US3645658A - Fluid power eject mechanism for a powder compacting press - Google Patents

Fluid power eject mechanism for a powder compacting press Download PDF

Info

Publication number
US3645658A
US3645658A US861611A US3645658DA US3645658A US 3645658 A US3645658 A US 3645658A US 861611 A US861611 A US 861611A US 3645658D A US3645658D A US 3645658DA US 3645658 A US3645658 A US 3645658A
Authority
US
United States
Prior art keywords
fluid pressure
pickup head
pressure system
cavity
press
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US861611A
Inventor
Georges D Detroyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolverine Pentronix Inc
Original Assignee
Wolverine Pentronix Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wolverine Pentronix Inc filed Critical Wolverine Pentronix Inc
Application granted granted Critical
Publication of US3645658A publication Critical patent/US3645658A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B15/00Details of, or accessories for, presses; Auxiliary measures in connection with pressing
    • B30B15/32Discharging presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/46Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles using fluid pressure

Definitions

  • ABSTRACT A fluid power system for a pickup and discharge mechanism for small manufactured articles or parts, such as made by a Appl. No.: 861,611
  • a pickup head opcratively connected to a suction source for displacement of the finished parts over a discharge port or ports through which the finished parts are individually discharged by means of a gentle blast of [51] Int. 3/00 18/2 RC, 2 RA, 12TM, 16 F,
  • the present invention relates to a pickup and discharge mechanism for presses and like machines and is of particular utility in automatic powder compacting presses.
  • Powder compacting presses are capable of manufacturing cores, beads'and diverse articles of compacted powdered ferrite, glass or any other powdered material.
  • the green compacted parts are generally relatively fragile and must be handled with caution during ejection, pickup and transfer of the parts to the discharge station.
  • the green compacted articles are relatively fragile and must be handled gently after ejection from the die cavity or cavities. For instance, if there is insufficient vacuum flow caused, for example, by clogged wire retaining screens within the pickup head assembly, or for other reasons, the compacted parts ejected from the die cavities are being dragged rather than lifted to the discharge ports. When this occurs, the compacted parts can be easily broken as they approach the discharge ports. Another difficulty is caused when the vacuum flow is set too high, which allows the compacted parts to be dropped into the wrong discharge tube connected to each of the discharge ports by being swept across the die plate.
  • any inadequate eject setting of the mechanism can prevent a proper pickup of the compacted parts, and instead the pickup head strikes the compacted parts, thereby breaking them and causing loose particles and powder to accumulate on the die plate and within the separate discharge receptacles.
  • the present invention provides a novel fluid system for a pickup head assembly of a work station positioner associated with a press or the like.
  • the novel fluid system includes means replacing a separate source of vacuum and which is operated by a source of pressurized air readily available in the shop and adapted for a forced discharge of the compacted part or parts from the pickup head.
  • the pickup head assembly will be located over the discharge ports in the die plate.
  • the suction force is changed to air pressure to gently blow the parts through the discharge ports into their respective discharge tubes and into segregated containers.
  • an appropriate rotary cam actuates a pilot valve to create a flow of air to the pickup head assembly to blow the parts from the pickup head assembly into the discharge ports.
  • the compacted parts are lifted into the pickup head assembly by a continuous flow of air passing through an aspirator assembly, which causes the creation of a suction force or partial vacuum within the pickup head assembly to thereby hold the compacted parts against a wire screen or any other perforated wall provided within the pickup head assembly until the positioner moves to the fill position.
  • the pickup head assembly is then located over the discharge ports and has carried the parts from the die cavities to the discharge ports.
  • the source used to create the partial vacuum in the pickup head assembly to retain the compacted parts within the pickup head assembly is reversed by means of the actuation of a pilot valve to a flow of air pressure to gently blow the compacted parts from the pickup head assembly through their respective discharge ports and from there into respective receptacles.
  • FIG. 1 is a front view of an exemplary powder compacting press in which the improved pickup and discharge system according to the present invention is embodied;
  • FIG. 2 is a cross section through the exemplary powder compacting press shown in FIG. 1 embodying the present invention as seen along line 2-2 thereof;
  • FIG. 3 is a top plan view of the exemplary powder compacting press shown in FIGS. 1 and 2 as seen along line 3-3 in FIG. 2;
  • FIG. 4 is an enlarged cross section of the die plate and pickup head assembly of the exemplary powder compacting press illustrating the suction cycle of the present invention as seen along line 4-4 in FIG. 3;
  • FIG. 5 is a similarly enlarged cross section through the die plate and pickup head assembly of the exemplary powder compacting press illustrating the discharge cycle of the present invention
  • FIG. 6 is a further enlarged fragmentary cross section through the aspirator assembly of the present novel fluid pickup and discharge system of the present invention.
  • FIG. 7 is a schematic fluid flow diagram schematically illustrating the operation of the present novel fluid pickup and discharge system.
  • the exemplary powder compacting press 22 in which the invention may be of particular advantage, has a base 24 supporting a frame or housing 26 on which rests a worktable 28.
  • the frame or housing 26 encloses a drive mechanism 30 which, in this instance, comprises a camshaft 33 normally supporting a plurality of cams, three of which are shown in FIG. 2 at 23, and 32, adapted to initiate the various work cycles of the press as is known.
  • Camshaft 33 is normally driven by any conventional drive means (not shown) to permit the multiple cams to perform the various work operations of the press in timed sequence, as disclosed in the aforementioned United States patents and applications, in
  • a cam disposed so as to engage a treadle (not shown) which is centrally pivoted in the housing 26 for reciprocatory actuation of a ram member (not shown), so that upon rotation of this cam the ram is adapted to reciprocate a punch or punches 66 (FIG. 4) retained within a tool set (not shown), mounted in the worktable 28 of the press 22.
  • a die plate 42 usually integral with a punch retaining tool set is mounted within a recess 38 provided in the worktable 28 and is suitably secured thereto by means of bolts 43, or the like, fitting into appropriate apertures provided in the die plate 42.
  • the die plate 42 upon installation, is preferably flush with the surface of the worktable 28.
  • a station positioner assembly 46 Positioned on top of the worktable 28 for horizontal, pivotal movement around a vertical axis in timed sequence as caused by actuation of the camshaft drive mechanism of the press is a station positioner assembly 46 comprising an oscillating positioner arm 47 on the end of which are supported three work stations as follows: (a) a fill station to dispense powdered material into the die cavities through a dispenser head 48 which is supplied with powdered material by means of a flexible tube or conduit 49 from a powder material hopper 50, supported on the vertical station positioner axis and rotatable therewith; (b) a press station provided with an upper compacting member in the form of an anvil 52 which is adapted to be clamped down upon the die plate 42 by means ofa pivotal clamp 54, FIGS.
  • the clamp 54 as seen in FIG. 2, is provided with a pressure head 53 which is adjustable in relation to the anvil 52 by means of a microscrew adjustment 55; and (c) a pickup station provided with a pickup head 56 which, in the improved embodiment, is adapted to be selectively connected to a source of suction or air pressure by means of a common conduit 58 to retain the finished parts by suction above the die plate 42, after they have been ejected from the die cavities by the punches 66 (FIG. 4), and to discharge the finished parts from the pickup head 56 for disposal of the finished parts through appropriate discharge apertures 64 (FIG. 5) into separate containers, as previously explained.
  • the dispenser head 48, the anvil 52 and the pickup head 56 are all assembled on the station positioner arm 47 within appropriate recesses or apertures at the end of the oscillating positioner arm 47 of the station positioner 46.
  • the anvil 52 which is positioned between the dispenser head 48 and pickup head 56, is independently vertically movable relative to the latter so that upon forcing down of the clamp 54 on the anvil 52 the clamping force will not be transmitted to the adjacent dispenser head and pickup head.
  • the die plate 42 is provided with a plurality of cavities 62, each defined by the bore of a die bushing 63 press fitted in appropriate apertures 65 within the die plate 42.
  • the die cavities 62 are preferably arranged in the center of the die plate 42 in a geometrical pattern.
  • the die plate 42 is further provided with a plurality of discharge apertures 64 corresponding in number to the number of die cavities 62.
  • the discharge apertures 64 are located near the die cavities in order to reduce the angular movement of the positioner arm 47 to a minimum, and the center of each of the discharge apertures 64 is located parallel to an arc Y extended from the center of the corresponding die cavities 62 described by the angular movement of the oscillating positioner arm 47.
  • the oscillating positioner arm 47 is angularly moved to a position placing the dispenser head 48 over the die cavities 62, the pickup head 56 is positioned over the discharge apertures 64 and at the same time as the finished articles 74 are discharged through the discharge apertures 64 the die cavities 62 are again filled with powdered material for the next work cycle.
  • the timed operation of the exemplary powder compacting press 22, as shown in FIGS. 1-3 is schematically as follows: after the machine is started, rotation of the camshaft 33 causes the cam 32 of the multiple cam drive mechanism 30 to act on a pivoted lever 70 which is suitably connected to a yoke 72 to thereby angularly rotate the oscillating positioner arm 47 of the station positioner 46 to a position placing the dispenser head 48 over the die cavities 62 to fill each of the cavities with powdered material to a depth determined by the amount of withdrawal of each punch 66 within each die cavity 62.
  • the oscillating positioner arm 47 is caused to pivot around in timed relation to position the press station or anvil 52 over the die cavities 62, which position is illustrated in FIG. 3.
  • the pivotal anvil clamp 54 is actuated to pivot the clamp 54 around the clamp support shaft 61 to engage the clamp head 53 with the top of the anvil 52 so as to press the anvil 52 down upon the die plate 42 to completely cover the die cavities 62.
  • the punch or punches 66 shown in FIG. 4, within the die cavity or cavities 62 are advanced upwardly to compress the loosely dispensed powder within the die cavity between the head of the punch or punches and the bottom surface of the anvil 52.
  • the oscillating positioner arm 47 is swung in timed sequence to a position placing the pickup head 56 over the die cavities 62 to pick up the finish compacted parts 74 from each of the die cavities when they are ejected from the die cavities by a final advance of the punch or punches 66 through the die cavities, as illustrated in FIG. 4.
  • the pickup head assembly 56 comprises a cup 76 having one or more internal cavities 78 corresponding in number to the number of die cavities 62 for individual reception of each finish compacted part 74 from each of the die cavities after ejection therefrom by the final advance of the punch or punches 66, as shown in FIG. 4.
  • Each of the pickup head cavities 78 is connected to the improved fluid system by a conduit 58 and the upper portion of each cavity is closed off by a wire screen 80 or similar perforated means against which the ejected finish compacted part 74 is held in suspended position by a reverse airflow therethrough creating a partial vacuum or suction within the cavity 78, as illustrated in FIG.
  • the cup 76 of the pickup head assembly 56 provides a clearance between its lower edge 77 and the die plate 42 to permit a restricted flow of atmospheric air therethrough, as indicated by the direction of the arrows.
  • each of the discharge ports 64 is connected by a tube 82 to an individual container 84, such as a vial, bottle or the like, suitably supported within the housing 26 of the press 22 for easy access thereto so that it can be conveniently replaced when filled.
  • an individual container 84 such as a vial, bottle or the like
  • the die plate 42 is provided with a plurality of die cavities 62 corresponding in number to the number of discharge ports 64 (FIG. 3) arranged along the same geometrical pattern. The finish compacted part from each of the die cavities will be separately picked up in segregated cavities 78 provided in the pickup head 56,
  • each container 84 always receives finish compacted articles from the same die cavity to thereby provide a convenient inspection means.
  • the containers 84 are numbered corresponding to the number of the die cavities so that it is easy to determine which die cavity produced inferior parts, requiring adjustment or renovation of the respective working parts.
  • the inferior parts produced in any one die cavity will be constantly kept separate, thereby eliminating a time-consuming inspection procedure of the finished parts during any production run, as more in detail disclosed in the aforementioned United States patents and applications.
  • the improved pickup and discharge system of the present invention comprises a conduit 86 which is connected to a source of air pressure (not shown) and extends into the press housing 26 for connection through a connector 88 to the inlet 90 of a pilot valve 94 positioned within the press housing 26.
