US3648279A - Multielectrode transducer element - Google Patents
Multielectrode transducer element Download PDFInfo
- Publication number
- US3648279A US3648279A US37124A US3648279DA US3648279A US 3648279 A US3648279 A US 3648279A US 37124 A US37124 A US 37124A US 3648279D A US3648279D A US 3648279DA US 3648279 A US3648279 A US 3648279A
- Authority
- US
- United States
- Prior art keywords
- electrodes
- elements
- mechanically
- electrode
- combination
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000463 material Substances 0.000 claims abstract description 6
- 239000004033 plastic Substances 0.000 claims description 11
- 229920003023 plastic Polymers 0.000 claims description 11
- 230000000994 depressogenic effect Effects 0.000 claims description 8
- 239000002184 metal Substances 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 8
- 230000003116 impacting effect Effects 0.000 claims description 7
- -1 polytetrafluoroethylene Polymers 0.000 claims description 5
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 5
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 5
- 230000000881 depressing effect Effects 0.000 claims description 2
- 239000013078 crystal Substances 0.000 description 12
- 239000004020 conductor Substances 0.000 description 8
- 230000010355 oscillation Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101001130132 Homo sapiens Protein LDOC1 Proteins 0.000 description 1
- 102100031705 Protein LDOC1 Human genes 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J5/00—Devices or arrangements for controlling character selection
- B41J5/08—Character or syllable selected by means of keys or keyboards of the typewriter type
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/96—Touch switches
- H03K17/964—Piezoelectric touch switches
- H03K17/9643—Piezoelectric touch switches using a plurality of detectors, e.g. keyboard
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03K—PULSE TECHNIQUE
- H03K17/00—Electronic switching or gating, i.e. not by contact-making and –breaking
- H03K17/94—Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
- H03K17/965—Switches controlled by moving an element forming part of the switch
- H03K17/967—Switches controlled by moving an element forming part of the switch having a plurality of control members, e.g. keyboard
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
- H10N30/302—Sensors
Definitions
- ABSTRACT A transducer means suitable for use as the mechanical-toelectrical translating element of the key of a keyboard. It includes a plurality of electrodes embedded in a body of amorphous, piezoelectric material. When the key is actuated to strike the body, a voltage is induced at each electrode.
- the electrodes of the various keys may be connected in different ways to common buses to provide a coded output from the keyboard.
- Crystals which have the proper axis of out are suitable for keyboard transducers, but, because of their delicate nature, are subject to catastrophic failure if overstressed. This in tum requires careful initial alignment of the keyboard assembly, to prevent overstressing and this too increases the expense of the keyboard.
- crystals generally produce multiple signals (a ringing oscillation) in response to a single mechanical stimulus.
- circuits such as gate circuits, are needed to suppress, say, all oscillations following the first one.
- An object of this invention is to provide new and improved piezoelectric devices which are sturdy, relatively inexpensive, and are capable of translating a mechanical stimulus to a relatively large group of concurrent signals.
- Another object of this invention is to provide a'new and improved keyboard employing piezoelectric transducers.
- An element of the type which in response to being mechanically struck induces a voltage change in an electrode mechanically coupled therein.
- a plurality of such electrodes are mechanically coupled in the element, and means are included for striking the element for concurrently producing a plurality of signals, one at each electrode.
- a keyboard according to the invention includes a plurality of such elements interconnected in different ways to a common output bus and each responsive to a different key.
- FIG. I is a side view, partially in section, of a keyboard element embodying the invention.
- FIG. 2 is a top view of the keyboard element illustrated in FIG. 1;
- FIG. 3a is a side view of another keyboard element configuration embodying the invention.
- FIG. 3b is a top view of the keyboard element of FIG. 3a;
- FIG. 4a is a top view of yet another keyboard element configuration embodying the invention.
- FIG. 4b is a section of the keyboard element of FIG. 4a taken along the lines 4b;
- FIG. 5 is a diagram of a standard keyboard which may be used in the practice of the invention.
