US3644622A - Novel polymethylene quinoxaline dioxides for treating respiratory diseases and as growth promotants - Google Patents

Novel polymethylene quinoxaline dioxides for treating respiratory diseases and as growth promotants Download PDF

Info

Publication number
US3644622A
US3644622A US833231*A US3644622DA US3644622A US 3644622 A US3644622 A US 3644622A US 3644622D A US3644622D A US 3644622DA US 3644622 A US3644622 A US 3644622A
Authority
US
United States
Prior art keywords
quinoxaline
cyclopenta
dioxide
dihydro
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US833231*A
Inventor
James David Johnston
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfizer Inc
Original Assignee
Pfizer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfizer Inc filed Critical Pfizer Inc
Application granted granted Critical
Publication of US3644622A publication Critical patent/US3644622A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D241/00Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
    • C07D241/36Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
    • C07D241/50Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with hetero atoms directly attached to ring nitrogen atoms
    • C07D241/52Oxygen atoms

Definitions

  • This invention relates to novel polymethylene quinoxaline-1,4-dioxides useful as therapeutic agents and to' processes for the treatment of antibacterial infections and for the promotion of growth in animals. More particularly, it relates to a series of 2,3-dihydro-lH-cyclopenta- [b]quinoxaline-4,9-dioxides useful for the control of gram-negative infections in animals, and for promotion of weight gain and feed efiiciency of animals, and to novel feed compositions containing said compounds.
  • novel compounds of this invention have the general formulae:
  • R is selected from the group consisting of hydroxy, lower alkoxy, mercapto, lower alkyl-mercapto, lower alkanoyloxy, cyano, carboxy, carbo(lower)alkoxy,
  • R is selected from the group consisting of hydrogen and R Of the lower alkoxy, carbo(lower) alkoxy, lower alkylmercapto and lower alkanoyloxy groups, those having from one to four carbon atoms in the alkoxy, alkylmercapto and alkanoyloxy moieties are preferred since they are more readily prepared.
  • non-toxic mineral acid addition salts of the above mentioned bases and the non-toxic alkali metal and alkaline earth metal salts of those compounds wherein R and/or R is carboxy.
  • non-toxic salts are meant those salts which do not cause a toxic reaction to the animal in the dosages administered.
  • the preferred acid addition salts of the above mentioned bases which may be employed are the hydrochloride, hydrobromide, phosphate, nitrate and sulfate.
  • the non-toxic metal salts of particular interest are 3,644,622 Patented Feb. 22, 1972 ICC the sodium, potassium, calcium and magnesium salts.
  • the parent 2,3-dihydro- 1H-cyclopenta[b]quinoxaline thus obtained is then oxidized by means of peracids, e.g., hydrogen peroxide in glacial acetic acid, peracetic acid, m-chlorperbenzoic acid, performic acid or monoperphthalate acid, to the corresponding monoor dioxide depending upon the molar proportion of oxidizing agent used.
  • peracids e.g., hydrogen peroxide in glacial acetic acid, peracetic acid, m-chlorperbenzoic acid, performic acid or monoperphthalate acid, to the corresponding monoor dioxide depending upon the molar proportion of oxidizing agent used.
  • the mono-, or dioxide is then treated with a lower alkanoic acid anhydride to produce the corresponding l-lower alkanoyloxy quinoxaline compound, or in the case of the dioxide the corresponding 1,3-di(lower) alkanoyloxy quinoxaline compound, in a Boekelheide rearrangement.
  • Peracid oxidation of the lower alkanoyloxy compounds alfords the desired lower alkanoyloxy substituted 2,3-dihydro-1H-cyclopenta[b]quinoxaline dioxides.
  • Acid hydrolysis provides the corresponding monoor dihydroxy derivatives.
  • the rearrangement is conveniently conducted by heating the 2,3-dihydro-1H-cyclopenta[blquinoxaline-l-oxide or 1,4-dioxide at an elevated temperature, e.g., from about 50 C. to the boiling point of the solvent medium, with an excess of the desired lower alkanoyl anhydride.
  • the excess anhydride generally serves as solvent medium.
  • reaction-inert solvents that is, solvents which do not react in an undesired manner with the reactants or products under the conditions of the reaction can be used. A minimum of laboratoryexperimentation will permit the selection of suitable solvents -for this reaction.
  • solvents are dioxane, tetrahydrofuran, carbon tetrachloride, chloroform, methyl ether of diethylene glycol and the methyl ether of ethylene glycol.
  • the reaction is run for a period of about 30 minutes, or longer if necessary, and the product recovered by removal of the excess lower alkanoyl anhydride and/or solvent medium.