  • the pilot valve 94 is a three-way valve of conventional construction having a first outlet 96 capable of being controllably connected to or cut off from the inlet 90 as a result of the operation of the pilot valve 94.
  • the outlet 96 is connected by means of a tubing 98 to the inlet side of a first flow regulating valve 100 secured inside of the front panel of the housing 26.
  • the valve 100 has an actuating stem 102 provided outwardly of the press housing with the control knob 104 by which the actuating stern 102 may be rotated to thereby adjust the fluid flow through the regulating valve 100.
  • the outlet side of the first regulating valve 100 is connected by a conduit 106 to a T-connector 108 disposed in the upper rear portion of the press housing 26 underneath the press table 28.
  • the upper branch 110 of the T-connector 108 extends through the press table for connection to the conduit 58 leading into the pickup head 56 on the station positioner 46 to thus provide a direct fluid communication from the source of pressurized air (not shown) through the pilot valve 94 and through the tubing 98 into the first regulating valve 100 and from there through conduits 106 and T-connector 108 into the cavity or cavities 78 of the pickup head 56 by means of the conduit 58 when the outlet 96 of the pilot valve 94 is connected to the inlet pipe 90.
  • the second outlet 97 of the pilot valve 94 is connected constantly to the inlet 92 as shown schematically at 93 and by a tubing 112 to the inlet side of a second flow regulating valve 114, which is similarly secured to inside of the front panel of the housing 26 and has an actuating stem 116 provided outwardly of the press housing with a control knob 118 by which the actuating stem may be rotated to thereby adjust the fluid flow through the regulating valve.
  • the outlet side of the second regulating valve 114 is connected by a conduit 120 through a check valve 122 to an aspirator assembly 124, shown in detail in FIG. 6.
  • the through branch 126 of the aspirator assembly is in communication with an exhaust and filter assembly 128 secured outwardly to the rear of the press housing 26 expel air from the system to the atmosphere.
  • the upper branch 130 of the aspirator assembly 124 is connected to the lower branch 132 of the T-connector 108 and thereby, by means of the common conduit 58, to the pickup head 56.
  • the first system including the first regulating valve 100 constitutes an air pressure system at a relatively low-pressure rate
  • the second system including the second regulating valve 114 constitutes a suction system in accordance with the present invention.
  • the fluid flow through the regulating valves and 114 is adjustable from a fully closed to a completely open position by means of manipulation of the control knobs 104 and 118, as indicated by the legends in FIG. 1.
  • the control knobs 104 and 118 of the control valves will be set prior to the operation of the press approximately midway between the extreme open and closed positions, as indicated by the pointers in FIG. 1, to thus reduce or increase the airflow through the regulating valves as may become necessary by air pressure changes due to clogged filters or clogged screens 80 in the pickup head 56 or for other reasons.
  • the aspirator assembly 124 is provided with a body portion 134 generally resembling a conventional T-connector and having a through branch 126 and an upper branch 130.
  • the through branch 126 which is connected to the exhaust and filter assembly 128, is provided with an axial bore 136 which, at the center of the body portion 134, communicates with a radial bore 138 extending through the upper branch to provide fluid communication with the conduit 58 through the Tconnector 108.
  • the axial bore 136 converts within the body portion 134 into a coaxially aligned bore 140 of substantially smaller diameter than the bore 136 and into which is press fitted a tube 142 which partly extends into the axial bore 136 a distance such as to end just short of the center of the axial bore 138 positioned normal thereto.
  • the tube 142 is axially bored through, as seen at 144, to provide a restricted fluid communication from the conduit 120 and check valve 122 to the exhaust and filter assembly 128.
  • the reduced fluid flow through the tube passage 144 provides a venturi 146 at the opening of the tube centrally within the body portion of the aspirator assembly 124.
  • the second system including the inlet pipe 92 and second regulating valve 114, is constantly connected to the source of air pressure through the valve 94, a constant flow of air is being directed through the tubing 120, check valve 122, and aspirator assembly 124 to the atmosphere through exhaust 128.
  • the flow of air through the venturi 146 causes air to be drawn from the cavities 78 of the pickup head 56, through conduit 58, T-connector 108 and through the aspirator assembly 124 out to the atmosphere.
  • This constant reverse airflow or suction causes a partial vacuum, that is, the creation of an air pressure lower than atmospheric pressure, within the cavities 78 in the pickup head 56 by which, when the pickup head is positioned over the die cavities 62 and the finish compacted parts 74 have been ejected from the die cavities by advancement of the punches 66, causes the parts 74 to be gently drawn up against the wire screen 80, as illustrated in FIG. 4.
  • the pilot valve 94 which actuates the air pressure for discharge of the finished articles from the pickup head 56 is provided with a springloaded valve operating plunger 1 48 supported for reciprocation in an extension 150 of the valve housing. Pivotally suspended above the plunger 148 and abutting against the upper end thereof is an actuating lever 152 which is rearwardly supported for pivotal rotation on a pivot pin 154, secured to the upper end of a support bracket 156, which is suitably attached to the top of the valve housing. The free end of the actuating lever 152 is provided with a cam follower roller 158 adapted to be constantly engaged in rolling contact against the circumferential surface 160 of the cam 23, which is fastened for rotation to the driveshaft 33 of the press 22.
  • valve 94 is preferably a three-way valve, as indicated in FIG. 7, which has a constantly open through-passage 93 providing open communication between the inlet 90 and the outlet 97 for the suction system.
  • the other portion of the valve 94 is provided with a variably openable and closable passage 95 as determined by the position of the plunger 148. Normally the passage 95 is closed, as indicated by the position in solid line in FIG.
  • the improved pickup and discharge system functions as follows: considering the compacting press 22 being in operation and after the powder in the die cavity (or cavities) 62 has been compacted, as described previously, the station positioner arm 47 is swung towards the left, in the illustration in FIG. 3, by means of the synchronized cam drive mechanism of the press to position the pickup head 56 over the die cavity (or cavities) 62, which position is shown in FIG. 4. At this time and when the positioner movement stops the punches 66 are advanced by a final stroke of the ram of the press to push the finished compacted parts 74 out of the die cavities into the cavities 78 of the pickup head 56. This stage of operation is illustrated in FIG. 4.
  • pressurized air constantly flows through the regulating valve 114, conduit 120, through the check valve 122 and into the aspirator assembly 124.
  • the aspirator assembly due to the suddenly restricted flow through the tube passage 144, a considerably increased airflow velocity is created at the venturi opening 146 of the tube 142, which causes a purging action within the aspirator, thereby drawing air from the cavities 78 in the pickup head 56 through the conduit 58 and T-connector 108 into the aspirator through the bore 138 and out through the bore 136 for exhaust to the atmosphere through the exhaust and filter assembly 128.
  • This action causes the creation of a partial vacuum in the cavity (or cavities) 78 of the pickup head 56 disposed over the die cavities 62 by which the finish compacted and ejected parts 74 from each of the die cavities is gently drawn upwardly against the wire screen 80 and retained thereon in suspended position as long as the suction airflow through the aspirator is maintained.
  • Continuous rotation of the driveshaft 33 causes the station positioner arm 47 to be swung toward the right, in the illustration in FIG. 3, to dispose the pickup head 56 over the discharge ports 64.
  • the magnitude of the air pressure is relatively low so as to permit a gentle blowing-out of the compacted parts 74 to prevent them from being damaged in any way.
  • the air pressure is sufficient to override the suction force created by the aspirator 124 without the necessity of disconnecting the airflow through the aspirator since the forced air pressure flow into the pickup head cavities 78 is connected upstream of the aspirator thereby overcoming the suction effect and reversing the airflow within the conduit 58 to gently blow the parts 74 from the retaining screen 80 into their respective discharge apertures 64.
  • the present invention provides an improved pickup and discharge fluid system for a powder compacting press or similar machine for positive blowout of the finish compacted parts without causing the parts to be damaged. Additionally, the improved fluid system provides a continuous purging of the parts receiving cavities of the pickup head and cleaning of the wire screens therein to prevent the wire screens from becoming clogged due to loose powder material or foreign substances.
  • the improved pickup and discharge fluid system assures positive pickup of the finish compacted parts and accurate disposal of the parts through their respective discharge ports and effectively prevents the relatively fragile compacted parts from being damaged during the pickup, transfer and discharge phases of the operation.
  • this improved system may be incorporated in a variety of similar high-speed production machines capable of producing a multitude of relatively small, equal sized articles which have to be picked up, transferred and discharged from the machine in a timed cycle and where precaution is required for not damaging these articles.
  • a die plate having at least one clie cavity therein;
  • a pickup head disposed above said die cavity and having at least one cavity
  • a first fluid pressure system constantly functioning to create a partial vacuum within said pickup head cavity to positively pickup said article after being compacted and expelled from said cavity;
  • means to gently remove said compacted article from said pickup head cavity comprising a second fluid pressure system and means to connect said pickup head cavity to said second fluid pressure system in synchronism with the operation of said press so as to induce a reverse flow of air into said pickup head cavity while said first system is constantly functioning to create said vacuum whereby said second fluid pressure system overrides said first fluid pressure system and gently blows said compacted article from said pickup head cavity into said discharge station for disposal in a receptacle.
  • said means constantly functioning to create said partial vacuum comprises said first fluid pressure system having an aspirator assembly open to the atmosphere and connected to said pickup head cavity to thereby constantly create a partial vacuum in said pickup head when said aspirator assembly is connected to a source of pressurized air and means continuously connecting said aspirator assembly to said source of pressurized air.
  • said means to transfer said compacted articles comprises a station positioner assembly pivotally supported for oscillating movement across said die plate.
  • said means to connect said pickup head cavity to said second fluid pressure system comprises valve means operable to be opened and closed in timed sequence with the operation of said press, said valve means being connected to a source of pressurized air.
  • a pickup head having a cavity defining a fluid pressure chamber adapted to receive said expelled compacted article
  • a first fluid pressure system adapted to constantly function to create a partial vacuum in said fluid pressure chamber of said pickup head by fluid flow in one direction to retain said compacted article in said pickup head;
  • a second fluid pressure system adapted to override said first fluid pressure system to create fluid flow in said fluid pressure system to create fluid flow in said fluid pressure chamber in an opposite direction to gently blow said compacted article from said pickup head for disposal through a discharge port;
  • valve means operable by means associated with said drive mechanism to intermittently cause operation of said second fluid pressure system to change said fluid flow from said one direction to said opposite direction.
  • valve means comprises a three-way valve having an inlet connected to said source of fluid pressure, a first outlet connected constantly to said first fluid pressure system, a second normally closed outlet selectively connectable to said inlet, said valve means having a valve operating plunger adapted in a first position to normally disconnect said second outlet from said inlet and in a second position to connect said second outlet to said inlet, and means associated with said drive mechanism to act on said valve operating plunger to intermittently move said valve operating plunger from said first to said second position in timed sequence.
  • said means associated with said drive mechanism to act on said valve operating plunger comprises an actuating lever in abutment with said valve operating plunger and pivotally supported at one end, the other end of said actuating lever being provided with a cam follower adapted to engage a cam associated with said drive mechanism for rotation thereby, said cam having a cam lobe adapted upon rotation of said cam to move said valve operating plunger from said first position to said second position to establish connection between said second outlet and said inlet.
  • said first fluid pressure system including an aspirator assembly connected between said first outlet and said fluid chamber of said pickup head, said aspirator assembly having an exhaust port constantly open to the atmosphere so that airflow through said aspirator assembly causes air to be extracted from said fluid chamber of said pickup head to the atmosphere to thereby create a partial vacuum in said fluid chamber by which said compacted article is retained in said pickup head.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Press Drives And Press Lines (AREA)

