulus five pulse repetition rate divider 82 driven by the clock 48.
Circuit 82 divides the clock pulse repetition rate by a'factor of five, in order to adjust a daily staff salary rate to the 5-day working week which is the basic time quantum in scanning board 12. Thus a stream of pulses issuing from the clock 48, at a rate which is proportional to project cost per week, is applied directly toaccurnulate cost in the counter 40, but is divided by five in circuit 82 before being applied, as a representation of project salary cost per day, to the counter 78.
Counters 78' and 76 are both of the type which count down from an initial setting, the setting being variable. In the case of I the salary rate counter 78, each different salary rate has the effect of setting a different numerical start level for the countdown. This determines the number of pulses which is required to satisfy the counter 78 during each week interval.
A set of manual salary rate switches 86 permits a choice of a different salary rate for each of several salary categories. The particular salary categor'ywhich is chosen for a particular staff member depends upon the position chosen for the movableprong 34A of the particular plug A used for that staff member. Thus the rate switches 86 are used for changes in overall salary levels, and the prongs 34A of staff plugs 30A are used to select the particular one of the current salary rate categories which applies to a particular staff member at a particular time.
Similarly, as represented by lead 90, the movable prong 34B of each project plug 30B determines the particular starting quantity which must be counted down to satisfy the project factor counter 76 for the particular project represented by that plug.
In operation, a stream of pulses from the clock source 48 is divided down to one fifth the clock repetition rate by circuit 82, and passes through gates 80 to enter the daily rate counter 78. During each week interval of a particular horizontal scan, the amount of time required for this fix'eirepetition rate pulse stream to count down the counter 78 is determined by the particular salary rate quantity set into the counter by one of the staff plugs 30A and circuit 86. For a relatively high salary level, the salary rate counter 78 will take a longer time to be satisfied by the stream of pulses.
The salary rate counter 78 is stepped through a plurality of counting cycles,'each one resulting in a single output pulse applied over lead 79 to the input of the project factor counter 76. Thus, the counter 76 receives a stream of pulseson lead 79, at a repetition rate inversely proportional to the salary level counted down by counter 78. The amount of time required for the project factor counter 76 to count down depends uponthe project overhead factor loaded into it by one of the-pfojeet plugs 30B; i.e., at any pulse repetition rate it will take a longer time to count down from a higher overhead factor quantity. But since the pulse repetition rate on lead 79 is inversely proportional 'to salary, the total time required for both counters to be satisfied, and for counter 76 to issue a stop week interval pulse on lead 74, depends upon both the salary rate and the overhead factor. Each time the output on lead 74 appears,-the week interval flip-flop 70 is reset and the gate 44 is disabled to terminate the passage of clock pulses to the accumulator counter 46 for the particular week interval. Therefore, the number of pulses gated into accumulator cojinter 46 by the gate 44 in a week interval is proportional to the relevant salary rate and project overhead factor.
At the end of each cycle of counters 76 and 78 respectively, :f-pulse appears on the appropriate one of leads 98 to 'tl'i 't counter for the start of the next count cycle.
'urtibr of pulses set into the accumulator counter 40 ch week interval is proportional to the staff salary ecit overhead factor; and the total number of rvals for wirhich pulses are accumulated in each can deteititined by the space between start and l on the Board 12; it follows that the total number 'of pulses. accumulated by the counter 40 in each horizontal scan represents the total cost attributable over twelve months jects), or so that the pulses are accumulated for one or more selected months for all projects and all staff members, or for any desired combination of particular months and particular projects, up to and including all months and all projects.
The manual selector switches 18 include a group of fourteen project switches (one for each project up to the maximum number that can be accommodated); a group of 12 month switches, one for each of the months represented in the vertical columns .I through D; and a total switch. These switches permit four different operating modes to be selected. In the first, or project, mode, the user presses one or more project buttons in the group 18, to select the particular project or projectsdes'ired, and the device then calculates the cost of the selected projects over a twelve month period, taking account of the different overhead factors assigned to each project, the length of time each staff member is assigned to each project, and the different salary rates which those staff members are paid. In the second, or month mode, the user presses one or more month switches in the group 18, and the board calculates the partial cost, for those months, of all projects entered on the board, taking the same overhead, salary, and staff assig'nment information into account. In the third, or hybrid mode, the user presses one or more project switches and one or more month switches to calculate the partial cost of the selected projectsover the selected months, taking all information into account. I' the fourth, or total mode, the user presses the total switch, andthe board calculates the total cost of all projects for the entire twelve month period, again taking all information into account. In each case, the resulting cost figure calculated is displayed onthe read-out 16.
Selector circuit 94 also responds to the project plugs 308 in such a manner hat the selection gate 92 takes account of the The quantity entered into the read-out 16 represents the total number of pulses accumulated by the accumulator counter 40 over a single complete scan of all horizontal lines in the board 12 (although gate 92 is not necessarily open during that entire scan). At the end of a complete scan, a pulse on a lead 98 resets the accumulator counter 40 to zero, and a new pulse accumulation cycle begins with the start of the next scan of board 12. During each board scan, the read-out 16 retains the total cost accumulated during the preceding scan, until it is cleared and reset when a new cost is arrived at upon the conclusion of the next scan.
Gates 42 progressively increase the weights of the clock pulses accumulated, by applying these pulses to successively more significant decades of counter 40. The increased pulse weight permits the counting interval of counter 46, and thus the open time of gate 44, to be correspondingly reduced, provided counter 78 is also satisfied more rapidly; i.e., gates 80 must apply clock pulses at successively greater weights to successively more significant decates of counter 78. Each of the counters 78 and 40 has three decades which count independently. In pre-setting counter 78, the level of the first decade is set equal to the least significant digit, the second decade to the next significant digit, and the last decade to the most significant digit, of a three digit number expressing the pre-set level. At the start of each week interval, only a first gate in circuit 80 is enabled, to pass the clock pulses (divided by five) only to the least significant decade of circuit 78; and at the same time, only a first gate in circuit 42 is enabled, to pass clock pulses only to the least significant decade of counter 40. At this time, the pulses counted represent ten cents each. When the least significant decade of counter 78 is satisfied, a signal on cable 102 disables the first gates and enables only the second gates of both circuits 80 and 42. Thereafter the pulses counted have a dollar weighting, and are passed to the next significant decades of counters 78 and 40, until that decade of counter 78 is satisfied. Then another signal on cable 102 disables the second gates and enables only the third gates of both circuits 80 and 42. Thereafter the same pulses counted have a ten dollar weighting, and are passed to a still more significant decade of the counters 78 and 40, until that decade (the most significant) of counter 78 is satisfied. The output of that most significant decade is then applied over lead 79 to counter 76 and to restore gates 80 and 42 to their initial conditions for the start of the next count cycle of counter 78.
