US3653055A - Microwave horn-paraboloidal antenna - Google Patents

Microwave horn-paraboloidal antenna Download PDF

Info

Publication number
US3653055A
US3653055A US63977A US3653055DA US3653055A US 3653055 A US3653055 A US 3653055A US 63977 A US63977 A US 63977A US 3653055D A US3653055D A US 3653055DA US 3653055 A US3653055 A US 3653055A
Authority
US
United States
Prior art keywords
section
reflector
mode
horn
main lobe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US63977A
Inventor
Chuang-Jy Wu
John Andrew Roth
Allison Eugene Shankowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nortel Networks Ltd
Original Assignee
Northern Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northern Electric Co Ltd filed Critical Northern Electric Co Ltd
Application granted granted Critical
Publication of US3653055A publication Critical patent/US3653055A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q13/00Waveguide horns or mouths; Slot antennas; Leaky-waveguide antennas; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/02Waveguide horns
    • H01Q13/025Multimode horn antennas; Horns using higher mode of propagation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/12Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave
    • H01Q19/13Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces wherein the surfaces are concave the primary radiating source being a single radiating element, e.g. a dipole, a slot, a waveguide termination

Definitions

  • the various modes are phased in order to radiate a main lobe and side lobes from the horn.
  • the latter lobes reflect from the paraboloid out-of-phase with the main lobe so as to produce a far field radiation pattern having a more uniform signal strength for a given beam angle.
  • This invention relates to a horn-paraboloidal antenna which may be used in communication satellites to provide a radiation pattern having a more uniform signal strength for a given beam angle.
  • Satellites used for communications over a large segment of the earth ideally require an antenna which gives a uniform signal strength over the entire coverage area.
  • Such satellites may use a despun antenna that is carefully aligned to a particular point in its coverage area.
  • Various tolerances in the mechanical design of the satellite result in perturbations causing the antenna boresight to wander about a nominal position. If the antenna pattern is not uniform, the signal strength within the coverage area will fluctuate. The amount of the fluctuation will depend upon the degree of wander and the slope of the radiation pattern at a prescribed point.
  • the radiation pattern is ellipse shaped with maximum signal strength on the boresight and dropping significantly near the edges, thus resulting in large signal variations. These variations are undesirable, detracting from the overall system performance.
  • the overall radiation pattern can be altered by varying the illumination of the reflector.
  • the ideal situation from the standpoint of highest gain and narrowest beamwidth occurs when the signal dis tribution over the reflector is uniform in magnitude and phase.
  • a significant proportion of the primary energy from the horn will be lost due to spillover at the edges of the reflector.
  • the reduction in beamwidth is accompanied by the generationof unwanted secondary or side lobes.
  • the illumination of the reflector is controlled by varying the dimensional parameters of the horn.
  • An increase in the waveguide cross-section of the feed horn reduces its beam angle but is also accompanied by the appearance of secondary lobes particularly in the E-plane.
  • One cause of the secondary lobes is the presence of higher-order waves which are generated at the mouth and at the throat discontinuity of the horn.
  • the throat reflection is usually small in comparison with the mouth reflection and hence the horn has much lower side lobes.
  • the approach has been to illuminate the whole reflector with in-phase energy from the main lobe and to provide a flare angle from the horn which will cause its side lobes to miss the reflector.
  • this out-of-phase energy is obtained by permitting the primary set of side lobes to strike the edges of the reflector.
  • the amplitude of the side lobes is normally insufficient to achieve the desired radiation pattern.
  • significant side lobes can be generated in the H-plane.
  • a substantially flat-topped radiation pattern can be produced in the H-plane as well as the E-plane.
  • a microwave antenna comprising a paraboloidal metallic reflector and a metallic feed horn located at the formers focal point.
  • the feed horn has a throat section and a mouth aperture. Included in the throat section in a waveguide feed section which propagates the dominant mode but is beyond cut-off for high-order modes.
  • the radiation pattern from the feed horn has a main lobe, and also has side lobes which radiate from the reflector outof-phase with the main lobe.
  • the antenna comprises a pyramidal feed horn having a rectangular waveguide feed section which propagates only TE waves.
  • An I-I-plane step in the feed horn between the throat section and the mouth aperture excites TE waves while a differential phasing section is used to reverse the phase of the TE waves with respect to the TE waves.
  • the antenna is used for two waves of orthogonal polarization.
  • the H-plane step for one wave will act as an E-plane step for the other thus resulting in the generation of undesired higherorder waves.