Abstract

A fluid power system for a pickup and discharge mechanism for small manufactured articles or parts, such as made by a powder compacting press or the like. After compacting in a die cavity, the finished parts upon ejection from the die cavity or cavities are picked up by a pickup head operatively connected to a suction source for displacement of the finished parts over a discharge port or ports through which the finished parts are individually discharged by means of a gentle blast of pressurized air. The suction force to pick up the finished parts is obtained from a flow of air through an appropriate venturilike aspirator assembly.

Description

[ 1 Feb.29,1972
United States Patent De'liroyet' [54] FLUID POWER EJECT MEQHANISM 3,328,842 7/1967 Vinson....................................18/16 5 FOR A POWDER COMPAQTING PRESS 3,409,939 11/1968 Hey...................................18/16 M X [72] Inventor:
Georges D. DeTroyer, Detroit, Mich. Primary A. Kflby, JL
Attorney-Hauke, Gifford and Patalidis [73] Assignee: Wolverine-Pentronix, inc., Lincoln Park,
Mich.
221 Filed: Sept. 29, 1969 ABSTRACT [21] A fluid power system for a pickup and discharge mechanism for small manufactured articles or parts, such as made by a Appl. No.: 861,611
powder compacting press or the like. After compacting in a die cavity, the finished parts upon ejection from the die cavity [52] US. Cl.................................425/78, 425/139, 425/422,
or cavities are picked up by a pickup head opcratively connected to a suction source for displacement of the finished parts over a discharge port or ports through which the finished parts are individually discharged by means of a gentle blast of [51] Int. 3/00 18/2 RC, 2 RA, 12TM, 16 F,
[58] FieldofSearch..................
References (Iited UNITED STATES PATENTS pressurized air. The suction force to pick up the finished parts is obtained from a flow of air through an appropriate venturilike aspirator assembly.
Bucy 62 UX 13 Claims, 7 Drawing Figures i'i EJil PAIENIEnFmamn' 3,645,658
SHEEI1UF3 INVENTOR RG6 GEORGES 0. DETROYER BY M ATTORNEYS PATENTEUFEBZB m2 3.645.658
SHEEI 3 0F 3 I FIG?) /22 W I l INVENTOR GEORGES D. DETROYER ATTORNEYS FIG.5
00 56' IIHQIII I WIN. I 45 '7 119- FIG.4
FLUID POWER EJECT MECHANISM FOR A POWDER COMPACTING PRESS REFERENCE TO RELATED APPLICATIONS The present invention is related in part to U.S. Pat. Nos. 3,328,840, 3,328,842, 3,344,213, 3,414,940, 3,415,142, 3,561,054, 3,561,056, and 3,574,892 and to U.S. application Ser. No. 782,918 in the name of Joseph E. Smith for Multitool Punch Set For Powder Compacting Press," and Ser. No. 785,584 in the name of Joseph E. Smith for Composite Punch For Powder Compacting Press, all of which are assigned to the assignee of the present application.
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pickup and discharge mechanism for presses and like machines and is of particular utility in automatic powder compacting presses. Powder compacting presses,, as is known, are capable of manufacturing cores, beads'and diverse articles of compacted powdered ferrite, glass or any other powdered material. In these presses or machines, the green compacted parts are generally relatively fragile and must be handled with caution during ejection, pickup and transfer of the parts to the discharge station.
2. Description of the Prior Art In manufacturing machines, such as punch presses, powder compacting presses and the like which manufacture relatively small parts at a high rate of production, problems have been encountered in regard to the pickup and discharge of the finished parts from the press for disposal in receptacles. For efficient operation of the machine, the finished parts must be discharged at the same rate that the press operates and in synchronism with the various work cycles of the press or other machines.
It has been the practice in powder compacting presses, for instance, to dispose a suction head over the die cavity or cavities after the last compacting stroke and then eject the finish compacted part or parts from the die cavities into the suction head where they are retained by means of a suction force for transfer to a discharge station at which point the suction force will be cut off causing the compacted parts to drop through respective discharge ports. This arrangement requires the provision of a suction source on the machine, such as a vacuum pump or the like, or an exterior suction source, which is not ordinarily available in a shop. This suction source then must be integrated into the operational cycle of the press such as to be effective at the proper time. Any malfunction of the suction system, which is not readily detected, will cause the finished parts to be damaged. As mentioned before, the green compacted articles are relatively fragile and must be handled gently after ejection from the die cavity or cavities. For instance, if there is insufficient vacuum flow caused, for example, by clogged wire retaining screens within the pickup head assembly, or for other reasons, the compacted parts ejected from the die cavities are being dragged rather than lifted to the discharge ports. When this occurs, the compacted parts can be easily broken as they approach the discharge ports. Another difficulty is caused when the vacuum flow is set too high, which allows the compacted parts to be dropped into the wrong discharge tube connected to each of the discharge ports by being swept across the die plate. Furthermore, any inadequate eject setting of the mechanism can prevent a proper pickup of the compacted parts, and instead the pickup head strikes the compacted parts, thereby breaking them and causing loose particles and powder to accumulate on the die plate and within the separate discharge receptacles.
SUMMARY OF THE PRESENT INVENTION The present invention provides a novel fluid system for a pickup head assembly of a work station positioner associated with a press or the like. The novel fluid system includes means replacing a separate source of vacuum and which is operated by a source of pressurized air readily available in the shop and adapted for a forced discharge of the compacted part or parts from the pickup head. In the example of a powder compacting press in which the present invention may be embodied, after the work station positioner oscillates to the fill position and following the ejection of the compacted parts from the die cavities, the pickup head assembly will be located over the discharge ports in the die plate. At this point, according to the present invention, the suction force is changed to air pressure to gently blow the parts through the discharge ports into their respective discharge tubes and into segregated containers. In conjunction with the exemplary powder compacting press, as disclosed in the aforementioned United States patents and patent applications, an appropriate rotary cam actuates a pilot valve to create a flow of air to the pickup head assembly to blow the parts from the pickup head assembly into the discharge ports. Previously, after ejection of the parts from the die cavities, the compacted parts are lifted into the pickup head assembly by a continuous flow of air passing through an aspirator assembly, which causes the creation of a suction force or partial vacuum within the pickup head assembly to thereby hold the compacted parts against a wire screen or any other perforated wall provided within the pickup head assembly until the positioner moves to the fill position.
At that time, the pickup head assembly is then located over the discharge ports and has carried the parts from the die cavities to the discharge ports. At this point, the source used to create the partial vacuum in the pickup head assembly to retain the compacted parts within the pickup head assembly is reversed by means of the actuation of a pilot valve to a flow of air pressure to gently blow the compacted parts from the pickup head assembly through their respective discharge ports and from there into respective receptacles. By the provision of this arrangement and actuation thereof by the synchronized mechanism of the press or similar machine, the aforementioned disadvantages and difficulties of the prior art in picking up and discharging the finished parts from the machine, as described in the foregoing, are being primarily eliminated.
Further objects and additional advantages of the invention will become apparent from the following detailed description when read in conjunction with the attached drawings.
BRIEF DESCRIPTION OF THE DRAWINGS The accompanying drawings illustrate a preferred embodiment of the invention as incorporated in an exemplary powder compacting press and in which:
FIG. 1 is a front view of an exemplary powder compacting press in which the improved pickup and discharge system according to the present invention is embodied;
FIG. 2 is a cross section through the exemplary powder compacting press shown in FIG. 1 embodying the present invention as seen along line 2-2 thereof;
FIG. 3 is a top plan view of the exemplary powder compacting press shown in FIGS. 1 and 2 as seen along line 3-3 in FIG. 2;
FIG. 4 is an enlarged cross section of the die plate and pickup head assembly of the exemplary powder compacting press illustrating the suction cycle of the present invention as seen along line 4-4 in FIG. 3;
FIG. 5 is a similarly enlarged cross section through the die plate and pickup head assembly of the exemplary powder compacting press illustrating the discharge cycle of the present invention;
FIG. 6 is a further enlarged fragmentary cross section through the aspirator assembly of the present novel fluid pickup and discharge system of the present invention; and
FIG. 7 is a schematic fluid flow diagram schematically illustrating the operation of the present novel fluid pickup and discharge system.
DESCRIPTION OF THE PREFERRED EMBODIMENT Although the particular press in which the improved fluid pickup and discharge system of the present invention may be embodied forms no part of the invention herein disclosed, a brief summary of the construction and operation of an exemplary powder compacting press is given hereafter for the sake of description of the invention.