The time saving which is thus achieved initially takes the form of shorter week intervals, i.e., the set times offlip-flop 70. In order for reductions in the lengths of the week intervals to be reflected in a shorter overall scanning time for, each horizontal line 52 of the time field matrix, the passage of clock pulses to the horizontal scanner 54 is controlled by a horizontal scanner gate 100 enabled by the reset output of flip-flop 70 to advance the scanner 54 to the next week line 50 as soon as the previous week interval terminates. Conversely, the set condition of flip-flop 70 interrupts the progress of the scan during the performance of each weekly count by circuits 76 and 78.
The end result is that the time required for counting enough clock pulses to represent a given total cost is substantially reduced, because the counting of dollars and tens of dollars can be accomplished far more rapidly with dollarand lO-dollar-weighted pulses, respectively, than it could be with dimeweighted pulses. But at the same time, dime resolution is preserved, by counting dime digits with dime-weighted pulses. As a result, both large and small totals can be calculated rapidly, and with uniformly fine resolution.
Detailed System Operation FIG. 3 is simplified, to permit the reader more easily to grasp the broad outlines of the system. For a fuller explanation, the readers attention is now directed to FIGS. 4A through 4E, which constitute a complete block diagram, and to FIGS. 6 through 10 which show additional circuit detail.
As seen in FIG. 7, the detailed circuit of the clock 48 includes a free-running multivibrator or other oscillator circuit 48.1 driving a two-stage Johnson counter formed of flip- flops 120 and 122. The flip-flop outputs are decoded into four clock phases by a one-out-of-four decoder 48.3 comprising coincidence gates 124 through 127 whose input terminals are connected to the outputs of flip- flops 120 and 122 in the appropriate code pattern.
Clock phase 1, the output of gate 124, is used to step the horizontal scanner 54. Clock phase 2, the output of gate 125, is the pulse stream passed intermittently by the computation control gate 44, and conveyed over lead 121 to the input of accumulator counter 40. It also is applied to the divide by five circuit 82, to generate a pulse stream designated phase 2/5 which steps the salary counter 78. Clock phase 3, the output of gate 126, is a pulse which occurs once at the end of each complete scan of the time field matrix 50,52. It is used to strobe the read-out 16, to reset the horizontal scanner 54 after each horizontal scan, to generate start" and stop" pulses traceable to the stafi assignment plugs 31, to gate the salary count output on lead 79, and to synchronize the operation of the project counter 76. Clock phase 4," the output of gate 127, is a pulse which recurs at a weekly rate (in the sense in which the horizontal scan is quantized by increments regarded as weeks). These pulses are used to synchronize: the reset of a horizontal scan flip-flop; a general purpose end-of-board-scan reset signal; the start and stop week interval" signals; and the start of each week interval salary rate count.
Looking next at FIGS. 4B and 7, the numerical read-out 16 displays the results of the cost calculation when strobed by a read-out command appearing on a lead when a coincidence gate 112 is enabled. The logical condition which enables this gate is the coincidence of three signals. One of these signals, which appears on lead 144, and is labeled after horizontal scan, occurs after the completion of the scan of each horizontal line 52. Another signal is applied over a lead 131, and is labeled start horizontal scan; that signal appears at the start of the scan of the next horizontal line 52. The third signal is a clocking pulse labeled phase 3, which is one of the four output phases available from the clock circuit 48. Clock phase 3 appears once at the end of each complete scan of the entire display board 12. Thus, gate 1 12 assures that the numerical read-out 16 is strobed to read out the cost calculation only after the end of the scan of the last horizontal line of the board.
At the time that the read-out signal appears on lead 110, the individual decimal digits of the cost calculation, representing units of dollars through millions of dollars, are supplied in appropriately coded form by respective decades 40.2 through 40.8 of the accumulator counter 40 over respective input cables 1 13.0 through 113.6. The information is then decoded according to the requirements of the read-out 16 by respective decoder circuits 114.0 through 114.6, and is supplied over cables 118.0 through 118.6 to read-out stages 16.0 through 16.6 respectively. As seen in FIG. 7, the read-out 16 displays, for example, a cost figure of $3,947,685.
The weight of these pulses counted varies, depending upon whether they are being fed at any given moment to a dime decade 40.1, a dollar decade 40.2, or the subsequent decades 40.3 through 40.8 which recognize the clock phase 2 pulses as having a weight of ten dollars each. Counter stages 40.3 through 40.8 are cascaded in the conventional manner, so that their respective outputs represent tens of dollars through millions of dollars respectively.
The application of the clock phase 2" pulses to the various counter stages is governed by decade control gates 42. Initially a dime counter input coincidence gate 42.1 is enabled by an input labeled LSD unsatisfied on a lead 238, so that the pulses on lead 121 pass through the gate to be counted by the dime decade counter 40.1. Each time this counter is satisfied, and during the interval when the input LSD unsatisfied is still available on lead 238, the overflow output pulses from dime counter 40.1 pass through a dime counter output coincidence gate 42.4 and a dollar counter input OR gate 42.2 to the input of a dollar decade counter 40.2. As a result, every ten dimes counted by decade 40.1 is registered as a dollar in decade 40.2. i
A switch-over in pulse weight occurs when the input LSD unsatisfied disappears from lead 238, thus disabling dime counter input and output gates 42.1 and 42.4 respectively, and in its place there appears on lead 240 an input labeled LSD satisfied which, together with a second input labeled NSD unsatisfied" initially appearing on lead 246, enables a dollar counter input coincidence gate 42.3. This takes the dime counter 40.1 out of the counting chain, and passes the clock phase 2 pulses directly through gates 42.3 and 42.2 to the dollar counter 40.2. At this point, the same phase 2" pulses which were previously counted as dimes by decade 40.1 now go directly to decade 40.2, where they are counted as dollars.