  • These latter waves are suppressed by having a portion of the differential phasing section which is beyond cutoff for the higher-order waves generated by the E-plane step.
  • FIG. 1 is a perspective view of a microwave antenna in accordance with the present invention
  • FIG. 2 is a substantially side-elevational view of the microwave antenna illustrated in F IG. 1;
  • FIG. 3 is a cross-sectional view, taken along the line III-Ill of FIG. 2;
  • FIG. 4 is a cross-sectional view, taken along the line IV-IV of FIG. 1;
  • FIG. 5 is a graph of relative power and phase vs normalized horizontal reflector aperture of the microwave antenna illustrated in FIG. 1;
  • FIG. 6 is a graph of relative power vs the far field directional pattern of a conventional horn-paraboloidal antenna and the microwave antenna illustrated in FIG. 1.
  • the microwave antenna basically comprises a paraboloidal metallic reflector 10 having a metallic pyramidal feed horn 11 located at its focus.
  • the feed horn 11 is driven from a rectangular waveguide feed section 12 which is driven from an ortho-coupler 13 in a well known manner.
  • the whole antenna assembly is mounted on a rotary joint 14.
  • FIG.s 3 and 4 show horizontal and vertical cross-sections of the metallic pyramidal feed horn 11 respectively.
  • the feed horn 11 comprises a throat section generally 20 and a mouth aperture 21.
  • the throat section 20 includes at least a portion of the rectangular waveguide feed section 12.
  • a discontinuity shown as a H-plane step 22 is located between the throat section 20 and the mouth aperture 21.
  • a differential phasing section 23 which has a uniform cross section.
  • a plurality of tapered vanes 24 which intercept the E-plane field for one polarization and a further plurality of tapered vanes 25 which intercept the E-plane filed for the other polarization.
  • the microwave antenna of the present invention may be used in, although not necessarily limited to, a communications satellite.
  • the received band would be at 6 CH2. while the transmit band would be at 4 GHz.
  • the 6 GI-Iz. signals are vertically polarized while the 4 GI-lz. signals are horizontally polarized.
  • the primary requisite is to provide a more uniform signal strength of the horizontal radiation pattern of the antenna shown in FIG.s 1 and 2, at both the 4 GHz. and 6 GHz. bands. It necessary, the technique could be extended to provide a more uniform radiation pattern of the vertical pattern. Unless otherwise stated, the following description will be directed towards the two horizontal radiation patterns of the antenna.
  • the horizontal length and flare angle of the horn II are selected to generate the main lobe and a primary set of side lobes for a horizontally polarized E- plane radiation pattern at 4 GHz.
  • utilizing a large cross-section at the mouth aperture 21 results in a narrow beam with high side lobes in the E-plane.
  • the horn would have verylow side lobes since it is an H- plane pattern, and would be ineffectual for the purpose of beam shaping.
  • the symmetrical H-plane step 22 (with respect to the 6 GHz. field) is introduced which generates the T15 mode from an incident TE mode.
  • the discontinuity 22 is an H-plane step at 6 GI-lz. while an E-plane step at 4 GHz.
  • the discontinuity 22 will tend to generate the TE and TM, mode pair. These latter modes would have undesirable effects at 4 GHz. and thus cannot be allowed to propagate.
  • the TE mode must arrive at the mouth aperture 21 1r radians out-of-phase with respect to the TE mode in order to generate the necessary side lobes.
  • the horizontal length and flare dimensions have already been set by the 4 GHz. requirements. Therefore, a differential phasing section 23 is added in order to provide the necessary phase shift of nradians between the TE and TE modes at 6 GHz. This can be done by assuming the two modes (TE T5 to have an initial phase difference of 180 at the mouth aperture 21.
  • the differential phase velocity between the two modes can be integrated along the length of the horn lI until a point is reached where the two modes are in phase. This is the first possible position for the H- plane discontinuity 22.
  • the cross-section of the horn I1 is of sufficient size to propagate the TE and TM modes at 4 GHz. and therefore cannot be used.
  • the throat section 20 is therefore extended to a cross-section where the latter mode pair are beyond cutoff at 4 GHz. but will still propagate the TE mode at6 GI-Iz.
  • the H-plane step 22 is then inserted at that point.
  • the step size is selected to produce sufficient TE mode to obtain the desired side lobe levels at 6 GHz.
  • the throat section 20 is further reduced to beyond cutoff for all modes except the dominant TE mode. Hence, only 6 GHz. signals of the TE along the waveguide feed section 12 in the vertical plane.
  • the required side lobes can be generated at the mouth aperture 21 for both horizontal signal patterns.
  • the far field radiation patterns will be approximately the same.
  • the width of the horn 11, as shown in FIG. 3, is increased.
  • such an increase would likewise affect the beamwidth at 4 GHz.
  • the tapered vanes 24 are inserted parallel to the E-plane at 4 GHz. The vanes 24 are spaced closer than one-half wavelength apart at this frequency so that the region between the vanes 24 is in cutoff and therefore the 4 GHz. fields parallel to the vanes 24 cannot propagate between them.
  • the flare angle and length of the horn 11 are selected to optimize the 4 GHz. H-plane illumination of the reflector 10.
