US3656657A - Apparatus for dispensing fluid mixtures in uniform proportions from pressure containers - Google Patents
Apparatus for dispensing fluid mixtures in uniform proportions from pressure containers Download PDFInfo
- Publication number
- US3656657A US3656657A US833945A US3656657DA US3656657A US 3656657 A US3656657 A US 3656657A US 833945 A US833945 A US 833945A US 3656657D A US3656657D A US 3656657DA US 3656657 A US3656657 A US 3656657A
- Authority
- US
- United States
- Prior art keywords
- dip
- container
- tube
- liquid
- pressure container
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 48
- 239000012530 fluid Substances 0.000 title claims abstract description 42
- 239000007788 liquid Substances 0.000 claims abstract description 52
- 238000004891 communication Methods 0.000 claims description 2
- 239000003507 refrigerant Substances 0.000 abstract description 2
- 238000002474 experimental method Methods 0.000 description 9
- 239000012071 phase Substances 0.000 description 5
- 239000012808 vapor phase Substances 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 238000009835 boiling Methods 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 239000004341 Octafluorocyclobutane Substances 0.000 description 2
- BCCOBQSFUDVTJQ-UHFFFAOYSA-N octafluorocyclobutane Chemical compound FC1(F)C(F)(F)C(F)(F)C1(F)F BCCOBQSFUDVTJQ-UHFFFAOYSA-N 0.000 description 2
- 235000019407 octafluorocyclobutane Nutrition 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 238000005086 pumping Methods 0.000 description 2
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 239000004479 aerosol dispenser Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- KYKAJFCTULSVSH-UHFFFAOYSA-N chloro(fluoro)methane Chemical compound F[C]Cl KYKAJFCTULSVSH-UHFFFAOYSA-N 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C7/00—Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2201/00—Vessel construction, in particular geometry, arrangement or size
- F17C2201/01—Shape
- F17C2201/0104—Shape cylindrical
- F17C2201/0109—Shape cylindrical with exteriorly curved end-piece
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/01—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
- F17C2223/0146—Two-phase
- F17C2223/0153—Liquefied gas, e.g. LPG, GPL
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/035—High pressure (>10 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/03—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
- F17C2223/036—Very high pressure (>80 bar)
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2223/00—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
- F17C2223/04—Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by other properties of handled fluid before transfer
- F17C2223/042—Localisation of the removal point
- F17C2223/046—Localisation of the removal point in the liquid
- F17C2223/047—Localisation of the removal point in the liquid with a dip tube
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/04—Indicating or measuring of parameters as input values
- F17C2250/0404—Parameters indicated or measured
- F17C2250/0426—Volume
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/06—Controlling or regulating of parameters as output values
- F17C2250/0605—Parameters
- F17C2250/061—Level of content in the vessel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F17—STORING OR DISTRIBUTING GASES OR LIQUIDS
- F17C—VESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
- F17C2250/00—Accessories; Control means; Indicating, measuring or monitoring of parameters
- F17C2250/07—Actions triggered by measured parameters
- F17C2250/072—Action when predefined value is reached
Definitions
- ABSTRACT An improvement in apparatus for dispensing mixtures of fluids having different vapor pressures, held under pressure in liquid and gas phases, in uniform proportions, from a pressurized container comprising the conventional elements of a pressure container, a perforated dip-tube extending within the pressure container through the vapor and liquid spaces of the container when charged and terminating in a closed free end in proximity to a wall of the pressure container, and means to provide controlled fluid flow fromwithin the pressure container.
- the improvement comprises providing a bottom orifice in the diptube, substantially at the end of the dip-tube which terminates in the liquid space of the container when charged with fluid, and at least one upper orifice smaller in diameter than the bottom orifice located in the dip-tube at points corresponding to the levels at which from about 10-90 percent volume of the full charge of liquid is present in the pressure container.
- the apparatus is particularly suited for removing non-azeotropic refrigerant mixtures from pressurized containers in which such mixtures are stored and dispensed.
- composition change of the mixture can amount to as much as 3 or more percent, and even composition changes of aslittle as 1 percent or below cannot betolerated in certain circumstances.
- the modification which constitutes the invention herein consists of critically arranging the size and location of the orifices in the dip-tube.