During the time that the gate input NSD unsatisfied is available on lead 246, a l-dollar counter input coincidence gate 42.6 is enabled to pass the overflowoutputs of dollar counter 40.2 to a ten dollar counter input OR gate 42.5 and then to a string of cascaded decade counter stages 40.3 through 40.8, which count tens through millions of dollars respectively.
Later the output NSD unsatisfied disappears from lead 246, and is replaced by an input labeled NSD satisfied on lead 256. Then gates 42.3 and 42.6 are both disabled, taking the dollar counter 40.2 out of the counting chain; and a ten dollar counter input coincidence gate 42.7 is enabled, with the help of an input labeled MSD unsatisfied which is initially available on a lead 270, to pass the clock phase 2 pulses directly through gates 42.7 and 42.5 to the tens through millions of dollars string of decades 40.3 through 40.8. At this point the clock phase 2" pulses have a weight of dollars each. Higher decimal orders are obtained by the cascading of decades 40.3 through 40.8; note leads 116.3 through 116.7 which apply the overflow outputs of decades 40.3 through 40.7 respectively to the inputs of their respective next higher order decades.
The output of the dime counter 40.1 is not displayed on the readout 16, since there is no need to display large amounts of money to dime resolution. The output of the dime counter is used only to step the dollar counter 40.2 via gate 42.4, and the dollar digit is the lowest decimal order displayed.
The reader's attention is directed next to the manner in which the computation control gate 44 governs the clock pulse stream in response to the start and stop plugs 31. With reference to FIGS. 4C and 8, it is seen that the scanning of the time field matrix 50,52 is accomplished by a horizontal scanner 54 and a vertical scanner 56. The vertical scanner includes a counter 56.1, a one-out-of-57 decoder 56.2 and 56 coincidence gates 56.3. The horizontal scanner includes a counter 54.1 and a one-out-of-SO decoder 54.2.
The counter 54.1 is driven by clock phase 1 pulses whenever the latter are able to pass through the horizontal scan coincidence gate 100. This gate is enabled when it receives an input signal on a lead 172, labeled not accumulating." This signal appears when the accumulator counter 40 is not presently accumulating cost pulses. Only at such times can the scanner 54 be advanced to the next week line without cutting short the previous week's pulse accumulation.
Each clock phase 1 pulse that passes through the gate 100 advances the horizontal scan counter 54.1 one increment. At all times the current quantity in the counter 54.1 is stored in six flip-flop stages 134, and read out as a six-bit binary coded word in bit parallel form on respective leads 132 going to the horizontal scan decoder 54.2. This circuit decodes the quantities one through 50 as they are read out successively on the leads 132, and applies the outputs to energize in turn: a lead 131; the 48 lines 50; and a lead 133. The signal on lead 131 (labeled start horizontal scan) appears once at the start of each horizontal scan to provide a synchronizing pulse employed at various places throughout the computing circuit. The 48 leads 50 (labeled W1 through W48 respectively) are the sequentially energized vertical week conductors of the time field matrix, representing the 48 weeks in a simplified year. Lead 133 (labeled end of horizontal scan") is energized once at the end of each horizontal scan. After the start horizontal scan signal on lead 131 terminates, i.e., while the scan of leads 50 and 133 is in progress, an inverter stage 135 provides a horizontal scan" signal on an output lead 137 to indicate that the scan is then going on.
For each week conductor 50 which is energized at a given instant, if that conductor has a start or stop plug 31 in the time field matrix, the voltage on the conductor 50 is connected unidirectionally through the diode 31C of that plug to the associated one of the 56 horizontal project and staff conductors 52. Then, if that conductor 52 has a staff plug 32, the voltage is connected by the plug diode 32A of its fixed prong 32 to the associated one of 56 leads 51 leading to the associated one of the 56 coincidence gates 56.3 which form part of the vertical scanner 56.
In this illustrative embodiment of the invention, the specific choice of 56 horizontal staff lines 52 and 56 gates 56.3 means the'board 12 is designed to accommodate up to 56 different staff members. Any one project can have from one to 56 staff members assigned thereto as long as the total number of staff members assigned to all the projects does not exceed 56. Thus there is a possibility of up to 56 different week-staff assignment outputs labeled W51 through W556 issuing from the horizontal lines 52 of the time field matrix and passing over leads 51 to their respective vertical scan gates 56.3.
The vertical scan is accomplished by energizing each of the 56 gates 56.3 in the proper sequence to pass any signals WS1" through WS56 which may be present, in that order. The enabling signals to the gates 56.3 are provided by the vertical scan counter 56.1, comprising six flip-flop stages 136 the outputs of which are decoded by the one-out-of-57 circuit 56.2 to energize each of 57 conductors 138.1 through 138.57 in that order. The first 56 of these decoder output conductors 138.1 through 138.56 enable the 56 vertical scan gates 56.3 to pass the signals WSl through WS56" in succession.
Counter 56.1 is stepped to achieve the described gateenabling sequence by pulses applied over a lead 140, and derived from the end of horizontal scan signal on lead 133. This counter stepping pulse is controlled by a vertical scan coincidence gate 142, which is enabled by a signal on lead 172 indicating a not accumulating condition of the counter 40 between horizontal scans, and the next clock phase 2 pulse after a horizontal scan.
The output of the gate 142 is also applied over a lead 144 as an after horizontal scan signal which performs several functions in the computing system. One of these is to set a horizontal scan flip-flop 146, the set output of which enables a coincidence gate 148 so that the next clock phase 3 pulse emerges on a lead 150 to reset all the flip-flop stages 134 of the horizontal scan counter 54.1. This restores the counter to a zero count for the start of the next horizontal scan. The horizontal scan flip-flop 146 is later reset by the next clock phase 4" pulse.
At the conclusion of each vertical, or entire board scan, the decoder 56.2 provides an end of board scan signal on its 57th and last output lead 138.57. That signal passes through a coincidence gate 152, when it is enabled by the signal on lead 172 (indicating that the accumulator counter 40 is not accumulating between week intervals), the start horizontal scan signal on lead 131, and clock phase 4. Thus, after the last Week of the last horizontal scan in each complete scan of board 12, as the first horizontal scan of the next complete board scan is about to start, a clock phase 4 pulse enables gate 152, thus driving an amplifier 154 to provide a general purpose reset" signal on an output lead 98.2 which is employed throughout the system at the end of each complete board scan. One of the functions of this signal is to reset all the flip-flop stages 136 of the vertical scan counter 56.1 at the end of a complete board scan. Another of its functions is to reset all the decades 40.1 through 40.8 of the accumulator counter 40 (see FIGS. 4B and 7). Other functions will appear as this description continues.