  • the horn 11 is an E-plane radiator thus producing sides lobes. Because of the difference in frequencies between the two bands the 6 GHz. vertical pattern from the feed horn 1 l is narrower than that at 4 GHz. The pattern is further narrowed due to the difference in efficiencies in the E-plane and H-plane. Utilizing only the walls of the horn 11 as shown in FIG. 4, would result in side lobes from the 6 GHz. E-plane signal stricking the reflector 10. This would result in a shaped beam at 6 Gl-lz. in this plane.
  • the width of the reflector 10 was selected for a conventional radiation pattern at 4 GHz.
  • the reflector 10 is not large enough to give the correct shaped beamwidth.
  • the shaped beam at 6 GHz. would be excessively wide resulting in a loss of gain.
  • the vanes 25 are inserted parallel to the 6 GHz. E-plane, thereby widening this pattern from the feed horn l1 sufficiently to divert most of the side lobe energy off the edge of the reflector 10. This provides a more uniform illumination of the reflector 10 thereby narrowing the 6 GHz. far field vertical radiation pattern of the antenna.
  • the width of the reflector 10, and the flare angle and length of the horn 11 are selected so that both the main lobe and the primary side lobes of both horizontal radiation patterns strike the surface of the reflector 10.
  • the side lobes which radiate from the reflector 10 must be 1r radians out-ofphase with the main lobe. Minor variations to the shape of the paraboloidal reflector 10 can be made in order to optimize this phase relationship.
  • the edges of the reflector 10 can be shaped as shown in order to prevent unwanted signal energy from striking the corners of the reflector 10 thus improving the radiation patterns. This also saves weight, an important design aspect of a satellite antenna.
  • FIG. 5 illustrates the relative power and the phase of signals at both 4 Gl-Iz. and 6 Gl-Iz. vs the normalized horizontal reflector aperture.
  • the side lobes at 4 GHz. are controlled by the flare angle and length of the horn 11, as shown in FIG. 3, which alter the E-plane illumination and phase distribution from the mouth aperture 21.
  • the side lobes at 6 GHz. are generated primarily by the H-plane step 22.
  • the phase of the two side lobes at both 4 GHz. and 6 GHz. is substantially 1r radians with respect to that of the main lobe.
  • FIG. 6 illustrates a typical far field horizontal directional pattern of the microwave antenna described above together with a typical pattern of a conventional horn-paraboloid.
  • a beamwidth of i4.2 the boresight gain is reduced by about 1 db. over the conventional horn-paraboloid.
  • the signal strength at the i4.2 points is about 13 db. greater, thereby yielding an overall reduction in signal variation of 2.3 db.
  • an improved horizontal directional pattern is achieved at both the 4 GHz. and 6 GI-lz. bands. While not illustrated in the present embodiment, the invention could be readily extended to provide the same advantages for both the vertical radiation patterns.
  • a microwave antenna comprising:
  • a paraboloidal metallic reflector for illumination by a main lobe and a primary set of side lobes at its center and edge portions respectively;
  • a metallic feed horn disposed at the focal point of the reflector and having a throat section and a mouth aperture;
  • the throat section including a waveguide feed section which propagates the dominant mode and is beyond cutoff for high-order modes;
  • a microwave antenna comprising:
  • a paraboloidal metallic reflector for illumination by a main lobe and a primary set of side lobes at its center and edge portions respectively;
  • a metallic pyramidal feed horn disposed at the focal point of the reflector and having a throat section and a mouth aperture;
  • a throat section including a rectangular waveguide feed section which propagates TE waves and is beyond cutoff v for higher-order waves;
  • radiated signals resulting from the propagation of said modes produce the ,main lobe, and the primary set of side lobes which radiate from the reflector out-of-phase with the main lobe.
  • the antenna comprising:
  • a paraboloidal metallic reflector for illumination by a main lobe and a primary set of side lobes at its center and edge portions respectively;
  • a metallic pyramidal feed horn disposed at the focal point of the reflector and having a throat section and a mouth aperture;
  • the throat section including a rectangular waveguide feed section which propagates the TE mode and is beyond cutoff for higher-order modes of both the first and second electromagnetic waves;
  • a differential phasing section in the feed horn between the H-plane step and the mouth aperture for reversing the phase of the TE mode with respect to the TE mode of the first electromagnetic waves, said phasing section having at least a portion thereof adjacent said step which is beyond cutoff for higher-order modes of the second electromagnetic wave;
  • radiated signals resulting from the propagation of said mode produce the main lobe, and the primary set of side lobes which radiate from the reflector out-of-phase with the main lobe.
  • a microwave antenna as defined in claim 3 in which the frequency of said first electromagnetic waves is higher than that of said second electromagnetic waves
  • the feed horn additionally comprises a plurality of tapered vanes parallel to the E-plane of the second electromagnetic waves, said vanes being less than one-half wavelength apart so as to decrease the effective mouth aperture of the horn for the second electromagnetic waves.