- FIG. 6 is a schematic diagram illustrating howthe Baudot Code may be obtained from a keyboard formed from the keyboard elements illustrated in FIG. 1.
- FIG. 1 illustrates a device 2 which is useful, for example, as a keyboard element.
- the body 4 of the device is formed of an amorphous material which exhibits piezoelectric characteristics. Some typical materials which are especially suitable include plastics such as polytetrafluoroethylene.
- Flange 6 is mechanically pressed into the body 4 and in turn is secured in a baseplate member 8.
- a plurality of conducting electrodes 10, which, for example, may be formed of copper or any other good conductor of electricity, are embedded in the body 4.
- the electrodes 10 may be secured in place in apertures in the body 4 by threads, flanges, or knurling, etc. Alternatively, the electrodes may be mechanically coupled to the body 4 in other ways well known in the art.
- Supporting members 12 and l4 are attached to baseplate member 8, for example, by screws (not shown), and also to a member 16.
- a flat spring 18 of a key 20 is secured to point 22 of member 16 by means of screws (not shown) or spot welding.
- Flat spring 18 is also secured to a striking or impacting means 24 and to one end of a coil spring 26 which form part of the key 20. The other end of the spring 26 is attached to the key top 28.
- a latch 30 is pivotally mounted to member 16 by means of a pin 32. Latch 30 is biased into the position shown by means of a spring 34.
- a retaining element 36 is attached to member 16 to prevent latch 30 from traveling any further than the element 36.
- latch 30 When the force applied to the key top is removed, latch 30 returns to its rest position due to the tension of spring 34.
- the upward bias of spring 18 returns striking element 24 to its rest position.
- latch 30 In the event latch 30 returns prior to the return of spring 18, the end 38 of the spring 18 slides over the angled surface 41 of the latch to the rest position.
- electrodes 10 are embedded to equal depths, voltages of essentially equal magnitude are induced in each of the electrodes I0.
- the signal is taken from the interior of element 4, rather than externally as is done with a piezoelectric crystal.
- FIG. 2 is a top view of the element 4 in which seven electrodes 10 are embedded. A greater or lesser number of electrodes may be utilized depending on the needs of the particular user. Since the element 4 is formed of a plastic, it is very durable and can withstand great stress. This results in a long operational life and minimal failure.
- a keyboard unit employing a plurality of elements such as shown in FIGS. 1 and 2 is rugged and relatively insensitive to vibration.
- the design chosen for the key is but one of many that may be used in the practice of the invention. Even if a design is chosen in which the impacting or striking means applies forces of varying magnitude to the body 4, for different forces applied to the keytop, the magnitude of the induced voltages in the electrodes 10 does not vary to an extent sufiicient to degrade operation.
- the body 4 and electrodes 10 may be fabricated in ways other than shown in FIGS. 1 and 2,
- FIGS. 30 and 3b in which a plurality of bodies 4 are embedded in a baseplate member 42.
- FIG. 3a is a side view of the bodies and
- FIG. 3b is a view looking downward on the impact surfaces of the bodies.
- the electrodes 10 run substantially parallel to the impact surface of the body 4 whereas in FIGS. 1 and 2 the electrodes ran substantially perpendicular to the impact surface.
- the electrode 100 is situated nearer the impact surface of the bodies 4 than are the electrodes 10d, We, and 10f. If the electrodes are of the same size, a voltage of a greater magnitude is induced in electrode 100 than in 10d when body 40 is impacted. If it is desired that the voltage induced in each electrode, in this arrangement, be the same, the surface area of the electrodes l0d-f could be made greater than the surface area of the electrode 10c. A greater or lesser number of electrodes may be passed through the bodies 4, depending upon the needs of the particular user.
- FIG. 4 illustrates yet another way in which the bodies and electrodes may be fabricated in a laminated form.
- a baseplate member 44 (FIG. 4b) has a first sheet of plastic 46, of the type used for the bodies 4 earlier described, secured to its surface by means of cementing, bonding, etc.