Any pulses WSI through W856 which are passed by the vertical scan gates 56.3 appear on respective gate output leads 160.1 through 160.56 and are all funneled through an OR gate 162 and applied over an output lead 164 to the selection gate 92. That gate responds to the selection signal on a lead 166 to pass the pulses WSl through WS56 over a lead 167 in accordance with the operating mode determined by the selector circuit 94, as described below.
As seen in FIGS. 4E and 10, the W81 through WS56" pulses on lead 167 pass through a coincidence gate 170 when the latter is enabled by: a signal on lead 172 coming from the reset" output of the week interval flip-flop 70, representing the not accumulating condition of the accumulator counter 40; a synchronizing pulse from clock phase 3"; and the horizontal scan signal on lead 137, indicating that such a scan is in progress. The latter signal, which is the inverse of the start horizontal scan signal on lead 131 (FIGS. 4C and 8), insures that the signals detected on lead 167 by gate 170 are truly WSl W556" signals. Because of the mutually exclusive time relationship between the start horizontal scan signal on lead 131 and the W1 through W48" horizontal scan signals on week lines 50, Pl-P56 pulses derived from leads 200 are time-multiplexed with the WSl-WS56 pulses on leads 52, 51, 160, 164, and 167. Thus, although they share these conductors in the physical domain, the Pl-P56 and WS1WS56signals are separated in the time domain, and thus can be easily sorted out by gating with the signal on lead 131, or its complement on lead 137, respectively.
The output of gate 170 is applied as the start-stop stafi assignment signal over a lead 174 to toggle a stafi assignment flip-flop 60.1. This flip-flop is initially in a reset condition; therefore the first plug 31 pulse to hit the toggle input during a horizontal scan (the start staff assignment signal) sets the flip-flop. The set output then appears on a lead 175 and passes through an OR gate 176 to provide one of the enabling inputs for the week interval coincidence gate 46. The other logical conditions for enabling gate 46 are the not accumulating signal on lead 172, indicating that the accumulator counter 40 is not presently accumulating, and an input on a lead 178 labeled M1 M12, indicating that the currently scanned one of the twelve months in the year has been included in the computation by means of the manual selector switches 18. When all these conditions are satisfied, the next clock phase 4 input (which occurs weekly on lead 72) passes through the week interval gate 46 and emerges on lead 180 as the start week interval signal to set the week interval flip-flop 70 for the current week count. The set output of this flip-flop, appearing on lead 182, represents the accumulating condition of the accumulator counter 40. One of its function is to enable the computation control gate 44, as discussed above in connection with FIGS. 4B and 7. Thus, setting the flip-flop 60.1 starts an accumulation interval for the counter 40 when a horizontal scan of the time field matrix 50, 52 detects the first, or start plug 31, and results in a first W81 to WS56pulse.
The next plug 31, resulting in a second gate output signal (stop staff assignment) on lead 174 to flip-flop 60.1, toggles that flip-flop back to reset" and thereby terminates the set output on lead 175 which had passed through gate 176 to enable gate 46. But in the design of this illustrative computing system, an arbitrary choice has been made that the accumulating interval of counter 40 shall include both the initial and ter minal weeks, i.e., the week lines having both the start and the stop plugs 31 respectively. (This means that the minimum staff assignment interval is two weeks, represented by a pair of start and stop plugs 31 located in consecutive week positions.) In order to keep the week interval coincidence gate 46 enabled during the terminal week, after staff assignment flip-flop 60.1 is reset, there is provided a terminal week staff assignment flip-flop 60.2. The first, or start plug 31 pulse, when it emerges from gate 170, appears on a lead 191 and is applied as a set" input to the initially reset terminal week staff assignment flip flop 60.2. The latter then remains in the set condition through the terminal week interval of the staff assignment period. While it is in that condition, a set" output appears on lead 188 and transits the OR gate 176 to enable the week interval gate 46 during the terminal week interval.
At the end of each week interval, a stop week interval" signal appears on a lead 193. If a coincidence gate 197 is then enabled, it provides an output to reset the flip-flop 60.2. The gate 197 in turn is enabled by a reset output signal from flipflop 60.1, applied over a lead 189, which becomes available when flip-flop 60.1 is reset at the start of the terminal week interval. Therefore the first of the signals appearing on lead 193 which finds both flip-flop 60.2 set and gate 197 enabled is the one occurring at the end of the terminal week interval. Thus the terminal week flip-flop 60.2 is reset at that time, to restore its initial condition and terminate the signal on lead 188. Consequently, after the terminal week neither of the input leads to OR gate 176 is energized, and there is no longer an output from that OR gate to enable the week interval gate 46. Thus the following weeks are excluded from the computation, until the next start plug 31 appears.
It is possible to use more than one pair of start and stop plugs 31 on a single horizontal line to represent two or more staff assignment intervals, with a hiatus of a week or more between them. This corresponds to one staff member working intermittently on the same project.
The staff assignment flip-flop 60.1 and 60.2 must always be reset at the beginning of each horizontal scan, in order for the first plug 31 of each pair to be recognized as a start plug by setting the flip-flops, and the second plug of each pair to be recognized as a stop plug by resetting them. This initial condition is assured by a signal arriving over a lead 186 which resets both flip-flops if they were previously set. This signal can be derived by means of an OR gate 184 in two alternative ways. One is from the after horizontal scan pulse, which appears on lead 144; thus if the user neglects to put a stop plug 31 where required on the display board 12, then after each horizontal scan of 48 weeks has been completed, flip-flops 60.1 and 60.2 will be reset. Secondly, as further insurance, at the end of each complete board scan, when a general reset signal appears on lead 98.2, it comes through the OR gate 184 and over lead 186 to reset the flip-flops 60.1 and 60.2, if necessary. If the flip-flops have already been reset, e.g., by a stop plug 31, the signals on lead 186 will not affect them.
This calculating display board can be used in a month mode, i.e., calculating partial costs for all projects within a selected time frame consisting of one or more consecutive months which the operator selects by means of switches 18. In that mode, it is possible for a start plug 31 to be detected before the scan of the selected time frame begins. In that case, staff assignment flip-flops 60.1 and 60.2 are set too soon, but do not take effect until the Ml-M12" signal appears on lead 178 to enable the week interval gate 46.