Landscapes

  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

A horn-paraboloidal antenna in which a discontinuity is introduced into the feed horn so as to excite higher-order modes from the dominant mode. The various modes are phased in order to radiate a main lobe and side lobes from the horn. The latter lobes reflect from the paraboloid out-of-phase with the main lobe so as to produce a far field radiation pattern having a more uniform signal strength for a given beam angle.

Description

Unite States Patent Wu et al.
[54] MICROWAVE HORN-PARABOLOIDAL ANTENNA [72] Inventors: Chuang-jy Wu; John Andrew Roth; Al-
lison Eugene Shankowski, all of Ottawa, Ontario, Canada [73] Assignee: Northern Electric Company Limited, Montreal, Quebec, Canada [22] Filed: I Aug. 12, 1970 [21] Appl.No.: 63,977
[52] US. Cl... ..343/781, 343/786, 343/840 [51] Int. Cl. ..H0lq 19/24 [58] Field ofSearch ..343/778, 779, 786, 781, 840
[56] References Cited UNITED STATES PATENTS 2,918,673 12/1959 Lewis et al ..343/786 [451 Mar. 28, 1972 3,308,468 3/1967 Hannan ..343/779 3,373,431 3/1968 Webb ..343/786 3,573,838 4/1971 Ajioka .343/786 FOREIGN PATENTS OR APPLICATIONS 818,447 8/1959 Great Britain ..343/756 Primary Examiner-Eli Lieberman Attorney-John E. Mowle [5 7] ABSTRACT A horn-paraboloidal antenna in which a discontinuity is introduced into the feed horn so as to excite higher-order modes from the dominant mode. The various modes are phased in order to radiate a main lobe and side lobes from the horn. The latter lobes reflect from the paraboloid out-of-phase with the main lobe so as to produce a far field radiation pattern having a more uniform signal strength for a given beam angle.
5 Claims, 6 Drawing Figures P'ATE'NTEnmme m2 3,653,055
SHEET 1 or 3 INVE RS CHUA WU JOH ROTH ALLI 0N E. SHANKOWSKI PAT ENT AGENT PATErI TEnIIIIIzs I972 3,653,055
SHEET 3 BF 3 RELATIVE POWER dB- o L I I I L0 0.5 Y O 0.5 L0 NORMALIZED HORIZONTAL REFLECTOR APERTURE Fig. 5
RELATIVE PHASE CONVENTIONAL HORN-PARABOLOID RELATIVE POWER dB 8 6 I '2 o '2 4 6 3 INVENTORS HORIZONTAL DIRECTIONAL PATTERN DEGREES CHUANG JY WU JOHN A. ROTH ALLISON E. SHANKOWSKI PATENT AGENT MICROWAVE HORN-PARABOLOIDAL ANTENNA FIELD OF THE INVENTION This invention relates to a horn-paraboloidal antenna which may be used in communication satellites to provide a radiation pattern having a more uniform signal strength for a given beam angle.
DESCRIPTION OF THE PRIOR ART Satellites used for communications over a large segment of the earth ideally require an antenna which gives a uniform signal strength over the entire coverage area. Such satellites may use a despun antenna that is carefully aligned to a particular point in its coverage area. Various tolerances in the mechanical design of the satellite result in perturbations causing the antenna boresight to wander about a nominal position. If the antenna pattern is not uniform, the signal strength within the coverage area will fluctuate. The amount of the fluctuation will depend upon the degree of wander and the slope of the radiation pattern at a prescribed point. With a conventional horn-paraboloidal antenna (comprising a parabolic reflector driven from a feed horn), the radiation pattern is ellipse shaped with maximum signal strength on the boresight and dropping significantly near the edges, thus resulting in large signal variations. These variations are undesirable, detracting from the overall system performance.
Various designs utilizing antenna arrays, such as multi-horn antennas, have been developed in order to achieve a more uniform signal strength. However, mechanical difficulties and increased weight resulting from the required complex feeder system have limited the success of such approaches for satellite applications.
In a horn-paraboloidal reflector antenna, the overall radiation pattern can be altered by varying the illumination of the reflector. The ideal situation from the standpoint of highest gain and narrowest beamwidth occurs when the signal dis tribution over the reflector is uniform in magnitude and phase. However, with such an illumination, a significant proportion of the primary energy from the horn will be lost due to spillover at the edges of the reflector. In addition, the reduction in beamwidth is accompanied by the generationof unwanted secondary or side lobes.
The illumination of the reflector is controlled by varying the dimensional parameters of the horn. An increase in the waveguide cross-section of the feed horn reduces its beam angle but is also accompanied by the appearance of secondary lobes particularly in the E-plane. One cause of the secondary lobes is the presence of higher-order waves which are generated at the mouth and at the throat discontinuity of the horn. In the H-plane the throat reflection is usually small in comparison with the mouth reflection and hence the horn has much lower side lobes. In previous systems, the approach has been to illuminate the whole reflector with in-phase energy from the main lobe and to provide a flare angle from the horn which will cause its side lobes to miss the reflector.
SUMMARY OF THE INVENTION It has been discovered that if the outer portion of the parabolic reflector is illuminated with energy which will reflect 1r radians out-of-phase with respect to its center, the out-of-phase energy will subtract and reduce the boresight gain of the far field radiation pattern. However, at a point off the axis, an additional phase difference is introduce due to the differential path length between the two regions. At some angle, this phase difference will be 1r radians with the net effect that all the aperture energy will appear in phase and add. By a proper balance of energy levels and aperture size, a nearly constant flat-topped radiation pattern can be achieved. As a result, there is less deviation in the gain for a given beamwidth and the overall gain at the beam edges is higher.
The generation of this out-of-phase energy is obtained by permitting the primary set of side lobes to strike the edges of the reflector. In the H-plane however, the amplitude of the side lobes is normally insufficient to achieve the desired radiation pattern. It has also been discovered that by introducing an I-l-plane discontinuity and by phasing the horn so that the resulting higher-order waves arrive at the mouth of the feed horn 1r radians out-of-phase with those of the dominant mode, significant side lobes can be generated in the H-plane. As a result, a substantially flat-topped radiation pattern can be produced in the H-plane as well as the E-plane.
Thus, in accordance with the present invention there is provided a microwave antenna comprising a paraboloidal metallic reflector and a metallic feed horn located at the formers focal point. The feed horn has a throat section and a mouth aperture. Included in the throat section in a waveguide feed section which propagates the dominant mode but is beyond cut-off for high-order modes. In addition, there is a discontinujty between the throat section and the mouth aperture for excitation of a higher-order mode, and a differential phasing section for reversing the phase of the higher-order mode with respect to the dominant mode. As a result, the radiation pattern from the feed horn has a main lobe, and also has side lobes which radiate from the reflector outof-phase with the main lobe.