With reference to FIGS. l-3, the exemplary powder compacting press 22, in which the invention may be of particular advantage, has a base 24 supporting a frame or housing 26 on which rests a worktable 28. The frame or housing 26 encloses a drive mechanism 30 which, in this instance, comprises a camshaft 33 normally supporting a plurality of cams, three of which are shown in FIG. 2 at 23, and 32, adapted to initiate the various work cycles of the press as is known. Camshaft 33 is normally driven by any conventional drive means (not shown) to permit the multiple cams to perform the various work operations of the press in timed sequence, as disclosed in the aforementioned United States patents and applications, in
which is additionally described a cam disposed so as to engage a treadle (not shown) which is centrally pivoted in the housing 26 for reciprocatory actuation of a ram member (not shown), so that upon rotation of this cam the ram is adapted to reciprocate a punch or punches 66 (FIG. 4) retained within a tool set (not shown), mounted in the worktable 28 of the press 22. As further seen in FIG. 3, a die plate 42 usually integral with a punch retaining tool set is mounted within a recess 38 provided in the worktable 28 and is suitably secured thereto by means of bolts 43, or the like, fitting into appropriate apertures provided in the die plate 42. The die plate 42, upon installation, is preferably flush with the surface of the worktable 28.
Positioned on top of the worktable 28 for horizontal, pivotal movement around a vertical axis in timed sequence as caused by actuation of the camshaft drive mechanism of the press is a station positioner assembly 46 comprising an oscillating positioner arm 47 on the end of which are supported three work stations as follows: (a) a fill station to dispense powdered material into the die cavities through a dispenser head 48 which is supplied with powdered material by means of a flexible tube or conduit 49 from a powder material hopper 50, supported on the vertical station positioner axis and rotatable therewith; (b) a press station provided with an upper compacting member in the form of an anvil 52 which is adapted to be clamped down upon the die plate 42 by means ofa pivotal clamp 54, FIGS. 1 and 2, supported on a shaft 61 and which is actuated by appropriate cam means (not shown). The clamp 54, as seen in FIG. 2, is provided with a pressure head 53 which is adjustable in relation to the anvil 52 by means of a microscrew adjustment 55; and (c) a pickup station provided with a pickup head 56 which, in the improved embodiment, is adapted to be selectively connected to a source of suction or air pressure by means of a common conduit 58 to retain the finished parts by suction above the die plate 42, after they have been ejected from the die cavities by the punches 66 (FIG. 4), and to discharge the finished parts from the pickup head 56 for disposal of the finished parts through appropriate discharge apertures 64 (FIG. 5) into separate containers, as previously explained.
The dispenser head 48, the anvil 52 and the pickup head 56 are all assembled on the station positioner arm 47 within appropriate recesses or apertures at the end of the oscillating positioner arm 47 of the station positioner 46. The anvil 52, which is positioned between the dispenser head 48 and pickup head 56, is independently vertically movable relative to the latter so that upon forcing down of the clamp 54 on the anvil 52 the clamping force will not be transmitted to the adjacent dispenser head and pickup head.
With reference to FIG. 3-5, the die plate 42, as herein shown for example, is provided with a plurality of cavities 62, each defined by the bore of a die bushing 63 press fitted in appropriate apertures 65 within the die plate 42. The die cavities 62 are preferably arranged in the center of the die plate 42 in a geometrical pattern. The die plate 42 is further provided with a plurality of discharge apertures 64 corresponding in number to the number of die cavities 62. The discharge apertures 64 are located near the die cavities in order to reduce the angular movement of the positioner arm 47 to a minimum, and the center of each of the discharge apertures 64 is located parallel to an arc Y extended from the center of the corresponding die cavities 62 described by the angular movement of the oscillating positioner arm 47. When the oscillating positioner arm 47 is angularly moved to a position placing the dispenser head 48 over the die cavities 62, the pickup head 56 is positioned over the discharge apertures 64 and at the same time as the finished articles 74 are discharged through the discharge apertures 64 the die cavities 62 are again filled with powdered material for the next work cycle.
For illustrative purpose, the timed operation of the exemplary powder compacting press 22, as shown in FIGS. 1-3, is schematically as follows: after the machine is started, rotation of the camshaft 33 causes the cam 32 of the multiple cam drive mechanism 30 to act on a pivoted lever 70 which is suitably connected to a yoke 72 to thereby angularly rotate the oscillating positioner arm 47 of the station positioner 46 to a position placing the dispenser head 48 over the die cavities 62 to fill each of the cavities with powdered material to a depth determined by the amount of withdrawal of each punch 66 within each die cavity 62. Hereafter, the oscillating positioner arm 47 is caused to pivot around in timed relation to position the press station or anvil 52 over the die cavities 62, which position is illustrated in FIG. 3. In timed sequence, the pivotal anvil clamp 54 is actuated to pivot the clamp 54 around the clamp support shaft 61 to engage the clamp head 53 with the top of the anvil 52 so as to press the anvil 52 down upon the die plate 42 to completely cover the die cavities 62. Simultaneously, the punch or punches 66, shown in FIG. 4, within the die cavity or cavities 62 are advanced upwardly to compress the loosely dispensed powder within the die cavity between the head of the punch or punches and the bottom surface of the anvil 52. Thereafter, the oscillating positioner arm 47 is swung in timed sequence to a position placing the pickup head 56 over the die cavities 62 to pick up the finish compacted parts 74 from each of the die cavities when they are ejected from the die cavities by a final advance of the punch or punches 66 through the die cavities, as illustrated in FIG. 4.
In accordance with the present invention, and as particularly shown in FIGS. 4 and 5, the pickup head assembly 56 comprises a cup 76 having one or more internal cavities 78 corresponding in number to the number of die cavities 62 for individual reception of each finish compacted part 74 from each of the die cavities after ejection therefrom by the final advance of the punch or punches 66, as shown in FIG. 4. Each of the pickup head cavities 78 is connected to the improved fluid system by a conduit 58 and the upper portion of each cavity is closed off by a wire screen 80 or similar perforated means against which the ejected finish compacted part 74 is held in suspended position by a reverse airflow therethrough creating a partial vacuum or suction within the cavity 78, as illustrated in FIG. 4 by the direction of the arrows. To prevent too great a vacuum from being created in either of the pickup head cavities '78, the cup 76 of the pickup head assembly 56 provides a clearance between its lower edge 77 and the die plate 42 to permit a restricted flow of atmospheric air therethrough, as indicated by the direction of the arrows.
With reference to FIGS. 3-5, while holding the ejected compact part 74 against the wire screen 80 within each of the cavities 78 of the pickup head 56, the station positioner arm 47 is swung along the radius Y" to place the pickup head 56 over the discharge ports 64 (FIG. 3). As shown in FIGS. 1 and 2, each of the discharge ports 64 is connected by a tube 82 to an individual container 84, such as a vial, bottle or the like, suitably supported within the housing 26 of the press 22 for easy access thereto so that it can be conveniently replaced when filled. When the positioner arm 47 has stopped its movement above the discharge ports 64, the partial vacuum or suction within the cavity 78 in thepickup head 56 is converted to a gentle airflow permitting the parts 74 to be blown through their respective discharge port 64 and through a tube 82 into one of the containers 84. As shown, for example, in a multiple punch arrangement of the press, the die plate 42 is provided with a plurality of die cavities 62 corresponding in number to the number of discharge ports 64 (FIG. 3) arranged along the same geometrical pattern. The finish compacted part from each of the die cavities will be separately picked up in segregated cavities 78 provided in the pickup head 56,
disposed in the same geometrical pattern corresponding to the arrangement of the die cavities and the discharge ports, and will then be moved in that position to the discharge ports 64 to drop each part 74 into its respective discharge port corresponding to the position of its die cavity for disposal into a separate container 84. Thus, each container 84 always receives finish compacted articles from the same die cavity to thereby provide a convenient inspection means. The containers 84 are numbered corresponding to the number of the die cavities so that it is easy to determine which die cavity produced inferior parts, requiring adjustment or renovation of the respective working parts. At the same time, the inferior parts produced in any one die cavity will be constantly kept separate, thereby eliminating a time-consuming inspection procedure of the finished parts during any production run, as more in detail disclosed in the aforementioned United States patents and applications.
With particular reference to FIGS. 2 and 7, the improved pickup and discharge system of the present invention comprises a conduit 86 which is connected to a source of air pressure (not shown) and extends into the press housing 26 for connection through a connector 88 to the inlet 90 of a pilot valve 94 positioned within the press housing 26.