- a plurality of conductors 48 which may be flat or of circular cross section, is then placed on top of the sheet 46.
- a second sheet of plastic 49 is placed over the conductors 48 and secured to sheet 46.
- a plurality of conductors 50 is placed on top of sheet 49 substantially perpendicular to the direction at which the conductors 48 were placed.
- a third sheet of plastic 52 is placed over the conductors 50 and secured to the sheet 49.
- FIG. 4a illustrates the laminated structure looking downward on the impact surface of the structure.
- the dotted circles 54, 56, 58 and 60 define the areas at which the striking or impacting means of a key would strike the structure. For example, if the area defined by circle 54 were impacted, a voltage would be induced in conductors 48a and 50a. It is to be understood that a greater or lesser number of conductors and sheets of plastic may be utilized in the practice of the invention.
- FIG. 6 illustrates how certain electrodes of each keyboard element are connected to a plurality of output terminals for generating a different code for each key which is depressed.
- a five-bit code such as a Baudot Code is employed so that each element has five electrodes.
- any other code using a different number of bits may be employed in which case there would be a greater (or fewer) number of electrodes per element, as needed.
- the five circles 10a directly under the letter A represent the electrodes which are mechanically coupled to the body 4 for the A key.
- the remaining keys are illustrated in similar fashion.
- an electrode represented by a clear circle (and that does not have a line connected to an output terminal) represents a binary 0 in the code
- an electrode represented by a black circle (and connected by a line to an output terminal) represents a binary l in the code, when the key is depressed.
- key A has the 2 and 2 output terminals representing a l and the 2 -2 representing a 0 when key A is depressed.
- the codes for the remaining keys are easily determined by referring to the remaining electrode connections.
- the output terminals 2-2 may be connected to any sensing device or computer which acts upon the information generated by the keyboard. Since the information comes from the keyboard in coded form, there is no encoding or gating device needed between the keyboard and the computer.
- a keyboard comprising, in combination:
- decoder means coupled to said electrodes and responsive to i the voltages induced therein, for producing a unique signal code for each element.
- a keyboard comprising in combination:
Landscapes
- Input From Keyboards Or The Like (AREA)
- Push-Button Switches (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3712470A | 1970-05-14 | 1970-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
US3648279A true US3648279A (en) | 1972-03-07 |
Family
ID=21892563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US37124A Expired - Lifetime US3648279A (en) | 1970-05-14 | 1970-05-14 | Multielectrode transducer element |
Country Status (9)
Country | Link |
---|---|
US (1) | US3648279A (enrdf_load_stackoverflow) |
JP (1) | JPS466821A (enrdf_load_stackoverflow) |
CA (1) | CA936104A (enrdf_load_stackoverflow) |
CH (1) | CH538155A (enrdf_load_stackoverflow) |
DE (1) | DE2123822A1 (enrdf_load_stackoverflow) |
FR (1) | FR2091584A5 (enrdf_load_stackoverflow) |
GB (1) | GB1345895A (enrdf_load_stackoverflow) |
NL (1) | NL7106589A (enrdf_load_stackoverflow) |
SE (1) | SE367496B (enrdf_load_stackoverflow) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3749947A (en) * | 1971-08-28 | 1973-07-31 | Denki Onkyo Co Ltd | Switch devices |