In a preferred embodiment of the invention, the antenna comprises a pyramidal feed horn having a rectangular waveguide feed section which propagates only TE waves. An I-I-plane step in the feed horn between the throat section and the mouth aperture excites TE waves while a differential phasing section is used to reverse the phase of the TE waves with respect to the TE waves.
In a still more preferred embodiment, the antenna is used for two waves of orthogonal polarization. In this embodiment the H-plane step for one wave will act as an E-plane step for the other thus resulting in the generation of undesired higherorder waves. These latter waves are suppressed by having a portion of the differential phasing section which is beyond cutoff for the higher-order waves generated by the E-plane step.
BRIEF DESCRIPTION OF THE DRAWINGS An example embodiment of the invention will now be described with reference to the accompanying drawings in which:
FIG. 1 is a perspective view of a microwave antenna in accordance with the present invention;
FIG. 2 is a substantially side-elevational view of the microwave antenna illustrated in F IG. 1;
FIG. 3 is a cross-sectional view, taken along the line III-Ill of FIG. 2;
FIG. 4 is a cross-sectional view, taken along the line IV-IV of FIG. 1;
FIG. 5 is a graph of relative power and phase vs normalized horizontal reflector aperture of the microwave antenna illustrated in FIG. 1;
FIG. 6 is a graph of relative power vs the far field directional pattern of a conventional horn-paraboloidal antenna and the microwave antenna illustrated in FIG. 1.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to FlG.s 1 and 2, the microwave antenna basically comprises a paraboloidal metallic reflector 10 having a metallic pyramidal feed horn 11 located at its focus. The feed horn 11 is driven from a rectangular waveguide feed section 12 which is driven from an ortho-coupler 13 in a well known manner. The whole antenna assembly is mounted on a rotary joint 14.
FIG.s 3 and 4 show horizontal and vertical cross-sections of the metallic pyramidal feed horn 11 respectively. The feed horn 11 comprises a throat section generally 20 and a mouth aperture 21. The throat section 20 includes at least a portion of the rectangular waveguide feed section 12. In addition, a discontinuity, shown as a H-plane step 22, is located between the throat section 20 and the mouth aperture 21. Following the H-plane step 22 is a differential phasing section 23 which has a uniform cross section. Also shown are a plurality of tapered vanes 24 which intercept the E-plane field for one polarization and a further plurality of tapered vanes 25 which intercept the E-plane filed for the other polarization.
The microwave antenna of the present invention may be used in, although not necessarily limited to, a communications satellite. In a typical such application, the received band would be at 6 CH2. while the transmit band would be at 4 GHz. In addition, the 6 GI-Iz. signals are vertically polarized while the 4 GI-lz. signals are horizontally polarized.
In the present embodiment, the primary requisite is to provide a more uniform signal strength of the horizontal radiation pattern of the antenna shown in FIG.s 1 and 2, at both the 4 GHz. and 6 GHz. bands. It necessary, the technique could be extended to provide a more uniform radiation pattern of the vertical pattern. Unless otherwise stated, the following description will be directed towards the two horizontal radiation patterns of the antenna.
Initially, the horizontal length and flare angle of the horn II, as shown in FIG. 3, are selected to generate the main lobe and a primary set of side lobes for a horizontally polarized E- plane radiation pattern at 4 GHz. As is well known, utilizing a large cross-section at the mouth aperture 21 results in a narrow beam with high side lobes in the E-plane. However, at 6 GHz. the horn would have verylow side lobes since it is an H- plane pattern, and would be ineffectual for the purpose of beam shaping. To create the side lobes in this plane, the symmetrical H-plane step 22 (with respect to the 6 GHz. field) is introduced which generates the T15 mode from an incident TE mode. Thus, as shown in FIG.s 1, 2 and 3, the discontinuity 22 is an H-plane step at 6 GI-lz. while an E-plane step at 4 GHz.
Being an E-plane step at 4 GHz., the discontinuity 22 will tend to generate the TE and TM, mode pair. These latter modes would have undesirable effects at 4 GHz. and thus cannot be allowed to propagate. In addition, the TE mode must arrive at the mouth aperture 21 1r radians out-of-phase with respect to the TE mode in order to generate the necessary side lobes. However, the horizontal length and flare dimensions have already been set by the 4 GHz. requirements. Therefore, a differential phasing section 23 is added in order to provide the necessary phase shift of nradians between the TE and TE modes at 6 GHz. This can be done by assuming the two modes (TE T5 to have an initial phase difference of 180 at the mouth aperture 21. The differential phase velocity between the two modes can be integrated along the length of the horn lI until a point is reached where the two modes are in phase. This is the first possible position for the H- plane discontinuity 22. However, at this point, the cross-section of the horn I1 is of sufficient size to propagate the TE and TM modes at 4 GHz. and therefore cannot be used. The throat section 20 is therefore extended to a cross-section where the latter mode pair are beyond cutoff at 4 GHz. but will still propagate the TE mode at6 GI-Iz. At this point, it is necessary to add the differential phasing section 23 of uniform cross-section to bring the TE and TE modes in phase again. The H-plane step 22 is then inserted at that point. The step size is selected to produce sufficient TE mode to obtain the desired side lobe levels at 6 GHz. In order to assure that all the energy of the 'IE mode propagates toward the mouth aperture 21, the throat section 20 is further reduced to beyond cutoff for all modes except the dominant TE mode. Hence, only 6 GHz. signals of the TE along the waveguide feed section 12 in the vertical plane.
Thus, by utilizing the flare angle and length of the horn 11 to control the E-plane pattern at 4 GI-lz. and by utilizing the H- plane step 22 and the phasing section 23 to control the generation of the TE mode at 6 GHz., the required side lobes can be generated at the mouth aperture 21 for both horizontal signal patterns.
Since the beamwidth of a given aperture decreases in portion to the signal wavelength, it is necessary to widen the horizontal beamwidth at 6 Gl-lz. relative to that at 4 GHz., so
that the far field radiation patterns will be approximately the same. This requires concentrating more of the 6 GHz. energy at the center of the reflector 10 by decreasing the horizontal beamwidth of the feed horn 11 at that frequency. To achieve this, the width of the horn 11, as shown in FIG. 3, is increased. However, such an increase would likewise affect the beamwidth at 4 GHz. To overcome this, the tapered vanes 24 are inserted parallel to the E-plane at 4 GHz. The vanes 24 are spaced closer than one-half wavelength apart at this frequency so that the region between the vanes 24 is in cutoff and therefore the 4 GHz. fields parallel to the vanes 24 cannot propagate between them. The 6 GHz. electric fields perpendicular to the vanes 24 are not afiected and are only restricted by the sidewalls of the horn 11 as shown in FIG. 3. By using the vanes 24 to define the 4 GHz. E-plane horn dimensions, the size of the horn 11 is effectively increased by the depth of the vanes 24 at 6 GI-Iz. so as to narrow the radiation pattern from the horn 11 at that frequency.
