US3647279A - Color display devices - Google Patents

Color display devices Download PDF

Info

Publication number
US3647279A
US3647279A US40925A US3647279DA US3647279A US 3647279 A US3647279 A US 3647279A US 40925 A US40925 A US 40925A US 3647279D A US3647279D A US 3647279DA US 3647279 A US3647279 A US 3647279A
Authority
US
United States
Prior art keywords
container
cholesteryl
display
light
percent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US40925A
Inventor
Edward N Sharpless
Frederick Davis
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LIQUID CRYSTAL IND Inc
Original Assignee
LIQUID CRYSTAL IND Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LIQUID CRYSTAL IND Inc filed Critical LIQUID CRYSTAL IND Inc
Priority to US4092570A priority Critical
Application granted granted Critical
Publication of US3647279A publication Critical patent/US3647279A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/36Steroidal liquid crystal compounds
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition

Abstract

A display device for exhibiting a color pattern, said device comprising container means having a light-transmitting section and a juxtaposed darker hued or opaque section, a quantity of liquid crystalline material interposed between said container sections and encapsulated within said container means, said material having a characteristic of selective light scattering to exhibit color patterns within a range of temperatures at which said display device is normally utilized, and means for peripherally sealing one of said container sections to the other. Means can also be provided for applying deformational stress to the liquid crystal to vary its color pattern.

Description

United States Patent Sharpless et al.

[ Mar. 7, 1972 [54] COLOR DISPLAY DEVICES [72] Inventors: Edward N. Shnrpless, Pitcairn; Frederick [2! 1 Appl. No.: 40,925

[52] US. Cl ..350/l60, 40/ I30, 356/32 [5 l] Int. Cl. ..G02t H40 [58] Field of Search ..356/32; 350/160; 40/130 [56] References Cited UNITED STATES PATENTS 3,441,513 4/ 1969 Woodmansee ..350/ 160 LC OTHER PUBLICATIONS Product Engineering, Dec. 21, 1964, Vol. 35, pp. 56 57. Ferguson, Liquid Crystals, Scientific American, Vol. 21], 8/64, pp. 76- 85.

Wysooki et al., Molecular Crystals & Liq. Crystals, Vol. 8, 8/6 p 47 l- 488.

Adams et al., Molecular Crystals & Liq. Crystals, Vol. 8, 8/68, pp. 9- l8.

Klein et 21]., Rev. of Sci. lnstr., Vol. 41, No. 2, 2/70, pp. 238 239.

Garn, J. of Amer. Chem. Soc., Vol. 91, No. 19, 9/69, p. 5382. Lehmann, Thermodynamics, Vol. I, 1966, pp. 2- 5.

Fergason et al., Electro- Technology, l/70, pp. 41- 50.

Primary Examiner-Ronald L. Wibert Assistant Examiner.l. Rothenberg Attorney-Donn J. Smith [57 ABSTRACT A display device for exhibiting a color pattern, said device comprising container means having a light-transmitting section and a juxtaposed darker hued or opaque section, a quantity of liquid crystalline material interposed between said container sections and encapsulated within said container means, said material having a characteristic of selective light scattering to exhibit color patterns within a range of temperatures at which said display device is normally utilized, and means for peripherally sealing 'one of said container sections to the other. Means can also be provided for applying deformational stress to the liquid crystal to vary its color pattern.

20 Claims, 54 Drawing Figures PATENTEUMAR 71912 3, 647, 279

sum 2 [IF 8 PAIENIEUMAR 7 I972 3,647, 279

" sum 7 0F 23 [/VVZ/VWOE Eduard M Ella/P69 3 ma Freda/M (11066" 2&4; w

rang aw mavzn" COLOR DISPLAY DEVICES The present invention relates to variable color display or aesthetic devices and to means for enhancing the variable color patterns produced by the device for entertainment, advertising, aesthetic or decorative effects or purposes.

Devices for displaying color patterns for various purposes are legion. These devices usually employ various colored materials or surfaces, color filters or simply lights of various colors. Many of these devices are capable only of displaying colors or color patterns of a fixed or invarying nature, and their usefulness is thereby limited. Particularly in displays for decorative or aesthetic purposes, the novelty wears off" all too soon.

Color display devices in the form of various kinds of lightprojecting machines are likewise available for use in advertising, entertainment and in the purely decorative field. For the most part, these machines rely on solid crystalline or plastic colored materials, photographic slides, systems of mirrors with color filters attached, movable arrays of color filters, or simply lights of various colors which may be movably disposed or otherwise sequenced to illuminate the object or area with the intended color pattern or patterns. While some of these machines work reasonably well in a limited range of applications and furnish a number of fixed color patterns, the machines usually are complex in construction owing to mechanical repetition of various components. The total number of available color patterns or color variation is severely limited in most cases and the sense of variety is soon lost. The colors or color patterns are usually overly brilliant, cold, or otherwise unnatural in their hues and intensities.