It is also possible, in that operating mode, for a stop plug 31 to be detected after the scan of the selected time frame ends. In that case, no weekly signal on lead 72 can transit the gate 46 to set flip-flop 70 in any week after the end of the selected time frame, because gate 46 is then deprived of its enabling Ml-M2 signal on lead 178. Therefore, after the scan passes beyond the selected time frame, no week interval can be started.
But this technique of blocking the start of a week interval also blocks the production of the signal on lead 193 which normally resets flip-flop 60.2; due to the fact that that signal is generated only at the end of a week interval which has been started and has run its course. Therefore a special flip-flop reset signal, derived from the Ml-M12 signal on lead 178 and an inverter stage 192, arrives over a lead 195 to reset the flip-flop 60.2 when the signal on lead 178 turns off, indicating that there is no longer a month of interest being scanned (i.e., the selected time frame is now over). Note that this logic assumes the months of the selected time frame are consecutive,

Claims (46)

1. A calculating display device comprising: a visible display surface, means mountable on said surface for visibly displaying information, electrical calculating means requiring variable information, electrical input means responsive to said visible display means to derive said variable information therefrom and to impart said information to said calculating means; said display surface including a first section for indicating a first variable to be included in said calculation, said section being adapted for mounting an electrical connector, said visible display means including a first electrical connector and visible indicator which is adapted to be mounted on said first section, said first electrical connector being visible in said first display surface section to represent said first variable, said input means including electrical circuitry responsive to said first electrical connector when mounted in said first display surface section to make an electrical connection having information significance to said calculating means concerning said first variable; said display surface including a second section visibly distinct from said first section for indicating a second variable to be included in said calculation, said second section being adapted for mounting an electrical connector having visible display significance concerning said second variable, said visible display means including a second electrical connector and visible indicator which is adapted to be mounted on said second section, said second electrical connector being visible in said second section whereby to represent said second variable, said input means including electrical circuitry responsive to said second electrical connector when mounted on said second section to make an electrical connection having information significance to said calculating means concerning said second variable, said calculating means performing a calculation which is a function of both said first and second variables; said first section being arranged so that the presence of said first electrical connector thereon visually indicates the inclusion of said first variable in said calculation, said second section being adapted to mount a plurality of said second electrical connectors, and arranged so that the distance along a selected axis, between a start-stop pair of said second connectors mounted therein, visually indicates the magnitude of said second variable, said input means being arranged to sense the presence of said first connector, and the distance between said start-stop pair of second connectors, and to impart such information to said calculating means, and said calculating means being arranged to respond to the presence of said first connector by calculating a quantity which is proportional to the distance between said start-stop pair of second connectors.
2. A device as in claim 1 wherein said display surface has indicia indicating that a connector in said first section represents a project, that said selected axis represents time, and that the distance between said start-stop pair of second connectors represents the duration of work on said project.
3. A device as in claim 2 wherein said input means includes a plurality of start-stop connector-mounting means in said second section spaced along said selected axis to define increments of time, and said calculating means includes a plurality of first connector test conductors associated with respective ones of said connector-mounting means and arranged for connection to a connector mounted thereon whereby to test for the presence or absence of a connector at said mounting means, means for electrically testing said first test conductors for the presence or absence of a connector in a sequence corresponding to a scan along said time axis, second test conductor means responsive to said start-stop connectors, means for accumulating a count of pulses, means for supplying pulses to said accumulator means, computation control means for gating said pulses into said accumulator, and means responsive to said second test conductors for enabling said computation control gate to start a pulse accumulation interval the first time during said scan that one of said first test conductors tests positive for a start-stop connector, and for disabling said computation control gate to terminate said pulse accumulation interval the second time during said scan that one of said conductors tests positive for a start-stop connector.
4. A device as in claim 3 wherein said computation control gate enabling and disabling means includes a count interval circuit which is settable for the duration of a count interval to enable said computation control gate, and resettable to disable it at the end of said count interval, a count interval gate controlling the setting of said count interval circuit, means for applying a start count interval signal to said count interval gate each time one of said first conductors is tested, to set said count interval circuit when said count interval gate is enabled, means for enabling said count interval gate in response to said first positive test and disabling it in response to said second positive test, and means independent of said count interval gate for thereafter resetting said counT interval circuit after each first conductor test and before the next first conductor test.
5. A device as in claim 4 wherein said count interval circuit resetting means includes means arranged to measure a count interval by counting a predetermined quantity of pulses passed while said computation control gate is enabled, and to reset said count interval circuit at the end of said count interval.
6. A device as in claim 5 wherein said count interval measuring means is arranged for adjustment of said predetermined count quantity, and comprises means for selecting said count quantity prior to the start of a count.
7. A device as in claim 6 wherein said count quantity selecting means includes means for manually selecting said count quantity from a plurality of alternatives prior to said calculation, whereby to enter said count quantity into said calculation as a third variable.
8. A device as in claim 7 wherein said count quantity selecting means includes a plurality of count quantity selecting circuits associated with respective count quantities, and having respective electrical inputs for selecting said circuits, and at least one of said electrical connectors includes means for making electrical connection to a selected one of said circuit inputs whereby placement of said connector selects one of said circuits.
9. A device as in claim 8 wherein said circuit selecting means on said connector is manually changeable, and said circuit inputs are arranged to cooperate with said manually changeable means so that a manual change thereof determines which circuit is selected by said connector.
10. A device as in claim 9 wherein said manually changeable connector means includes a plurality of prong-receiving recesses on said connector and an electrical connecting prong which is removable from, and replaceable in, any one of said recesses, and respective ones of said circuit inputs are positioned in relation to respective ones of said recesses to complete respective electrical connections to said prong when it is located therein, whereby the positioning of said prong in one of said recesses selects one of said circuit inputs.
11. A device as in claim 8 wherein at least one of said count quantity selecting circuits includes manual switch means arranged to adjust the count quantity selected by said circuit.
12. A device as in claim 11 wherein said manual switch means includes a device which is arranged to encode count quantities, and is manually adjustable to change the quantity encoded thereby, and said count quantity selecting circuit is arranged to cause the predetermined count quantity of said count interval measuring means to equal said quantity encoded. 13. A device as in claim 6 wherein said count interval measuring means is a countdown counter, and said count quantity selecting means is arranged to load said predetermined count quantity into said countdown counter at the start of a count interval measurement.