As schematically shown in FIG. 7, the pilot valve 94 is a three-way valve of conventional construction having a first outlet 96 capable of being controllably connected to or cut off from the inlet 90 as a result of the operation of the pilot valve 94. The outlet 96 is connected by means of a tubing 98 to the inlet side of a first flow regulating valve 100 secured inside of the front panel of the housing 26. The valve 100 has an actuating stem 102 provided outwardly of the press housing with the control knob 104 by which the actuating stern 102 may be rotated to thereby adjust the fluid flow through the regulating valve 100. The outlet side of the first regulating valve 100 is connected by a conduit 106 to a T-connector 108 disposed in the upper rear portion of the press housing 26 underneath the press table 28. The upper branch 110 of the T-connector 108 extends through the press table for connection to the conduit 58 leading into the pickup head 56 on the station positioner 46 to thus provide a direct fluid communication from the source of pressurized air (not shown) through the pilot valve 94 and through the tubing 98 into the first regulating valve 100 and from there through conduits 106 and T-connector 108 into the cavity or cavities 78 of the pickup head 56 by means of the conduit 58 when the outlet 96 of the pilot valve 94 is connected to the inlet pipe 90.
The second outlet 97 of the pilot valve 94 is connected constantly to the inlet 92 as shown schematically at 93 and by a tubing 112 to the inlet side of a second flow regulating valve 114, which is similarly secured to inside of the front panel of the housing 26 and has an actuating stem 116 provided outwardly of the press housing with a control knob 118 by which the actuating stem may be rotated to thereby adjust the fluid flow through the regulating valve. The outlet side of the second regulating valve 114 is connected by a conduit 120 through a check valve 122 to an aspirator assembly 124, shown in detail in FIG. 6. The through branch 126 of the aspirator assembly is in communication with an exhaust and filter assembly 128 secured outwardly to the rear of the press housing 26 expel air from the system to the atmosphere. The upper branch 130 of the aspirator assembly 124 is connected to the lower branch 132 of the T-connector 108 and thereby, by means of the common conduit 58, to the pickup head 56.
The first system including the first regulating valve 100 constitutes an air pressure system at a relatively low-pressure rate, and the second system including the second regulating valve 114 constitutes a suction system in accordance with the present invention. With reference to P16. 1, the fluid flow through the regulating valves and 114 is adjustable from a fully closed to a completely open position by means of manipulation of the control knobs 104 and 118, as indicated by the legends in FIG. 1. Under normal operating conditions of the press and under normal predetermined air pressure conditions, the control knobs 104 and 118 of the control valves will be set prior to the operation of the press approximately midway between the extreme open and closed positions, as indicated by the pointers in FIG. 1, to thus reduce or increase the airflow through the regulating valves as may become necessary by air pressure changes due to clogged filters or clogged screens 80 in the pickup head 56 or for other reasons.
With particular reference to FIG. 6, the aspirator assembly 124 is provided with a body portion 134 generally resembling a conventional T-connector and having a through branch 126 and an upper branch 130. The through branch 126, which is connected to the exhaust and filter assembly 128, is provided with an axial bore 136 which, at the center of the body portion 134, communicates with a radial bore 138 extending through the upper branch to provide fluid communication with the conduit 58 through the Tconnector 108. The axial bore 136 converts within the body portion 134 into a coaxially aligned bore 140 of substantially smaller diameter than the bore 136 and into which is press fitted a tube 142 which partly extends into the axial bore 136 a distance such as to end just short of the center of the axial bore 138 positioned normal thereto. The tube 142 is axially bored through, as seen at 144, to provide a restricted fluid communication from the conduit 120 and check valve 122 to the exhaust and filter assembly 128. The reduced fluid flow through the tube passage 144 provides a venturi 146 at the opening of the tube centrally within the body portion of the aspirator assembly 124.
Since the second system, including the inlet pipe 92 and second regulating valve 114, is constantly connected to the source of air pressure through the valve 94, a constant flow of air is being directed through the tubing 120, check valve 122, and aspirator assembly 124 to the atmosphere through exhaust 128. The flow of air through the venturi 146 causes air to be drawn from the cavities 78 of the pickup head 56, through conduit 58, T-connector 108 and through the aspirator assembly 124 out to the atmosphere. This constant reverse airflow or suction causes a partial vacuum, that is, the creation of an air pressure lower than atmospheric pressure, within the cavities 78 in the pickup head 56 by which, when the pickup head is positioned over the die cavities 62 and the finish compacted parts 74 have been ejected from the die cavities by advancement of the punches 66, causes the parts 74 to be gently drawn up against the wire screen 80, as illustrated in FIG. 4. Due to the provision of the clearance between the bottom edge 77 of the pickup cup 76 and the die plate 42, a restricted flow of atmospheric air is permitted to enter the cavities 78 at a rate less than the suction flow of air out of the cavities through conduit 58 which, however, is sufficient to prevent the creation of too great a vacuum within the cavities 78 by which the very fragile green compacted parts 74 may be damaged. The suction force is constantly maintained within the cavities as long as the first system remains disconnected from the source of pressurized air, and which will be activated only intermittently by timed actuation of the valve 94.
With reference to FIGS. 2 and 7, the pilot valve 94, which actuates the air pressure for discharge of the finished articles from the pickup head 56 is provided with a springloaded valve operating plunger 1 48 supported for reciprocation in an extension 150 of the valve housing. Pivotally suspended above the plunger 148 and abutting against the upper end thereof is an actuating lever 152 which is rearwardly supported for pivotal rotation on a pivot pin 154, secured to the upper end of a support bracket 156, which is suitably attached to the top of the valve housing. The free end of the actuating lever 152 is provided with a cam follower roller 158 adapted to be constantly engaged in rolling contact against the circumferential surface 160 of the cam 23, which is fastened for rotation to the driveshaft 33 of the press 22. The spring-loaded valve plunger 148 normally tends to pivot the actuating lever 152 upwardly to thereby maintain contact with the cam surface 160, which has a lobe portion 162 for actuation of the valve plunger 148 upon rotation of the cam 23. As mentioned previously, the valve 94 is preferably a three-way valve, as indicated in FIG. 7, which has a constantly open through-passage 93 providing open communication between the inlet 90 and the outlet 97 for the suction system. The other portion of the valve 94 is provided with a variably openable and closable passage 95 as determined by the position of the plunger 148. Normally the passage 95 is closed, as indicated by the position in solid line in FIG. 7, which, however, reverts to open position, shown in dotted lines in FIG. 7, to connect the inlet pipe 90 with the outlet 96 upon depression of the valve plunger 148 caused by the action of the cam lobe 162 thereon upon rotation of the cam 23.
The improved pickup and discharge system functions as follows: considering the compacting press 22 being in operation and after the powder in the die cavity (or cavities) 62 has been compacted, as described previously, the station positioner arm 47 is swung towards the left, in the illustration in FIG. 3, by means of the synchronized cam drive mechanism of the press to position the pickup head 56 over the die cavity (or cavities) 62, which position is shown in FIG. 4. At this time and when the positioner movement stops the punches 66 are advanced by a final stroke of the ram of the press to push the finished compacted parts 74 out of the die cavities into the cavities 78 of the pickup head 56. This stage of operation is illustrated in FIG. 4.
As described above, pressurized air constantly flows through the regulating valve 114, conduit 120, through the check valve 122 and into the aspirator assembly 124. In the aspirator assembly, due to the suddenly restricted flow through the tube passage 144, a considerably increased airflow velocity is created at the venturi opening 146 of the tube 142, which causes a purging action within the aspirator, thereby drawing air from the cavities 78 in the pickup head 56 through the conduit 58 and T-connector 108 into the aspirator through the bore 138 and out through the bore 136 for exhaust to the atmosphere through the exhaust and filter assembly 128. This action causes the creation of a partial vacuum in the cavity (or cavities) 78 of the pickup head 56 disposed over the die cavities 62 by which the finish compacted and ejected parts 74 from each of the die cavities is gently drawn upwardly against the wire screen 80 and retained thereon in suspended position as long as the suction airflow through the aspirator is maintained. Continuous rotation of the driveshaft 33 causes the station positioner arm 47 to be swung toward the right, in the illustration in FIG. 3, to dispose the pickup head 56 over the discharge ports 64. During this movement of the station positioner arm, the flow of air through the suction system prevails thereby maintaining the creation of a partial vacuum in the pickup head 56 to retain the finish compacted article or articles 74 against the wire screen 80 in the pickup cavity or cavities 78 during transfer from the die cavities to the discharge ports 64. When the pickup head 56 is positioned over the discharge ports, movement of the station positioner arm 47 is stopped.
By continuous rotation of the camshaft 30, the cam follower roller 158 of the valve 94 starts riding up on the cam lobe 162 provided on the cam 23 thereby causing depression of the lever 152 to move the plunger 148 inwardly to open the passage 95 of the valve 94. At the time communication through the passage 95 is all the way open, pressurized air will flow through the regulating valve 100, and from there through the conduit 106, T-connector 108 and conduit 58 into the cavity or cavities of the pickup head 56 to gently blow finished parts 74 from the cavities 78 through their respective discharge ports 64 and through a tube 82 into the respective container 84. This position is illustrated in FIG. 5.