In the vertical direction, the flare angle and length of the horn 11 are selected to optimize the 4 GHz. H-plane illumination of the reflector 10. However, at 6 GHz., the horn 11 is an E-plane radiator thus producing sides lobes. Because of the difference in frequencies between the two bands the 6 GHz. vertical pattern from the feed horn 1 l is narrower than that at 4 GHz. The pattern is further narrowed due to the difference in efficiencies in the E-plane and H-plane. Utilizing only the walls of the horn 11 as shown in FIG. 4, would result in side lobes from the 6 GHz. E-plane signal stricking the reflector 10. This would result in a shaped beam at 6 Gl-lz. in this plane. However, since the width of the reflector 10 was selected for a conventional radiation pattern at 4 GHz., the reflector 10 is not large enough to give the correct shaped beamwidth. As a result, the shaped beam at 6 GHz. would be excessively wide resulting in a loss of gain. To overcome this, the vanes 25 are inserted parallel to the 6 GHz. E-plane, thereby widening this pattern from the feed horn l1 sufficiently to divert most of the side lobe energy off the edge of the reflector 10. This provides a more uniform illumination of the reflector 10 thereby narrowing the 6 GHz. far field vertical radiation pattern of the antenna.
The width of the reflector 10, and the flare angle and length of the horn 11 are selected so that both the main lobe and the primary side lobes of both horizontal radiation patterns strike the surface of the reflector 10. As stated above, the side lobes which radiate from the reflector 10 must be 1r radians out-ofphase with the main lobe. Minor variations to the shape of the paraboloidal reflector 10 can be made in order to optimize this phase relationship. In addition, the edges of the reflector 10 can be shaped as shown in order to prevent unwanted signal energy from striking the corners of the reflector 10 thus improving the radiation patterns. This also saves weight, an important design aspect of a satellite antenna.
FIG. 5 illustrates the relative power and the phase of signals at both 4 Gl-Iz. and 6 Gl-Iz. vs the normalized horizontal reflector aperture. The side lobes at 4 GHz. are controlled by the flare angle and length of the horn 11, as shown in FIG. 3, which alter the E-plane illumination and phase distribution from the mouth aperture 21. The side lobes at 6 GHz. are generated primarily by the H-plane step 22. As is apparent from the bottom portion of FIG. 5, the phase of the two side lobes at both 4 GHz. and 6 GHz. is substantially 1r radians with respect to that of the main lobe.
FIG. 6 illustrates a typical far field horizontal directional pattern of the microwave antenna described above together with a typical pattern of a conventional horn-paraboloid. With a beamwidth of i4.2 the boresight gain is reduced by about 1 db. over the conventional horn-paraboloid. However, the signal strength at the i4.2 points is about 13 db. greater, thereby yielding an overall reduction in signal variation of 2.3 db.
By utilization of the present invention, an improved horizontal directional pattern is achieved at both the 4 GHz. and 6 GI-lz. bands. While not illustrated in the present embodiment, the invention could be readily extended to provide the same advantages for both the vertical radiation patterns.
What is claimed is:
l. A microwave antenna comprising:
a paraboloidal metallic reflector for illumination by a main lobe and a primary set of side lobes at its center and edge portions respectively;
a metallic feed horn disposed at the focal point of the reflector and having a throat section and a mouth aperture;
the throat section including a waveguide feed section which propagates the dominant mode and is beyond cutoff for high-order modes;
a discontinuity in the feed horn between the throat section and the mouth aperture for excitation of a higher-order mode; and
a differential phasing section in the feed horn between the discontinuity and the mouth aperture for reversing the phase of said higher-order mode with respect to said dominant mode;
radiated signals resulting from the propagation of said modes produce the main lobe, and the primary set of side lobes which radiate from the reflector out-of-phase with the main lobe.
2. A microwave antenna comprising:
a paraboloidal metallic reflector for illumination by a main lobe and a primary set of side lobes at its center and edge portions respectively;
a metallic pyramidal feed horn disposed at the focal point of the reflector and having a throat section and a mouth aperture;
a throat section including a rectangular waveguide feed section which propagates TE waves and is beyond cutoff v for higher-order waves;
an H-plane step in the feed horn between the throat section and the mouth aperture for excitation of TE waves from the TE waves; and v a differential phasing section in the feed horn between the l-l-plane step and the mouth aperture for reversing the phase of the TE, waves with respect to the TE waves;
radiated signals resulting from the propagation of said modes produce the ,main lobe, and the primary set of side lobes which radiate from the reflector out-of-phase with the main lobe.
3. A microwave antenna for first and second electromagnetic waves of orthogonal polarization;
the antenna comprising:
a paraboloidal metallic reflector for illumination by a main lobe and a primary set of side lobes at its center and edge portions respectively;
a metallic pyramidal feed horn disposed at the focal point of the reflector and having a throat section and a mouth aperture;
the throat section including a rectangular waveguide feed section which propagates the TE mode and is beyond cutoff for higher-order modes of both the first and second electromagnetic waves;
an l-l-plane step in the feed horn between the throat section and the mouth aperture for excitation of the TE, mode from the TE mode of the first electromagnetic waves; and
a differential phasing section in the feed horn between the H-plane step and the mouth aperture for reversing the phase of the TE mode with respect to the TE mode of the first electromagnetic waves, said phasing section having at least a portion thereof adjacent said step which is beyond cutoff for higher-order modes of the second electromagnetic wave;
radiated signals resulting from the propagation of said mode produce the main lobe, and the primary set of side lobes which radiate from the reflector out-of-phase with the main lobe.
4. A microwave antenna as defined in claim 3 in which said portion has a uniform cross section.
5. A microwave antenna as defined in claim 3 in which the frequency of said first electromagnetic waves is higher than that of said second electromagnetic waves, and
in which the feed horn additionally comprises a plurality of tapered vanes parallel to the E-plane of the second electromagnetic waves, said vanes being less than one-half wavelength apart so as to decrease the effective mouth aperture of the horn for the second electromagnetic waves.