- the invention thus consists of providing a bottom orifice in the dip-tube substantially at the end thereof which terminates inthe liquid space of the container when charged with fluid, and providing at least one upper orifice each of which is smaller in diameter than the bottom orifice located in the dip-tube at points corresponding to the levels at which from about 10-90 percent volume of the full charge of liquid is present in the pressure container.
- 2,183,639 was to provide a dip-tube with an inner and outer chamber formed by a tube described in U.S. Pat. No. 1,938,036 are employed, although the tendency of the composition to change, as would occur with non-perforated dip-tube equipment, may be retarded, no real controlover the composition of the mixture withdrawn from the container is available and the composition of the mixtures withdrawn from such equipment changes progressively;
- the opening in the pressure container is in the top of the container and the perforateddip-tube extends downwardly into the container and terminates in the liquid space of the container when charged.
- the opening in the pressure container is in the bottom of the container and the perforated dip-tube extends upwardly into the container and terminates in the vapor space of the container when charged.
- FIG. 3 is a graph showing the results of experiments con- 7 ducted with three different types of equipment. Curves A, B,
- FIG. 1 is a container of any desired shape or size capable of containing fluid under pressure. Opening 2 is provided in container 1 which is in the top wall in the embodiment of FIG. 1 and in the bottom wall in the embodiment of FIG. 2.
- Perforated dip-tube 3 having a closed end 4 extends through opening 2 and extends within container 1 through vapor space 5 and liquid space 6 of the container when charged, and substantially to the opposite wall 7 of the container.
- Means to provide controlled flow of fluid from within container 1, such as a valve of conventional construction, is provided, but is not shown on the drawing.
- a connecting tube 8 may be attached to dip-tube 3 by means of flanges 9 and 10 in order to transfer fluid discharged from the container to a desired destination.
- a bottom orifice 11 is provided in dip-tube 3 substantially at the end thereof which terminates in liquid space 6 of container 1 when charged.
- the preferred size of bottom orifice 11 is such that the ratio of bottom orifice diameter 11 to the diptube internal diameter is from about 1:2 to 1:10, and still preferably from about I22 to 1:5.
- Upper orifices 12 each of which is smaller in diameter than bottom orifice 11 are located in the dip-tube at points corresponding to the levels at which from about 10-90 percent volume of the full charge of liquid is present in the pressure container when charged.
- upper orifices 12 are uniformly located alone in the tube in the range indicated.
- the size of the upper orifices is such that the ratio of the bottom orifice diameter to the diameter of each upperorifice is from about 1.121 to 5:1 and still preferably from about 15:1 and 3:1.
- the upper orifices may vary in size and shape as long as the surface area of each orifice is less than the surface area of bottom orifice 11.
- the number of upper orifices 12 is not absolutely critical to this invention.
- a satisfactory working device may be constructed with only one upper orifice.
- the orifice should preferably be located on dip-tube 3 at a point corresponding to the level at which about 30-70 percent volume of full charge of liquid is present in container 1.
- the bottom orifice is preferably located in the closed end 4 of dip-tube 3. In the case of the embodiment of FIG.
- an upper orifice may be located in closed end 4 of dip-tube 3 provided this point otherwise satisfies the requirements discussed above.
- the optimum number, sizes, and locations of the bottom orifice and the upper orifices will vary within the indicated limits depending upon the specific mixture and the particular application contemplated, and can readily be ascertained by those skilled in the art by routine experimentation.
- the expression at points corresponding to the levels at which about 10-90 percent volume (and 30-70 percent volume) of the full charge of liquid refers to the levels of liquid in the container which would be created by the indicated percentage volumes of liquid based on a full charge. This may readily be determined by fixing the position of the dip-tube, filling the container to the desired volume and observing the level at which the dip-tube is wet. It is deemed desirable to express the relationship in this way since the shape of the containers used may vary substantially and have different diameters at different reference points. For the purpose of this discussion, it will be assumed that a full charge of liquid occupies 100 percent of the volume of the container. Of course, in practice, the container is never completely charged with liquid. Usually a charge of up to about 90-95 percent by volume is madeleaving 5-l0 percent by volume vapor space to allow for expansion of the liquid.
- Charge of fluid to the container may be accomplished in a conventional manner.
- the closure valve (notv shown in the drawing) of conventional construction, is opened, preferably completely for maximum flow, and either the vapor pressure of the mixture or mechanical pumping or a combination of both, may be used to discharge the mixture from the container.