As mentioned previously, the magnitude of the air pressure is relatively low so as to permit a gentle blowing-out of the compacted parts 74 to prevent them from being damaged in any way. However, the air pressure is sufficient to override the suction force created by the aspirator 124 without the necessity of disconnecting the airflow through the aspirator since the forced air pressure flow into the pickup head cavities 78 is connected upstream of the aspirator thereby overcoming the suction effect and reversing the airflow within the conduit 58 to gently blow the parts 74 from the retaining screen 80 into their respective discharge apertures 64. Due to the clearance provided between the bottom edge 77 of the pickup cup 76 and the die plate 42, air is permitted to escape therethr'ough to the atmosphere to prevent the buildup of excessive air pressure within the pickup head cavities 78 which could damage the fragile finish compacted parts 74. Backflow of air through the lower bracket 132 of the T-connector 108 is prevented by the check valve 122, causing the air only to escape through the aspirator 124 and out to the atmosphere through the ex haust and filter assembly 128. It will be noted that the distance of the cam lobe 162 is relatively short, thus providing short blasts of gentle air pressure to blow the finish compacted parts out of the pickup head 56. This operation coincides with the refilling of the die cavities with powdered material, since the filling head 48 (FIG. 3) of the station positioner during the blow out operation will be positioned over the die cavities, as previously described. Continuous rotation of the driveshaft 33 causes the cam follower 158 to roll off at the other end of the cam lobe 162 to thereby again close the passage in the valve 94 and stop the supply of air pressure into the pickup head 56. The flow of air through the suction system is continued to thereby resume partial vacating of air from the 'pickup cavities 78, as described above.
It will be evident from the foregoing description that the present invention provides an improved pickup and discharge fluid system for a powder compacting press or similar machine for positive blowout of the finish compacted parts without causing the parts to be damaged. Additionally, the improved fluid system provides a continuous purging of the parts receiving cavities of the pickup head and cleaning of the wire screens therein to prevent the wire screens from becoming clogged due to loose powder material or foreign substances.
The improved pickup and discharge fluid system, as herein described, assures positive pickup of the finish compacted parts and accurate disposal of the parts through their respective discharge ports and effectively prevents the relatively fragile compacted parts from being damaged during the pickup, transfer and discharge phases of the operation.
Obviously, this improved system may be incorporated in a variety of similar high-speed production machines capable of producing a multitude of relatively small, equal sized articles which have to be picked up, transferred and discharged from the machine in a timed cycle and where precaution is required for not damaging these articles.
The foregoing disclosure is only representative of a preferred form of the invention and is to be interpreted in an illustrative rather than a limiting sense, various modifications being contemplated as may be obviously resorted to by those skilled in the art without departing from the spirit and scope of the invention as hereinafter defined and the appended claims.
I claim:
1. In a compacting press for making an article compacted from powdered material, the provision comprising in combination:
a die plate having at least one clie cavity therein;
a pickup head disposed above said die cavity and having at least one cavity;
a first fluid pressure system constantly functioning to create a partial vacuum within said pickup head cavity to positively pickup said article after being compacted and expelled from said cavity;
means to transfer said compacted article to a discharge station; and
means to gently remove said compacted article from said pickup head cavity comprising a second fluid pressure system and means to connect said pickup head cavity to said second fluid pressure system in synchronism with the operation of said press so as to induce a reverse flow of air into said pickup head cavity while said first system is constantly functioning to create said vacuum whereby said second fluid pressure system overrides said first fluid pressure system and gently blows said compacted article from said pickup head cavity into said discharge station for disposal in a receptacle.
2. The compacting press as defined in claim 1, in which said pickup head cavity is provided with a perforated retaining wall and said means creating a partial vacuum being adapted to retain said compacted articles against said perforated retaining wall.
3. The compacting press as defined in claim 1, in which said means constantly functioning to create said partial vacuum comprises said first fluid pressure system having an aspirator assembly open to the atmosphere and connected to said pickup head cavity to thereby constantly create a partial vacuum in said pickup head when said aspirator assembly is connected to a source of pressurized air and means continuously connecting said aspirator assembly to said source of pressurized air.
4. The compacting press as defined in claim 3, in which said aspirator assembly provides an abruptly reduced airflow portion having a venturi opening in close proximity to the fluid connection of said pickup head cavity with said aspirator assembly.
5. The compacting press as defined in claim 1, in which said means to transfer said compacted articles comprises a station positioner assembly pivotally supported for oscillating movement across said die plate.
6. The compacting press as defined in claim 5, in which said discharge station comprises at least one aperture in said die plate connected by conduit means to said receptacle.
7. The compacting press as defined in claim 1, in which said means to connect said pickup head cavity to said second fluid pressure system comprises valve means operable to be opened and closed in timed sequence with the operation of said press, said valve means being connected to a source of pressurized air.
8. In combination with a powder compacting press having a die cavity for the receipt of powdered material therein, means to compact said powdered material within said die cavity to make a compacted article and means to expel said compacted article from said die cavity, the combination comprising:
a drive mechanism for operation of said press;
a pickup head having a cavity defining a fluid pressure chamber adapted to receive said expelled compacted article;
a first fluid pressure system adapted to constantly function to create a partial vacuum in said fluid pressure chamber of said pickup head by fluid flow in one direction to retain said compacted article in said pickup head;
a second fluid pressure system adapted to override said first fluid pressure system to create fluid flow in said fluid pressure system to create fluid flow in said fluid pressure chamber in an opposite direction to gently blow said compacted article from said pickup head for disposal through a discharge port;
a source of fluid pressure constantly connected to said first fluid pressure system and intermittently connectable to said second fluid pressure system; and
valve means operable by means associated with said drive mechanism to intermittently cause operation of said second fluid pressure system to change said fluid flow from said one direction to said opposite direction.
9. The combination as defined in claim 8, in which said valve means comprises a three-way valve having an inlet connected to said source of fluid pressure, a first outlet connected constantly to said first fluid pressure system, a second normally closed outlet selectively connectable to said inlet, said valve means having a valve operating plunger adapted in a first position to normally disconnect said second outlet from said inlet and in a second position to connect said second outlet to said inlet, and means associated with said drive mechanism to act on said valve operating plunger to intermittently move said valve operating plunger from said first to said second position in timed sequence.
10. The combination as defined in claim 9, wherein said means associated with said drive mechanism to act on said valve operating plunger comprises an actuating lever in abutment with said valve operating plunger and pivotally supported at one end, the other end of said actuating lever being provided with a cam follower adapted to engage a cam associated with said drive mechanism for rotation thereby, said cam having a cam lobe adapted upon rotation of said cam to move said valve operating plunger from said first position to said second position to establish connection between said second outlet and said inlet.
11. The combination as defined in claim 10, said first fluid pressure system including an aspirator assembly connected between said first outlet and said fluid chamber of said pickup head, said aspirator assembly having an exhaust port constantly open to the atmosphere so that airflow through said aspirator assembly causes air to be extracted from said fluid chamber of said pickup head to the atmosphere to thereby create a partial vacuum in said fluid chamber by which said compacted article is retained in said pickup head.
12. The combination as defined in claim 11, further comprising a check valve associated with said aspirator assembly connected to the inlet side thereof, said second fluid pressure system being directly connected to said fluid chamber in said pickup head and bypassing said aspirator assembly, and said check valve being adapted to prevent backflow of fluid pressure through said aspirator assembly into said first fluid pressure system when said second fluid pressure system is con nected to said source of fluid pressure.
13. The combination as defined in claim 8, further comprising manual control means for said first and said second fluid pressure systems to manually regulate the flow of fluid through said systems in response to the operating performance of said press.