In many color display devices there is the frequent requirement that several such devices or systems be used to approach the desired aesthetic or decorative effects. The number of moving components of these systems are thereby multiplied, leading to maintenance problems. When several. such light systems are utilized, a time synchronization is often required, particularly when one attempts to associate music with a changing color display or an analogous dynamic lighting system. This objective is difficult to accomplish with conventional systems owing to large numbers of moving parts and other practical difficulties. Moreover, the potential variation in color patterns has been severely limited for the reasons pointed out above.

In many other fields of endeavor, it is desired to illuminate relatively large areas in varying color patterns. For example, in the fields of theatrical and nightclub lighting, various means have been utilized for providing colored illuminational patterns, for backdrop or other environmental effects. Frequently, a subdued character is desired of these environmental effects. This is accomplished by rather complex lighting systems, as alluded to above, requiring, where moving patterns are desired, the services of a skilled operator to arrange the necessary combination of lighting components, to achieve a desired sequence of colors or color patterns. Conventionally theatrical lighting systems for this purpose include a light source with a plurality of solenoid-operated color filters for selective orientation in front of the light source for varying the color saturation with which the stage is illuminated. Such equipment may require several hundred color panels, and numerous light sources, all of which must be operated by skilled personnel. Other arrangements involve complicated arrays of mirrors and/or projectors, none of which is capable of changing color patterns with smooth transitions between colors and hues.

Certain of these problems have been alleviated to some extent by projection and display devices disclosed in the U5. Pats. to Clark, 111 No. 3,431,044; Lane et al. No. 3,3l5,39l; and Billings No. 2,600,962. The Clark device inherently involves a number of moving parts but limited color variation.

1 The potential color variations achieved by the Clark device A similar arrangement is shown in the Lane et al. reference in which the intermediate solid member is additionally deformed to simulate motion. The Billings device is analogous, except that a stress-responsive birefringent crystal is employed. The Billings arrangement, moreover, is not directed to the problem of aesthetic or decorative lighting, as it is arranged to pass very narrow optical bands.

in general, the variety of color patterns attainable with devices such as disclosed by Lane et al. and Clark is limited, owing to the employment of birefringent solid members. The cited references require the use of various light polarizing structures, which are not essential to our invention. Our color display device, which can be more or less permanently and directly applied to large surface areas, such as walls, ceilings, stage backdrop, and furniture surfaces, in many cases obviates the need for colored lights or the optical projection of color patterns.

We overcome these disadvantages of the prior art by providing a unique optical display device capable of producing an infinite variety of color variations and patterns. The solution of this perennial problem is realized by introducing a liquid crystalline material into a display device of novel construction. Desirably the liquid crystalline material is selected which has a characteristic of variable light scattering at room temperature or at least at those environmental temperatures under which the device is employed. For example, a liquid crystalline material can be selected, which is capable of variable light scattering at operating temperatures in the region of an illuminating light source, for example one utilized in an advertising sign, area lighting, or other display arrangement. The selected liquid crystalline material desirably but not necessarily exhibits a variable scattering characteristic which is further modified when subjected to mechanical deformation, such as occasioned by shear or flow stresses.

Accordingly, our novel display device or liquid crystal cell is provided firstly with a light transmitting wall to permit viewing of the contained liquid crystalline material. Secondly, the liquid crystalline cell is desirably associated with means for inducing deformational stresses within the contained liquid crystalline material. This can be accomplished in a variety of ways: For examples, the liquid crystalline cell can be constructed with means permitting the displacement of one wall structure thereof relative to another. Various mechanical means can be associated with the cell or display device for inducing flow and attendant shear stresses within the liquid crystalline material.

Our display device as thus far described is capable of a large number of applications, for example as an aesthetic novelty, decorative wall, floor and ceiling panels, backdrops for stages and other illuminated areas, toys, book and album covers, place mats, paper weights, clock faces, displays for table tops and other furniture surfaces, and numerous analogous applications. For many of these applications a subdued background or environmental illumination is sufficient for viewing the infinite variety of color patterns resulting from a stress manipulation of my display device. Deformational stresses can be applied manually or through the operation of suitable mechanical, electromechanical, or electrohydraulic means. Owing to the pressure sensitivity of many liquid crystalline materials, useful in our invention, stresses can be applied by vibratory or minor shock energies. For example, certain forms of the .display device can be suspended or stretched over loudspeaker, or the like, such that color pattern changes are effected by sonic vibrations. An analogous application involves incorporation of my display device on piano tops or in connection with other musical instruments.

In many other applications, our liquid crystal display devices find utilization where it is desirable to show visually strain patterns, or patterns of stress application. For example, components of our display devices ca