- Liquid enters the orifices exposed to the liquid phase in the container while vapor enters those orifices exposed to the vapor phase in the container and also those orifices which become exposed to the vapor phase by the drop of the liquid level as the container is discharged.
- the vapor entering dip-tube 3 in this manner mixes with the liquid in the tube thereby enriching the liquid in the tube.
- the dip-tube extends through the top wall of the container and tenninates within about 0.025 inch from the bottom wall of the container.
- the dip-tube is closed at the bottom but has an orifice in the bottom wall which is 0.100 inch in diameter.
- Four upper orifices, each 0.047 inch in diameter, are provided in the side wall of the dip-tube at points corresponding to the levels at which 20, 35, 50 and 70 percent of the full charge of liquid is present in the pressure container.
- This device is tested by charging the cylinder with about 345 lbs. (75 F.) of a mixture of 10 weight SF (b.p. 83 F./760mm.)/ weight CCl F (b.p. 2 l.6 F./760mm.). This corresponds to a charge which is about 90 volume percent of the theoretical full charge. Fluid is discharged from the cylinder and the weight percent of SF in the fluid being discharged is determined at various intervals. A curve is then drawn through these experimentally determined points. The resulting curve graphically shows the variation in SF, content of the fluid as the cylinder is discharged.
- Apparatus in accordance with the bottom-entry embodiment of FIG. 2 is constructed with the same size pressure container and dip-tube with the same number and size orifices as described above for the top-entry embodiment and is charged with the same fluid mixture.
- the bottom orifice is in the side wall of the dip-tube at the same relative distance from the container wall as is the bottom orifice in the top-entry embodiment. It was found that the container discharges satisfactorily solely under the vapor pressure of the container charge, and that as in the top-entry embodiment, good control over the SP concentration in the discharged fluid is obtained. Again, instead of a progressive change in the concentration of SF component, good control is exercised over the SF concentration with the SF concentration oscillating close to the desired 10 weight percent level.
- the novel apparatus of the invention is applicable to virtually any non-azeotropic mixture of fluids under pressure in liquid and gas phases, the components of which have different vapor pressures, regardless of the boiling points of the mixture components, and regardless of the number of components.
- lllustrative mixtures suitable for use in the apparatus of the invention include the following: N and octafluorocyclobutane; CO and CI-ICIF N 0 and CCl F SF and CCl F C H and n-C H CO and ethylene oxide, and a ternary mixture of SF,, CClF and octafluorocyclobutane.
- the temperature under which the mixture components is maintained has no effect on the operation of the apparatus of the invention.
- dip-tubes can be provided to provide flexibility in flow rates; the dip-tubes can be bent in order to reach more inaccessible areas of the pressurized containers; the orifices can be of any desired shape; and the pressurized containers can be associated with aerosol type valves and used as aerosol dispensers.
- Other modifications and applications will readily occur to those of ordinary skill in the art.
- an apparatus for storing and dispensing a mixture of fluids having difierent vapor pressures and under pressure in liquid and gas phases comprising a pressure container having an opening therethrough, a perforated dip-tube in communication with said opening, which dip-tube is closed at its free end and extends within the pressure container substantially to the opposite wall thereof, and means to provide controlled fluid flow from within the pressure container; the improvement which consists of:
- Apparatus according to claim 3 in which there are from two to 10 upper orifices distributed uniformly on the dip-tube at points corresponding to the levels at which from about 10-90 percent volume of the full charge of liquid is present in the pressure container.
- Apparatus according to claim 4 in which the number of upper orifices is from three to six.
- Apparatus according to claim 7 in which there are from two to 10 upper orifices distributed uniformly on the dip-tube at points corresponding to the levels at which from about 10-90 percent of full charge of liquid is present in the pressure container.
- Apparatus according to claim 8 in which the number of upper orifices is from three to six.
- Apparatus according to claim 3 in which the opening in the pressure container is in the bottom of the container and the dip-tube extends upwardly into the container and terminates in the vapor space of the container when charged.
- Apparatus according to claim 13 in which there are from two to 10 upper orifices distributed uniformly on the diptube at points corresponding to the levels at which from about 10-90 percent volume of full charge of liquid is present in the pressure container.