14. A device as in claim 5 wherein said count interval measuring means includes a pulse repetition rate divider connected to receive the same pulses as are received by said accumulating means, and at least one counter arranged to receive and count pulses from said rate divider.
15. A device as in claim 5 wherein said count interval measuring means and said accumulating means each includes a plurality of individual counter stages representing respective numerical orders and respective gates controlling the input of pulses to said stages, each pair of corresponding counter stages of said count interval measuring and accumulating means having the same count modulus, and each pair of corresponding counter stage control gates of said count interval measuring and accumulating means having common gate control circuitry whereby each gate of said pair is enabled and disabled at the same time as the other.
16. A device as in claim 15 wherein said common gate control circuitry includes means to enable and disable said pairs of gates in order of inCreasing numerical significance of their associated counter stages in successive response to the respective successive overflow outputs of count stages of increasing numerical significance of said count interval measuring means.
17. A device as in claim 3 wherein said second test conductor means includes a plurality of second test conductors crossing said first test conductors, said second section of said display surface having regions corresponding to respective ones of said second conductors, each such region having a plurality of said start-stop connector mounting means each located at the intersection of a respective one of said second test conductors with a respective one of said first test conductors, said start-stop connector mounting means being arranged so that a start-stop connecter received by any one of them connects the second test conductor associated therewith to the first test conductor associated therewith so that a connector test signal applied to one of said associated test conductors emerges as a test output on the other of said associated test conductors to indicate the presence of said start-stop connector, and project scanning means for selecting said second test conductors in sequence as said first conductors are scanned, said computation control gate enabling means being arranged to respond to a positive connector test output from the currently selected test conductor intersection.
18. A device as in claim 17 wherein said first section of said display surface is arranged to indicate a correspondence between each project connector mounted thereon and an associated start-stop connector mounting region in said second section, and project connector detection circuitry is arranged to cooperate with said project scanning means to respond to the presence of a project connector by providing a project connector detection signal when and only when a project connector is present in said first section and the particular one of said second test conductors which is associated therewith is selected, and project connector circuitry is responsive to said project connector detection signal to permit the enabling of said computation control gate during the selection of said particular second connector test conductor only if there is a project connector detection signal associated therewith.
19. A device as in claim 18 wherein said visible display means includes a plurality of calculation enabling electrical connectors, and said display surface includes a third section adapted to mount said enabling connectors at positions therein which are visually correlated with respective ones of said second test conductors and each indicating a given calculation concerning the project represented by an associated one of said project connectors mounted in said first section, and including circuitry responsive to saId enabling connectors so that a signal representing detection of a stop-start connector is blocked unless an enabling connector is present in the position corresponding to the associated one of said second test conductors.
20. A device as in claim 19 wherein said third section contains means for indicating that said project enabling connectors represent the assignment of individuals to the projects represented by said associated project connectors.
21. A device as in claim 20 wherein said computation control gate enabling and disabling means includes a count interval circuit which is settable to enable said computation control gate and resettable to disable it, means for setting said count interval circuit in response to said first positive test, means including at least one counter for measuring a count interval by counting a predetermined quantity of pulses and thereafter resetting said count interval circuit to terminate said count interval, said count interval measuring means being arranged for adjustment of said count quantity, and means responsive to the one said project enabling connectors which is associated with a given one of said second test conductorS to select for said counter a given count quantity whereby to select a given count interval duration in connection with a given enabling connector during the time said associated second test conductor is selected by said scanning means.
22. A device as in claim 21 wherein said count quantity selecting means includes a plurality of count quantity selecting circuits each having a respective electrical input for selecting that circuit, and said project enabling connectors are removable and replaceable and include means for making a circuit-selecting electrical connection to one of said inputs of said quantity selecting means whereby placement of one of said connectors selects one of said count quantity selecting circuits.
23. A device as in claim 18 wherein said project enabling connector detection circuitry employs one set of said start-stop connector test conductors as a common line for said project connector detection signal, and includes means for time-division multiplexing to distinguish said start-stop connector detection and project connector detection signals on said common line.
24. A device as in claim 22 wherein said project connector circuitry includes a count interval circuit which is settable to enable said computation control gate and resettable to disable it, means operative on the first appearance of a start-stop connector detection signal to set said count interval circuit whereby to start a pulse accumulation, and means arranged to measure a count interval by counting a predetermined quantity of pulses during the time said computation control gate is enabled and to reset said count interval circuit at the end of said count interval, means for selecting said predetermined count quantity, and means responsive to said project connector detection signals to count said project connectors and to activate said count quantity selecting means each time a project connector is detected.
25. A device as in claim 24 further comprising selection means controlling the accumulation of pulses by said accumulator counter, including manually operable individual project selection switches having an assigned numerical order, and means responsive to said project selection switches and said project connector counter to cause said selection means to permit the accumulation of pulses when one or more of said project selection switches is operated and the order of any one of the currently operated projected selection switches corresponds numerically to the current count in said project connector counter.
26. A device as in claim 25 further comprising a manually operable total switch connected to provide a signal to said selection means which substitutes functionally for any and all of said responses to said individual project selection switches.
27. A device as in claim 25 further comprising means responsive in a selective pattern to said first test conductors, when those in said pattern are selected for start-stop connector test scan purposes, to cause said selection means to permit a pulse accumulation concurrently with the start-stop connector test scan selection of any of said first test conductors which are included in said pattern, and time switches for manually selecting said pattern.
28. A device as in claim 27 further comprising means including a gate arranged to disconnect said first test conductors from said selection means, and responsive to said project selection switches to connect said first test conductors in said pattern to said selection means when all of said project selection switches are simultaneously not operated.
29. A device as in claim 27 wherein said means responsive in a selective pattern includes means for connecting said first test conductors in groups such that the first test conductors of each group are commonly controllable, and said time switches are each arranged to control a respective one of said groups.
30. A device as in claim 27 further comprising means responsive to said time switches to detect a condition in which all such switches are simultaneously not operated, and means responsive to detection of such condition to provide a signal in a non-selective pattern which substitutes functionally for the operation of any one or more of said time switches.
31. A device as in claim 30 further comprising means for enabling and disabling said computation control gate enabling means, and responsive to said time switches for enabling said gate enabling means during any time that none of said time switches is operated, and during any time that one or more of them is operated and the first test conductor currently selected furing a scan is one which is a currently operated time switch.