US3792467A (en) * | 1973-01-08 | 1974-02-12 | Control Data Corp | Impact transducer apparatus |
US3903436A (en) * | 1973-02-23 | 1975-09-02 | Mansei Kogyo Kk | Piezoelectric generating device |
US3935485A (en) * | 1973-09-17 | 1976-01-27 | Kureha Kagaku Kogyo Kabushiki Kaisha | Piezoelectric key board switch |
US3940637A (en) * | 1973-10-15 | 1976-02-24 | Toray Industries, Inc. | Polymeric piezoelectric key actuated device |
US4071785A (en) * | 1975-05-02 | 1978-01-31 | Kureha Kagaku Kogyo Kabushiki Kaisha | Laminated piezoelectric matrix switch |
US4234813A (en) * | 1978-04-10 | 1980-11-18 | Toray Industries, Inc. | Piezoelectric or pyroelectric polymer input element for use as a transducer in keyboards |
US4580074A (en) * | 1984-11-26 | 1986-04-01 | General Motors Corporation | Piezoelectric transducer with coded output signal |
US4975616A (en) * | 1988-08-18 | 1990-12-04 | Atochem North America, Inc. | Piezoelectric transducer array |
US5636729A (en) * | 1995-06-12 | 1997-06-10 | Wiciel; Richard | Piezo switch |
US20130188341A1 (en) * | 2012-01-16 | 2013-07-25 | Shen-Ko Tseng | Power generating device |
US20230036761A1 (en) * | 2021-07-30 | 2023-02-02 | Neptune Technology Group Inc. | Method and system for transducer validation |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5130911Y1 (enrdf_load_stackoverflow) * | 1970-12-17 | 1976-08-03 | ||
JPS51138327A (en) * | 1975-05-26 | 1976-11-29 | Nippon Telegr & Teleph Corp <Ntt> | Piezoelectric film switch |
JPS5257982A (en) * | 1975-11-08 | 1977-05-12 | Nippon Telegraph & Telephone | Piezooelectric keyboard |
JPS52135287A (en) * | 1976-05-28 | 1977-11-12 | Kureha Chemical Ind Co Ltd | Method of inputting piezooelectric signal |
JPS5372182A (en) * | 1976-12-09 | 1978-06-27 | Kkf Corp | Electrical signal generator |
DE2718289A1 (de) * | 1977-04-25 | 1978-10-26 | Rosenthal Technik Ag | Piezokeramischer schalter mit geringer einbautiefe |
JPS5747435A (en) * | 1980-09-01 | 1982-03-18 | Fuji Oil Co Ltd | Base material for making cheese cakes |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US23813A (en) * | 1859-04-26 | Leonard b | ||
US2824980A (en) * | 1952-03-14 | 1958-02-25 | Erie Resistor Corp | Piezoelectric transducers |
US2864013A (en) * | 1953-06-29 | 1958-12-09 | Electro Voice | Sensitive strain responsive transducer and method of construction |
US3366808A (en) * | 1966-01-03 | 1968-01-30 | Friden Inc | Keyboard key transducer |
US3464531A (en) * | 1967-05-16 | 1969-09-02 | Us Army | Manual electronic keyboard |
-
1970
- 1970-05-14 US US37124A patent/US3648279A/en not_active Expired - Lifetime
-
1971
- 1971-05-06 CA CA112396A patent/CA936104A/en not_active Expired
- 1971-05-07 GB GB1363971*[A patent/GB1345895A/en not_active Expired
- 1971-05-12 CH CH703371A patent/CH538155A/de not_active IP Right Cessation
- 1971-05-13 SE SE06246/71A patent/SE367496B/xx unknown
- 1971-05-13 NL NL7106589A patent/NL7106589A/xx unknown
- 1971-05-13 DE DE19712123822 patent/DE2123822A1/de active Pending
- 1971-05-13 FR FR7117396A patent/FR2091584A5/fr not_active Expired
- 1971-05-14 JP JP3215971A patent/JPS466821A/ja active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US23813A (en) * | 1859-04-26 | Leonard b | ||
US2824980A (en) * | 1952-03-14 | 1958-02-25 | Erie Resistor Corp | Piezoelectric transducers |
US2864013A (en) * | 1953-06-29 | 1958-12-09 | Electro Voice | Sensitive strain responsive transducer and method of construction |
US3366808A (en) * | 1966-01-03 | 1968-01-30 | Friden Inc | Keyboard key transducer |