- Apparatus according to claim 14 in which the number of upper orifices is from three to six.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Containers And Packaging Bodies Having A Special Means To Remove Contents (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US83394569A | 1969-06-17 | 1969-06-17 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3656657A true US3656657A (en) | 1972-04-18 |
Family
ID=25265700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US833945A Expired - Lifetime US3656657A (en) | 1969-06-17 | 1969-06-17 | Apparatus for dispensing fluid mixtures in uniform proportions from pressure containers |
Country Status (3)
Country | Link |
---|---|
US (1) | US3656657A (es) |
DE (1) | DE2028463A1 (es) |
FR (1) | FR2050005A5 (es) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4528919A (en) * | 1982-12-30 | 1985-07-16 | Union Oil Company Of California | Multi-phase fluid flow divider |
US4836018A (en) * | 1988-10-17 | 1989-06-06 | Charles Dispenza | Rain gauge with improved syphon discharge |
US5022442A (en) * | 1989-03-20 | 1991-06-11 | Acetylene Gas Company | Apparatus and method for high pressure gas mixing |
AU627632B2 (en) * | 1989-11-17 | 1992-08-27 | Union Carbide Industrial Gases Technology Corporation | Cylinder having improved mixture characteristics |
US5143288A (en) * | 1991-02-14 | 1992-09-01 | S. C. Johnson & Son, Inc. | Compressed gas aerosol spray system with a dip tube vapor tap hole |
US5176174A (en) * | 1991-08-09 | 1993-01-05 | General Electric Company | Flow metering and distribution devices |
US6234352B1 (en) | 1998-08-10 | 2001-05-22 | Alliedsignal Inc. | Method and apparatus to reduce fractionation of fluid blend during storage and transfer |
US6517009B2 (en) | 1997-12-25 | 2003-02-11 | Gotit Ltd. | Automatic spray dispenser |
US7028488B2 (en) | 2002-07-12 | 2006-04-18 | Honeywell International Inc. | Method and apparatus to minimize fractionation of fluid blend during transfer |
US20120247874A1 (en) * | 2011-03-31 | 2012-10-04 | Bell Helicopter Textron Inc. | Gearbox with Passive Lubrication System |
US20140190588A1 (en) * | 2013-01-08 | 2014-07-10 | Agility Fuel Systems, Inc. | Vortex fill |
US20220040648A1 (en) * | 2020-08-06 | 2022-02-10 | Signature Science, Llc | Mixing Chamber Apparatus For High-Volume Sampling |
US11708941B2 (en) * | 2017-02-24 | 2023-07-25 | Dast Tanks, LLC | Storage tank |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006000627A1 (de) * | 2006-01-02 | 2007-07-05 | Linde Ag | Vorrichtung zur Speicherung von gasförmigen Medien |
DE102010021625A1 (de) * | 2010-05-26 | 2011-12-01 | Messer Group Gmbh | Verfahren und Behälter zum Bereitstellen verflüssigter Gasgemische |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1938036A (en) * | 1932-03-25 | 1933-12-05 | Carbide & Carbon Chem Corp | Means for removing liquid mixtures from pressure vessels |
US2183639A (en) * | 1939-12-19 | Eduction device | ||
FR1280428A (fr) * | 1961-02-17 | 1961-12-29 | Cooper | Pulvérisateur |
US3260421A (en) * | 1961-10-18 | 1966-07-12 | Precision Valve Corp | Dispensing device for aerosol pressure containers |
-
1969
- 1969-06-17 US US833945A patent/US3656657A/en not_active Expired - Lifetime
-
1970
- 1970-06-05 FR FR7020773A patent/FR2050005A5/fr not_active Expired
- 1970-06-10 DE DE19702028463 patent/DE2028463A1/de active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2183639A (en) * | 1939-12-19 | Eduction device | ||
US1938036A (en) * | 1932-03-25 | 1933-12-05 | Carbide & Carbon Chem Corp | Means for removing liquid mixtures from pressure vessels |
FR1280428A (fr) * | 1961-02-17 | 1961-12-29 | Cooper | Pulvérisateur |
US3260421A (en) * | 1961-10-18 | 1966-07-12 | Precision Valve Corp | Dispensing device for aerosol pressure containers |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4528919A (en) * | 1982-12-30 | 1985-07-16 | Union Oil Company Of California | Multi-phase fluid flow divider |