32. A device as in claim 4 wherein said means for enabling and disabling said count interval gate includes a first time interval circuit arranged to be set in response to said second positive test, a terminal time interval circuit arranged to be set in response to said first positive test and not to be reset in response to said second positive test, means for enabling said count interval gate when either of said time interval circuits is set and disabling it when both of them are reset, and means for resetting said terminal time interval circuit upon resetting of said count interval circuit if said first time interval circuit is already reset.
33. A device as in claim 32 further comprising means for resetting both of said time interval circuits after selection of the last of said first test conductors in each time axis scan.
34. A device as in claim 32 further comprising means responsive in a selective pattern to said first test conductors, when those in said pattern are selected for start-stop connector test scan purposes, to provide a necessary input to said count interval gate concurrently with the start-stop connector test scan selection of any of said first test conductors which are included in said pattern, time switches for manually selecting said pattern, and means for resetting said terminal time interval circuit upon termination of a signal from one or more operated time switches. 35. A device as in claim 20 wherein said computation control gate enabling and disabling means includes a count interval circuit which is settable to enable said computation control gate and resettable to disable it, means for setting said count interval circuit in response to said first positive test, means including two counters connected in cascaded relationship for measuring a count interval by counting respective predetermined quantities of pulses and thereafter resetting said count interval circuit to terminate said count interval at the end of a time proportional to the product of said count quantities, said counters being arranged for individual adjustment of their respective count quantities, means responsive to the one of said project connectors which is associated with one or more of said second test conductors to select for one of said counters a given count quantity whereby to select a given partial count duration in connection with a given enabling connector associated with a given project connector during the time any second test conductor associated with said project connector is selected by said scanning means, and means responsive to an enabling connector which is associated with said second test conductor to select for the other of said counters a given count quantity whereby to select a given partial count duration in connection with the assignment of an individual to that project which is associated with that project enabling connector, during the time the particular second test conductor associated with that project enabling connector is selected by said scanning means.
36. A calculating display device comprising: A visible display surface, means mountable on said surface for visibly displaying information, electrical calculating means requiring variable information, electrical input means responsive to said visible display means to derive said variable information therefrom and to impart Said information to said calculating means; said display surface including a project section for visually indicating various projects, a staff section for visually indicating the assignment of one or more staff members to each of said projects, and a time field for visually indicating the duration of said staff assignments, each of said sections being adapted for mounting electrical connectors thereon, said visible display means including a plurality of project representing electrical connectors mountable on said project section, a plurality of staff-representing electrical connectors mountable on said staff section, and a plurality of start-stop-representing electrical connectors mountable on said time field, said electrical input means making electrical connections to said project, staff and stop-stop connectors, and said electrical calculating means deriving said input information from said electrical connections and arranged to calculate, for each project staff assignment which is represented by a project connector mounted on said project section and a staff connector mounted on said staff section in a position visually correlated with said project connector, a cost figure which is proportional to the distance between a pair of start-stop connectors mounted in said time field in positions visually correlated with said staff connector; said display surface having a plurality of visibly distinct regions extending across said project and staff sections and said time field whereby to correlate visually a project connector mounted on said project section representing a given project with a staff connector mounted on said staff section representing a staff member assigned to that project and a pair of start-stop connectors on said time field indicating the duration of that staff assignment, said input means including respective electrical connectors associated with respective ones of said regions, said calculating means scanning said regions in sequence by selecting said regional conductors in sequence, and said calculating means being designed to calculate a subtotal cost each time it selects a given regional conductor provided there is at least a start connector and a staff connector associated with that regional conductor, and a total cost which is the sum of all said subtotal costs calculated.
37. A device as in claim 36 wherein said calculating means includes means for counting said project connectors in the course of selecting successive ones of said regional conductors, and said calculating means is designed to calculate a subtotal cost only for those regional conductors which have a project connector associated therewith and those which follow a regional conductor having a project connector associated therewith, whereby for the purposes of said calculation the assignment of a plurality of staff members to a single project is represented by a single project connector mounted on said project section and associated with a given regional conductor plus a plurality of staff connectors mounted on said staff section, the first of which is associated with that same regional conductor and the others of which are associated with regional conductors which follow it in scanning order.
38. A device as in claim 36 further comprising means for treating the latest-time-representing stop plug mounting position associated with each regional conductor as the equivalent of a stop plug during the selection of a given regional conductor if there is a start plug but no stop plug associated with that regional conductor.
39. A device as in claim 37 further comprising a plurality of project selecting switches, said calculating means being designed to calculate a subtotal cost for those regional conductors which are associated with project plugs representing projects selected by one or more operated project selector switches.
40. A device as in claim 39 wherein said calculating means is designed also to calculate a subtotal cost for all regional conductors associated with aNy project connector on said project section when none of said project selector switches is operated.
41. A device as in claim 37 further comprising a plurality of time selection switches for selecting various time increments represented on said time field, said calculating means being designed to calculate a subtotal cost for any regional conductor which is proportional to that portion of the distance between start-stop connectors mounted on said time field in association with said regional conductor which is selected by said time selection switches.
42. A device as in claim 41 wherein said calculating means is designed also to calculate for each regional conductor a subtotal cost which is proportional to the entire distance between each pair of start-stop connectors whenever none of said time selection switches is operated.
43. A device as in claim 37 further comprising: a plurality of project selecting switches and a plurality of time selection switches for selecting various time increments representd on said time field, said calculating means being designed to calculate a subtotal cost only for those regional conductors which re associated with project plugs representing projects selected by one or more operated project selector switches when one or more of said switches is operated and to calculate a subtotal cost for a given regional conductor which is proportional to that portion of the distance between start-stop connectors mounted on said time field in association with said regional conductor which is selected by said time selection switches when one or more consecutive-time-increment-representing switches are operated and none of said project switches is operated at the same time.
44. A device as in claim 43 wherein said calculating means is designed to calculate a subtotal cost only for those regional conductors which are associated with project plugs representing projects selected by one or more operated project selector switches and each subtotal cost for any regional conductor is proportional to that portion of the distance between start-stop connectors mounted on said time field in association with said regional conductors which is selected by said time selection switches when one or more consecutive-time-increment-representing switches are operated and one or more of said project switches are also operated at the same time.