Claims (5)

1. A microwave antenna comprising: a paraboloidal metallic reflector for illumination by a main lobe and a primary set of side lobes at its center and edge portions respectively; a metallic feed horn disposed at the focal point of the reflector and having a throat section and a mouth aperture; the throat section including a waveguide feed section which propagates the dominant mode and is beyond cutoff for highorder modes; a discontinuity in the feed horn between the throat section and the mouth aperture for excitation of a higher-order mode; and a differential phasing section in the feed horn between the discontinuity and the mouth aperture for reversing the phase of said higher-order mode with respect to said dominant mode; radiated signals resulting from the propagation of said modes produce the main lobe, and the primary set of side lobes which radiate from the reflector out-of-phase with the main lobe.
2. A microwave antenna comprising: a paraboloidal metallic reflector for illumination by a main lobe and a primary set of side lobes at its center and edge portions respectively; a metallic pyramidal feed horn disposed at the focal point of the reflector and having a throat section and a mouth aperture; a throat section including a rectangular waveguide feed section which propagates TE10 waves and is beyond cutoff for higher-order waves; an H-plane step in the feed horn between the throat section and the mouth aperture for excitation of TE30 waves from the TE10 waves; And a differential phasing section in the feed horn between the H-plane step and the mouth aperture for reversing the phase of the TE30 waves with respect to the TE10 waves; radiated signals resulting from the propagation of said modes produce the main lobe, and the primary set of side lobes which radiate from the reflector out-of-phase with the main lobe.
3. A microwave antenna for first and second electromagnetic waves of orthogonal polarization; the antenna comprising: a paraboloidal metallic reflector for illumination by a main lobe and a primary set of side lobes at its center and edge portions respectively; a metallic pyramidal feed horn disposed at the focal point of the reflector and having a throat section and a mouth aperture; the throat section including a rectangular waveguide feed section which propagates the TE10 mode and is beyond cutoff for higher-order modes of both the first and second electromagnetic waves; an H-plane step in the feed horn between the throat section and the mouth aperture for excitation of the TE30 mode from the TE10 mode of the first electromagnetic waves; and a differential phasing section in the feed horn between the H-plane step and the mouth aperture for reversing the phase of the TE30 mode with respect to the TE10 mode of the first electromagnetic waves, said phasing section having at least a portion thereof adjacent said step which is beyond cutoff for higher-order modes of the second electromagnetic wave; radiated signals resulting from the propagation of said mode produce the main lobe, and the primary set of side lobes which radiate from the reflector out-of-phase with the main lobe.
4. A microwave antenna as defined in claim 3 in which said portion has a uniform cross-section.
5. A microwave antenna as defined in claim 3 in which the frequency of said first electromagnetic waves is higher than that of said second electromagnetic waves, and in which the feed horn additionally comprises a plurality of tapered vanes parallel to the E-plane of the second electromagnetic waves, said vanes being less than one-half wavelength apart so as to decrease the effective mouth aperture of the horn for the second electromagnetic waves.
US63977A 1970-08-10 1970-08-12 Microwave horn-paraboloidal antenna Expired - Lifetime US3653055A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA90394 1970-08-10
US6397770A 1970-08-12 1970-08-12

Publications (1)

Publication Number Publication Date
US3653055A true US3653055A (en) 1972-03-28

Family

ID=25666517

Family Applications (1)

Application Number Title Priority Date Filing Date
US63977A Expired - Lifetime US3653055A (en) 1970-08-10 1970-08-12 Microwave horn-paraboloidal antenna

Country Status (2)

Country Link
US (1) US3653055A (en)
CA (1) CA890032A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2340630A1 (en) * 1976-02-05 1977-09-02 Sanders Associates Inc REFLECTOR FOR CONSTANT WIDTH BEAM ANTENNA
EP0061576A1 (en) * 1981-03-25 1982-10-06 ANT Nachrichtentechnik GmbH Microwave communication transmission apparatus with multimode diversity combining reception
DE3336418A1 (en) * 1983-10-06 1985-05-02 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR COMPENSATING CROSS-POLARIZATION COMPONENTS IN AN ANTENNA WITH A CURVED REFLECTOR AND A SIDE-RADIATING PRIME RADIATOR
DE3336452A1 (en) * 1983-10-06 1985-05-02 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR PREVENTING RADIATION DIFFERENTIATION IN AN ANTENNA PROVIDED FOR CIRCULAR POLARISATION WITH A CURVED REFLECTOR AND A SIDE-RADIATING PRIME RADIATOR
US4667205A (en) * 1983-02-22 1987-05-19 Thomson-Csf Wideband microwave antenna with two coupled sectoral horns and power dividers
JPS6360608A (en) * 1986-08-29 1988-03-16 Maspro Denkoh Corp Offset antenna
JPS63501843A (en) * 1985-12-24 1988-07-28 トレスト“ユジヴォドプロヴォド” Agricultural machines
US5017936A (en) * 1988-09-07 1991-05-21 U.S. Philips Corp. Microwave antenna
US5266962A (en) * 1990-12-06 1993-11-30 Kernforschungszentrum Karlsruhe Gmbh Method of converting transverse electrical modes and a helically outlined aperture antenna for implementing the method
US5351061A (en) * 1990-10-27 1994-09-27 Kabelmetal Electro Gesellschaft Mit Beschrankter Haftung Antenna with parabolic reflector
USD380474S (en) * 1996-02-29 1997-07-01 Hughes Electronics and Moulded Plastics (Birmingham) Ltd. Antenna support arm assembly
WO2017156546A1 (en) * 2016-03-11 2017-09-14 Scott Cook Antenna horn with suspended dielectric tuning vane