Claims (13)

1. In a compacting press for making an article compacted from powdered material, the provision comprising in combination: a die plate having at least one die cavity therein; a pickup head disposed above said die cavity and having at least one cavity; a first fluid pressure system constantly functioning to create a partial vacuum within said pickup head cavity to positively pickup said article after being compacted and expelled from said cavity; means to transfer said compacted article to a discharge station; and means to gently remove said compacted article from said pickup head cavity comprising a second fluid pressure system and means to connect said pickup head cavity to said second fluid pressure system in synchronism with the operation of said press so as to induce a reverse flow of air into said pickup head cavity while said first system is constantly functioning to create said vacuum whereby said second fluid pressure system overrides said first fluid pressure system and gently blows said compacted article from said pickup head cavity into said discharge station for disposal in a receptacle.
2. The compacting press as defined in claim 1, in which said pickup head cavity is provided with a perforated retaining wall and said means creating a partial vacuum being adapted to retain said compacted articles against said perforated retaining wall.
3. The compacting preSs as defined in claim 1, in which said means constantly functioning to create said partial vacuum comprises said first fluid pressure system having an aspirator assembly open to the atmosphere and connected to said pickup head cavity to thereby constantly create a partial vacuum in said pickup head when said aspirator assembly is connected to a source of pressurized air and means continuously connecting said aspirator assembly to said source of pressurized air.
4. The compacting press as defined in claim 3, in which said aspirator assembly provides an abruptly reduced airflow portion having a venturi opening in close proximity to the fluid connection of said pickup head cavity with said aspirator assembly.
5. The compacting press as defined in claim 1, in which said means to transfer said compacted articles comprises a station positioner assembly pivotally supported for oscillating movement across said die plate.
6. The compacting press as defined in claim 5, in which said discharge station comprises at least one aperture in said die plate connected by conduit means to said receptacle.
7. The compacting press as defined in claim 1, in which said means to connect said pickup head cavity to said second fluid pressure system comprises valve means operable to be opened and closed in timed sequence with the operation of said press, said valve means being connected to a source of pressurized air.
8. In combination with a powder compacting press having a die cavity for the receipt of powdered material therein, means to compact said powdered material within said die cavity to make a compacted article and means to expel said compacted article from said die cavity, the combination comprising: a drive mechanism for operation of said press; a pickup head having a cavity defining a fluid pressure chamber adapted to receive said expelled compacted article; a first fluid pressure system adapted to constantly function to create a partial vacuum in said fluid pressure chamber of said pickup head by fluid flow in one direction to retain said compacted article in said pickup head; a second fluid pressure system adapted to override said first fluid pressure system to create fluid flow in said fluid pressure system to create fluid flow in said fluid pressure chamber in an opposite direction to gently blow said compacted article from said pickup head for disposal through a discharge port; a source of fluid pressure constantly connected to said first fluid pressure system and intermittently connectable to said second fluid pressure system; and valve means operable by means associated with said drive mechanism to intermittently cause operation of said second fluid pressure system to change said fluid flow from said one direction to said opposite direction.
9. The combination as defined in claim 8, in which said valve means comprises a three-way valve having an inlet connected to said source of fluid pressure, a first outlet connected constantly to said first fluid pressure system, a second normally closed outlet selectively connectable to said inlet, said valve means having a valve operating plunger adapted in a first position to normally disconnect said second outlet from said inlet and in a second position to connect said second outlet to said inlet, and means associated with said drive mechanism to act on said valve operating plunger to intermittently move said valve operating plunger from said first to said second position in timed sequence.
10. The combination as defined in claim 9, wherein said means associated with said drive mechanism to act on said valve operating plunger comprises an actuating lever in abutment with said valve operating plunger and pivotally supported at one end, the other end of said actuating lever being provided with a cam follower adapted to engage a cam associated with said drive mechanism for rotation thereby, said cam having a cam lobe adapted upon rotation of said cam to move said valve operating plunger from saiD first position to said second position to establish connection between said second outlet and said inlet.
11. The combination as defined in claim 10, said first fluid pressure system including an aspirator assembly connected between said first outlet and said fluid chamber of said pickup head, said aspirator assembly having an exhaust port constantly open to the atmosphere so that airflow through said aspirator assembly causes air to be extracted from said fluid chamber of said pickup head to the atmosphere to thereby create a partial vacuum in said fluid chamber by which said compacted article is retained in said pickup head.
12. The combination as defined in claim 11, further comprising a check valve associated with said aspirator assembly connected to the inlet side thereof, said second fluid pressure system being directly connected to said fluid chamber in said pickup head and bypassing said aspirator assembly, and said check valve being adapted to prevent backflow of fluid pressure through said aspirator assembly into said first fluid pressure system when said second fluid pressure system is connected to said source of fluid pressure.
13. The combination as defined in claim 8, further comprising manual control means for said first and said second fluid pressure systems to manually regulate the flow of fluid through said systems in response to the operating performance of said press.
US861611A 1969-09-29 1969-09-29 Fluid power eject mechanism for a powder compacting press Expired - Lifetime US3645658A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US86161169A 1969-09-29 1969-09-29