US4836018A (en) * | 1988-10-17 | 1989-06-06 | Charles Dispenza | Rain gauge with improved syphon discharge |
US5022442A (en) * | 1989-03-20 | 1991-06-11 | Acetylene Gas Company | Apparatus and method for high pressure gas mixing |
AU627632B2 (en) * | 1989-11-17 | 1992-08-27 | Union Carbide Industrial Gases Technology Corporation | Cylinder having improved mixture characteristics |
US5143288A (en) * | 1991-02-14 | 1992-09-01 | S. C. Johnson & Son, Inc. | Compressed gas aerosol spray system with a dip tube vapor tap hole |
WO1992014552A1 (en) * | 1991-02-14 | 1992-09-03 | S.C. Johnson & Son, Inc. | Dip tube vapor tap compressed gas aerosol system |
AU656366B2 (en) * | 1991-02-14 | 1995-02-02 | S.C. Johnson & Son, Inc. | Aerosol spray system |
US5176174A (en) * | 1991-08-09 | 1993-01-05 | General Electric Company | Flow metering and distribution devices |
US6540155B1 (en) | 1997-12-25 | 2003-04-01 | Gotit Ltd. | Automatic spray dispenser |
US6517009B2 (en) | 1997-12-25 | 2003-02-11 | Gotit Ltd. | Automatic spray dispenser |
US6234352B1 (en) | 1998-08-10 | 2001-05-22 | Alliedsignal Inc. | Method and apparatus to reduce fractionation of fluid blend during storage and transfer |
US7028488B2 (en) | 2002-07-12 | 2006-04-18 | Honeywell International Inc. | Method and apparatus to minimize fractionation of fluid blend during transfer |
US20120247874A1 (en) * | 2011-03-31 | 2012-10-04 | Bell Helicopter Textron Inc. | Gearbox with Passive Lubrication System |
US9458923B2 (en) * | 2011-03-31 | 2016-10-04 | Textron Innovations Inc. | Gearbox with passive lubrication system |
US10145464B2 (en) | 2011-03-31 | 2018-12-04 | Textron Innovations Inc. | Gearbox with passive lubrication system |
US20140190588A1 (en) * | 2013-01-08 | 2014-07-10 | Agility Fuel Systems, Inc. | Vortex fill |
US11708941B2 (en) * | 2017-02-24 | 2023-07-25 | Dast Tanks, LLC | Storage tank |
US12055271B2 (en) | 2017-02-24 | 2024-08-06 | Dast Tanks, LLC | Storage tank |
US20220040648A1 (en) * | 2020-08-06 | 2022-02-10 | Signature Science, Llc | Mixing Chamber Apparatus For High-Volume Sampling |
US12005403B2 (en) * | 2020-08-06 | 2024-06-11 | Signature Science, Llc | Mixing chamber apparatus for high-volume sampling |
Also Published As
Publication number | Publication date |
---|---|
FR2050005A5 (es) | 1971-03-26 |
DE2028463A1 (es) | 1970-12-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3656657A (en) | Apparatus for dispensing fluid mixtures in uniform proportions from pressure containers | |
US2976897A (en) | Reusable pressurized canister | |
US3053422A (en) | Reusable aerosol dispenser | |
US3270920A (en) | Apparatus for pressure dispensing liquids | |
US1938036A (en) | Means for removing liquid mixtures from pressure vessels | |
GB1487769A (en) | Storage tank for dispensing liquids by gaseous pressure in a low g environment | |
US5048721A (en) | Method for enhancing the mixture of gases within a cylinder | |
US3417901A (en) | Reusable pressurized dispensing device | |
JPH02297498A (ja) | 毛管作用力により作動する液体塗布用具のための供給システム | |
US3184118A (en) | Aerosol spray container | |
US10077150B2 (en) | Dispenser with a reservoir comprising a divider or a porous material | |
GB1558439A (en) | Liquid dispensing device | |
CN103249984A (zh) | 填充气体存储容器的方法 | |
JPH0217430B2 (es) | ||
US4124035A (en) | Self priming siphon | |
US3272402A (en) | Aerosol dispensing apparatus | |
JPWO2019058951A1 (ja) | エアゾール製品 | |
US6138875A (en) | Hand-operated foaming apparatus | |
US3803858A (en) | Gas transfer system for liquid fuels | |
US6367663B1 (en) | Hand-operated foaming apparatus with interchangeable nozzle | |
US2705661A (en) | Liquid dispensing system employing internally-generated gas pressure | |
US2196800A (en) | Spraying device | |
US2183639A (en) | Eduction device | |
US929990A (en) | Dispensing-pump. | |
US4613060A (en) | Pressure-gas operated dispensing means for fluids |