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986003344A1 (en) * 1984-11-19 1986-06-05 Hughes Aircraft Company High gain-area-product antenna design

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB818447A (en) * 1956-10-31 1959-08-19 Bendix Aviat Corp Microwave antenna feed for circular polarization
US2918673A (en) * 1957-12-12 1959-12-22 Edwin S Lewis Antenna feed system
US3308468A (en) * 1961-05-22 1967-03-07 Hazeltine Research Inc Monopulse antenna system providing independent control in a plurality of modes of operation
US3373431A (en) * 1964-11-02 1968-03-12 James E. Webb Low-noise single aperture multimode monopulse antenna feed system
US3573838A (en) * 1968-10-28 1971-04-06 Hughes Aircraft Co Broadband multimode horn antenna

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB818447A (en) * 1956-10-31 1959-08-19 Bendix Aviat Corp Microwave antenna feed for circular polarization
US2918673A (en) * 1957-12-12 1959-12-22 Edwin S Lewis Antenna feed system
US3308468A (en) * 1961-05-22 1967-03-07 Hazeltine Research Inc Monopulse antenna system providing independent control in a plurality of modes of operation
US3373431A (en) * 1964-11-02 1968-03-12 James E. Webb Low-noise single aperture multimode monopulse antenna feed system
US3573838A (en) * 1968-10-28 1971-04-06 Hughes Aircraft Co Broadband multimode horn antenna

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2340630A1 (en) * 1976-02-05 1977-09-02 Sanders Associates Inc REFLECTOR FOR CONSTANT WIDTH BEAM ANTENNA
EP0061576A1 (en) * 1981-03-25 1982-10-06 ANT Nachrichtentechnik GmbH Microwave communication transmission apparatus with multimode diversity combining reception
US4667205A (en) * 1983-02-22 1987-05-19 Thomson-Csf Wideband microwave antenna with two coupled sectoral horns and power dividers
DE3336418A1 (en) * 1983-10-06 1985-05-02 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR COMPENSATING CROSS-POLARIZATION COMPONENTS IN AN ANTENNA WITH A CURVED REFLECTOR AND A SIDE-RADIATING PRIME RADIATOR
DE3336452A1 (en) * 1983-10-06 1985-05-02 Siemens AG, 1000 Berlin und 8000 München DEVICE FOR PREVENTING RADIATION DIFFERENTIATION IN AN ANTENNA PROVIDED FOR CIRCULAR POLARISATION WITH A CURVED REFLECTOR AND A SIDE-RADIATING PRIME RADIATOR
JPS63501843A (en) * 1985-12-24 1988-07-28 トレスト“ユジヴォドプロヴォド” Agricultural machines
JPS6360608A (en) * 1986-08-29 1988-03-16 Maspro Denkoh Corp Offset antenna
JPH0770908B2 (en) * 1986-08-29 1995-07-31 マスプロ電工株式会社 Offset satellite dish
US5017936A (en) * 1988-09-07 1991-05-21 U.S. Philips Corp. Microwave antenna
US5351061A (en) * 1990-10-27 1994-09-27 Kabelmetal Electro Gesellschaft Mit Beschrankter Haftung Antenna with parabolic reflector
US5266962A (en) * 1990-12-06 1993-11-30 Kernforschungszentrum Karlsruhe Gmbh Method of converting transverse electrical modes and a helically outlined aperture antenna for implementing the method
USD380474S (en) * 1996-02-29 1997-07-01 Hughes Electronics and Moulded Plastics (Birmingham) Ltd. Antenna support arm assembly
WO2017156546A1 (en) * 2016-03-11 2017-09-14 Scott Cook Antenna horn with suspended dielectric tuning vane
US10158177B2 (en) 2016-03-11 2018-12-18 Scott Cook Antenna horn with suspended dielectric tuning vane

Also Published As

Publication number Publication date
CA890032A (en) 1972-01-04

Similar Documents

Publication Publication Date Title
US5173714A (en) Slot array antenna
Cutler Parabolic-antenna design for microwaves
US6861998B2 (en) Transmission/reception sources of electromagnetic waves for multireflector antenna
US3653055A (en) Microwave horn-paraboloidal antenna
US6724349B1 (en) Splashplate antenna system with improved waveguide and splashplate (sub-reflector) designs
US6124833A (en) Radial line slot antenna
EP0390350B1 (en) Low cross-polarization radiator of circularly polarized radiation
US3500419A (en) Dual frequency,dual polarized cassegrain antenna
US3274603A (en) Wide angle horn feed closely spaced to main reflector
US2718592A (en) Antenna
US5903241A (en) Waveguide horn with restricted-length septums
CN107404000B (en) Sugar shovel type fan-shaped wave beam horizontal scanning antenna
US2556087A (en) Directive antenna system
JP3238164B2 (en) Low sidelobe reflector antenna
US2617937A (en) Flared horn wave guide antenna
US3216018A (en) Wide angle horn feed closely spaced to main reflector
US2472201A (en) Antenna
CN110739547A (en) Cassegrain antenna
US4622559A (en) Paraboloid reflector antenna feed having a flange with tapered corrugations
US3212095A (en) Low side lobe pillbox antenna employing open-ended baffles
Palvig et al. Optimization procedure for wideband matched feed design
KR20210072958A (en) Vivaldi Antenna with Improved Performance
US20080030417A1 (en) Antenna Apparatus
EP0140598B1 (en) Horn-reflector microwave antennas with absorber lined conical feed
US4107690A (en) Antenna arrangement for radar or direction finding purposes respectively, with sum and difference patterns