Publications (1)

Publication Number Publication Date
US3645658A true US3645658A (en) 1972-02-29

Family

ID=25336280

Family Applications (1)

Application Number Title Priority Date Filing Date
US861611A Expired - Lifetime US3645658A (en) 1969-09-29 1969-09-29 Fluid power eject mechanism for a powder compacting press

Country Status (1)

Country Link
US (1) US3645658A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3730659A (en) * 1971-10-04 1973-05-01 Wolverine Pentronix Powder dispenser for a powder compacting press
US3876352A (en) * 1971-08-20 1975-04-08 Wolverine Pentronix Collecting mechanism for parts made by powder compacting apparatus
US4080128A (en) * 1974-04-29 1978-03-21 Siemens Aktiengesellschaft Apparatus for the production of compacts of layerwise different composition, for heavy duty electric contacts
US4377376A (en) * 1981-09-24 1983-03-22 Ptx-Pentronix, Inc. Indexing mechanism for the anvil assembly of a powder-compacting press
US4401614A (en) * 1981-09-08 1983-08-30 Ptx-Pentronix, Inc. Anvil assembly for a powder-compacting anvil press
US4424185A (en) 1981-03-17 1984-01-03 Ptx-Pentronix, Inc. Part pick-up mechanism for powder compacting presses and the like
US4552525A (en) * 1983-06-25 1985-11-12 Eumuco Aktiengesellschaft Fur Maschinenbau Die ejector assembly for multi-stage forming machines
US4560339A (en) * 1983-11-15 1985-12-24 Officine Meccaniche Veronesi Spa (O.M.V.) Extracting system for fabricated objects formed by a thermo-forming machine
US4752200A (en) * 1987-02-19 1988-06-21 Standard Tool & Die, Inc. Apparatus for a controllable press ejection system
US5156798A (en) * 1991-05-29 1992-10-20 Bekum America Corporation Molded bottle removal apparatus and method
US6623263B2 (en) * 2000-05-08 2003-09-23 Ptx-Pentronix, Inc. Powder compacting press with variable frequency drive
WO2020123831A1 (en) * 2018-12-12 2020-06-18 Right Value Drug Stores, Llc Systems and methods for automated pellet pressing and vialing

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3108339A (en) * 1959-05-20 1963-10-29 Harry R Bucy Die casting mold breather
US3328842A (en) * 1965-04-23 1967-07-04 Pentronix Inc Powder compacting press
US3409939A (en) * 1964-11-18 1968-11-12 Lever Brothers Ltd Apparatus for the manufacture of hollow articles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3108339A (en) * 1959-05-20 1963-10-29 Harry R Bucy Die casting mold breather
US3409939A (en) * 1964-11-18 1968-11-12 Lever Brothers Ltd Apparatus for the manufacture of hollow articles
US3328842A (en) * 1965-04-23 1967-07-04 Pentronix Inc Powder compacting press

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3876352A (en) * 1971-08-20 1975-04-08 Wolverine Pentronix Collecting mechanism for parts made by powder compacting apparatus
US3730659A (en) * 1971-10-04 1973-05-01 Wolverine Pentronix Powder dispenser for a powder compacting press
US4080128A (en) * 1974-04-29 1978-03-21 Siemens Aktiengesellschaft Apparatus for the production of compacts of layerwise different composition, for heavy duty electric contacts
US4424185A (en) 1981-03-17 1984-01-03 Ptx-Pentronix, Inc. Part pick-up mechanism for powder compacting presses and the like
US4401614A (en) * 1981-09-08 1983-08-30 Ptx-Pentronix, Inc. Anvil assembly for a powder-compacting anvil press
US4377376A (en) * 1981-09-24 1983-03-22 Ptx-Pentronix, Inc. Indexing mechanism for the anvil assembly of a powder-compacting press
US4552525A (en) * 1983-06-25 1985-11-12 Eumuco Aktiengesellschaft Fur Maschinenbau Die ejector assembly for multi-stage forming machines
US4560339A (en) * 1983-11-15 1985-12-24 Officine Meccaniche Veronesi Spa (O.M.V.) Extracting system for fabricated objects formed by a thermo-forming machine
US4752200A (en) * 1987-02-19 1988-06-21 Standard Tool & Die, Inc. Apparatus for a controllable press ejection system
US5156798A (en) * 1991-05-29 1992-10-20 Bekum America Corporation Molded bottle removal apparatus and method
US6623263B2 (en) * 2000-05-08 2003-09-23 Ptx-Pentronix, Inc. Powder compacting press with variable frequency drive
WO2020123831A1 (en) * 2018-12-12 2020-06-18 Right Value Drug Stores, Llc Systems and methods for automated pellet pressing and vialing

Similar Documents

Publication Publication Date Title
US3645658A (en) Fluid power eject mechanism for a powder compacting press
US2243835A (en) Die casting machine
US3633470A (en) Package feeder apparatus
US4335065A (en) Method and apparatus for producing mouldings of cement mortar
CN113523069B (en) Full-automatic continuous stamping forming device and method for aluminum veneers
KR100321863B1 (en) Method and apparatus for a powder metallurgical process
US2927707A (en) Machine for removing baked goods and the like from pans
US3798736A (en) Rubber stamp assembler
US3406837A (en) Lifting and swinging work transfer device
US4967810A (en) Multi-color loading machines for cosmetic paste materials
US4064674A (en) Disc record manufacturing method and apparatus
US3750365A (en) Method and apparatus for opening and sealing bags
US2293070A (en) Method and apparatus for manufacturing pottery ware
US3715796A (en) Fluid power eject mechanism for a powder compacting press and method of compacting
US2781732A (en) Apparatus for producing rounded dough bodies for the formation of bakery rolls and buns
US3899087A (en) Article positioning mechanism incorporating vacuum holding and pressure ejection
EP0369214A1 (en) Device for feeding cigarettes to the wrapping line of a packeting machine
US2683932A (en) Apparatus for supplying predetermined quantities of fluid or plastic substances
US3514813A (en) Machine for making phonograph records
US3088354A (en) Doughnut cutter and depositor
US3876352A (en) Collecting mechanism for parts made by powder compacting apparatus
US2130235A (en) Feeding mechanism
US4286938A (en) Oval dish former
US2272895A (en) Method of making inner tubes
US3606661A (en) Production assembly mechanism for telescopically assembled and interference formed parts including transfer arm mechanism