45. A device as in claim 43 further comprising a total switch, said calculating means being responsive to said total switch to calculate a subtotal cost for all said regional conductors, each said subtotal cost being proportional to the entire distance between a pair of start-stop connectors associated with said regional conductor.
46. A device as in claim 37 wherein said project connectors comprise means for selecting among a plurality of project factors, said input means is responsive to said project factor selection means on said project connectors to sense the selection of a project factor for the individual project represented by said connector, and said calculating means is designed to apply said proJect factor as a multiplier in calculating the subtotal cost for each regional conductor associated with said project connector.
47. A device as in claim 37 wherein said staff connectors comprise means for selecting among a plurality of staff factors, said input means is responsive to said staff factor selection means on said staff connectors to sense the selection of a staff factor for the individual staff member represented by said connector, and said calculating means is designed to apply said staff factor as a multiplier in calculating a subtotal cost for each regional conductor associated with said staff connector.
48. A device as in claim 37 wherein said project connectors comprise means for selecting among a plurality of project factors, said staff connectors comprise means for selecting among a plurality of staff factors, said input means is responsive to said project and staff factor selection means on said proJect and staff connectors to sense the selection of project and staff factors for the individual projects and staff members represented by said connectors, and said calculating means is designed to apply said project and staff factors as multipliers in calculating a subtotal cost for each regional conductor associated with said project and staff connectors.
US39482A 1970-05-21 1970-05-21 Calculating display board Expired - Lifetime US3660645A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US3948270A 1970-05-21 1970-05-21

Publications (1)

Publication Number Publication Date
US3660645A true US3660645A (en) 1972-05-02

Family

ID=21905708

Family Applications (1)

Application Number Title Priority Date Filing Date
US39482A Expired - Lifetime US3660645A (en) 1970-05-21 1970-05-21 Calculating display board

Country Status (1)

Country Link
US (1) US3660645A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3783257A (en) * 1970-08-10 1974-01-01 Singer Co Response system with improved computational methods and apparatus
US3846702A (en) * 1973-06-21 1974-11-05 Ism Corp Time accumulator man-hours expended
US3990053A (en) * 1973-10-15 1976-11-02 International Business Machines Corporation Stored program selector for electronic calculator
US4258251A (en) * 1976-06-29 1981-03-24 University Of Strathclyde Apparatus for use in ordering trials
US4409657A (en) * 1980-05-20 1983-10-11 Lely Cornelis V D Time clock for recording the identification of a person
US4847791A (en) * 1982-08-16 1989-07-11 Martin Joseph H Timekeeping system
GB2364584A (en) * 1999-12-02 2002-01-30 Mark Stafford Gale An information device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2963222A (en) * 1953-08-24 1960-12-06 Hobart Mfg Co Computing and ticket printing scale
US2997234A (en) * 1957-09-23 1961-08-22 William R Hughes Digital multiplier
US3027548A (en) * 1956-12-17 1962-03-27 Bell Telephone Labor Inc Electromagnetic coupling arrangements
US3342979A (en) * 1963-07-22 1967-09-19 Estimatic Corp Electronic data acquisition assistant to the cost estimator
US3437740A (en) * 1967-01-09 1969-04-08 Clare & Co C P Matrix board apparatus
US3475747A (en) * 1964-03-07 1969-10-28 Shunsei Kratomi And-circuit-controlled program switch having matrix of cord connectors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2963222A (en) * 1953-08-24 1960-12-06 Hobart Mfg Co Computing and ticket printing scale
US3027548A (en) * 1956-12-17 1962-03-27 Bell Telephone Labor Inc Electromagnetic coupling arrangements
US2997234A (en) * 1957-09-23 1961-08-22 William R Hughes Digital multiplier
US3342979A (en) * 1963-07-22 1967-09-19 Estimatic Corp Electronic data acquisition assistant to the cost estimator
US3475747A (en) * 1964-03-07 1969-10-28 Shunsei Kratomi And-circuit-controlled program switch having matrix of cord connectors
US3437740A (en) * 1967-01-09 1969-04-08 Clare & Co C P Matrix board apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3783257A (en) * 1970-08-10 1974-01-01 Singer Co Response system with improved computational methods and apparatus
US3846702A (en) * 1973-06-21 1974-11-05 Ism Corp Time accumulator man-hours expended
US3990053A (en) * 1973-10-15 1976-11-02 International Business Machines Corporation Stored program selector for electronic calculator
US4258251A (en) * 1976-06-29 1981-03-24 University Of Strathclyde Apparatus for use in ordering trials
US4409657A (en) * 1980-05-20 1983-10-11 Lely Cornelis V D Time clock for recording the identification of a person
US4847791A (en) * 1982-08-16 1989-07-11 Martin Joseph H Timekeeping system
GB2364584A (en) * 1999-12-02 2002-01-30 Mark Stafford Gale An information device
GB2364584B (en) * 1999-12-02 2004-05-19 Mark Stafford Gale A smoking cessation aid

Similar Documents

Publication Publication Date Title
US3860806A (en) Electronic taximeter having programable constant furnishing means
Goldstine et al. The electronic numerical integrator and computer (ENIAC)
US4107784A (en) Management control terminal method and apparatus
US4195220A (en) Portable elapsed time recorder
US3808410A (en) Method for providing representation for needed work force in a store
DE604492T1 (en) Improvement of the calibration of power meters.
US3660645A (en) Calculating display board
US4229795A (en) Electronic maximum measuring device
US3609326A (en) Counting apparatus and method using separate counters for reference and unknown signal
CA1087750A (en) Memory fullness indicator
US4143749A (en) Totalizer for vending machine
US3917934A (en) Charge Calculator
US3459271A (en) Computing weighing scale system
US3604903A (en) Material dispensing control system
US4369493A (en) Response time monitor
EP0205743B1 (en) Storage of data in compressed form
US3651481A (en) Readout system for visually displaying stored data
US3711686A (en) Traffic volume computer
US3846702A (en) Time accumulator man-hours expended
US4165485A (en) Electronic watt-hour meter
US4280181A (en) Cash accountability control circuit for vending and like machines
US3665299A (en) Test apparatus for determining continuity paths on a multiterminal arrangement
US3943338A (en) Electric device for numerical measurement of a magnitude by a pulse counter
US3775752A (en) Job time recording and calculating method and apparatus
US4053844A (en) Card-reader integrated circuit tester