US3464531A (en) * | 1967-05-16 | 1969-09-02 | Us Army | Manual electronic keyboard |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3749947A (en) * | 1971-08-28 | 1973-07-31 | Denki Onkyo Co Ltd | Switch devices |
US3792467A (en) * | 1973-01-08 | 1974-02-12 | Control Data Corp | Impact transducer apparatus |
US3903436A (en) * | 1973-02-23 | 1975-09-02 | Mansei Kogyo Kk | Piezoelectric generating device |
US3935485A (en) * | 1973-09-17 | 1976-01-27 | Kureha Kagaku Kogyo Kabushiki Kaisha | Piezoelectric key board switch |
US3940637A (en) * | 1973-10-15 | 1976-02-24 | Toray Industries, Inc. | Polymeric piezoelectric key actuated device |
US4071785A (en) * | 1975-05-02 | 1978-01-31 | Kureha Kagaku Kogyo Kabushiki Kaisha | Laminated piezoelectric matrix switch |
US4234813A (en) * | 1978-04-10 | 1980-11-18 | Toray Industries, Inc. | Piezoelectric or pyroelectric polymer input element for use as a transducer in keyboards |
US4580074A (en) * | 1984-11-26 | 1986-04-01 | General Motors Corporation | Piezoelectric transducer with coded output signal |
US4975616A (en) * | 1988-08-18 | 1990-12-04 | Atochem North America, Inc. | Piezoelectric transducer array |
US5636729A (en) * | 1995-06-12 | 1997-06-10 | Wiciel; Richard | Piezo switch |
US20130188341A1 (en) * | 2012-01-16 | 2013-07-25 | Shen-Ko Tseng | Power generating device |
US9143060B2 (en) * | 2012-01-16 | 2015-09-22 | Shen-Ko Tseng | Power generating device |
US20230036761A1 (en) * | 2021-07-30 | 2023-02-02 | Neptune Technology Group Inc. | Method and system for transducer validation |
Also Published As
Publication number | Publication date |
---|---|
DE2123822A1 (de) | 1971-12-02 |
NL7106589A (enrdf_load_stackoverflow) | 1971-11-16 |
CH538155A (de) | 1973-06-15 |
SE367496B (enrdf_load_stackoverflow) | 1974-05-27 |
GB1345895A (en) | 1974-02-06 |
FR2091584A5 (enrdf_load_stackoverflow) | 1972-01-14 |
CA936104A (en) | 1973-10-30 |
JPS466821A (enrdf_load_stackoverflow) | 1971-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3648279A (en) | Multielectrode transducer element | |
US3653038A (en) | Capacitive electric signal device and keyboard using said device | |
US3676607A (en) | Pushbutton telephone dial | |
US3976899A (en) | Snap action mechanical-electrical piezoelectric transducer | |
US3721778A (en) | Keyboard switch assembly with improved operator and contact structure | |
US3464531A (en) | Manual electronic keyboard | |
US3736397A (en) | Keyboard switch assembly with pushbutton magnetic latching structure for non-operative position | |
US3707609A (en) | Diaphragm pushbutton switch array for keyboards | |
US3293640A (en) | Electronic systems keyboard and switch matrix | |
KR20050016466A (ko) | 수동 동작가능 전자 장치 | |
JPH03184220A (ja) | 圧電スイッチ | |
US3553588A (en) | Transmitter piezoelectric power supply | |
US3366808A (en) | Keyboard key transducer | |
US4580074A (en) | Piezoelectric transducer with coded output signal | |
US3363737A (en) | Pulse generating key board | |
US4581506A (en) | Impact switch | |
US3725908A (en) | Impact transducer keyboard apparatus | |
US6104119A (en) | Piezoelectric switch | |
US3353038A (en) | Signal generating arrangement for an electric typewriter and similar apparatus | |
US3668417A (en) | Touch-sensitive switch employing electret foil | |
EP0107318B1 (en) | Solid state keyboard | |
US5880539A (en) | Electromagnet induced switch | |
US4305067A (en) | Electromechanical transducer for relief display panel | |
US4737767A (en) | Solid state keyboard | |
US4194188A (en) | Interrogation of key switches using pulse width detection |