  • the lower alkanoyloxy derivatives can be prepared as described by Gordon, US. Patent 2,921,937, which comprises reacting the halogenated derivatives with a tertiary amine salt of the appropriate lower alkanoic acid.
  • the amine salt is conveniently, but not necessarily, formed in situ by simply mixing the amine and acid.
  • any tertiary amine is suitable, pyridine, trimethylamine, triethylamine and dimethylaniline are favored because of their availability.
  • an excess of the tertiary amine and lower alkanoic acid are used, about 2 to 3 moles of tertiary amine and about 4 to 5 moles of lower alkanoic acid per mole of dihalogenated compound. Larger or smaller ratios of amine and acid can be used but afford no advantages. Smaller ratios of amine and acid increase the length of time required for the reaction.
  • the liquid alkanes an'd halogenated alkanes serve as solvents for this reaction. Temperatures of from about to 120 C. and reaction periods of from about one to about 24 hours provide satisfactory yields.
  • the formyloxy derivatives are prepared by the acylation of the corresponding monoor dihydroxy compound, e.g., by means of acetoformic acid, at a temperature of from about C. to about C., or of formyl fluoride.
  • Acetoformic acid reagent suitable for the present process is prepared by mixing one volume of 100% formic acid with two volumes of acetic anhydride. Approximately 72 ml. of this reagent is equivalent to one mole of acetoformic acid anhydride. Excess of acetoformic acid reagent is employed when higher reaction temperatures are employed since the reagent is decomposed in the presence of basic substances to provide acetic acid and carbon monoxide. This side reaction becomes increasingly rapid above 10 C. Therefore, it is preferred to operate below this temperature. As a practical matter, the range from 0 to 10 C. is preferred for best results and economy. When operating in this temperature range, from 1.5 to 2 milliliters of acetoformic acid reagent per gram of antibiotic reactant is satisfactory. An equimolecular proportion of the reagent is adequate at the lower level of the temperature range.
  • Diluents which are non-reactive and do not catalyze decomposition of the reagent at the reaction temperature can sometimes be advantageously employed in the present process.
  • Illustrative of operable diluents are non-hydroxyl containing solvents such as dioxane, toluene, benzene, dimethylformamide, ethyl acetate, methyl isobutyl ketone, acetone, pyridine, quinoline, etc. Hydroxylated solvents such as the lower alkanols and glycols are not satisfactory due to the tendency of acetoformic acid reagent to react with these materials. It has been found that the present process is particularly adapted to the use of pyridine as a solvent medium.
  • the hydroxy group (or groups) can be replaced by chloro and bromo by reaction with thionyl chloride, thionyl bromide, phosphorous tribromide or phosphorous trichloride in the presence of a tertiary organic base such as pyridine, dimethyl.- and diethylaniline.
  • a tertiary organic base such as pyridine, dimethyl.- and diethylaniline.
  • the monohalo (chloro and bromo) derivatives of Formula I are preferably prepared by halogenation of 2, 3-dihydro-lH-cyclopenta[b]quinoxaline dioxide in a reaction-inert solvent medium such as a liquid alkane, a liquid 1 halogenated alkane and N-alkylated lower amide; e.g. n-
  • Suitable halogenating agents for the present process include bromine; chlorine; iodochloride; iodobromide; N- chloro, and N-bromo lower alkanoic acid amide, e.g. N- chlor, and N-bromacetamide; hydrocarbon dicarboxylic acid imides, e.g. N-chloro-, N-bromosuccinimide, phthalimide, and the like and N-lower-alkanoyl anilines, e.g. N- bromoacetanilide, propionanilide and the like; 3-chloro-,
  • the products are thus obtained as their hydrohalide salts.
  • the salts are converted to the free bases by treatment with an alkaline reagent such as an alkali metal or alkaline earth metal hydroxide, carbonate or bicarbonate.
  • the chloro and bromo groups are then converted by metathesis to cyano, mercapto, lower alkyl mercapto or lower alkoxy groups by a Williamson type reaction using metallic salts ofhydrogen cyanide, hydrogen sulfide, lower alkyl mercaptans or lower alcohols as reactants.
  • the preferred metal salts are those of the alkali metals, especially sodium and potassium. Other metal salts such as the lead, zinc, magnesium salts can also be used,
  • the methoxy and methyl-mercapto ethers are prepared by methylation of the oxyor mercapto groups with dimethyl sulfate or diazo methane according to known methods.
  • Suitable oxidizing agents are chromium trioxide, potassium dichromate and potassium permanganate. The oxidation of the hydroxy group or groups can be accomplished before, after or simultaneously with introduction of the N-oxide groups.
  • novel carboxy and carbo(lower)alkoxy derivatives are prepared by condensation of the appropriate 1,2-cyclopentanedione monoor dicarbo(lower)alkoxy compound, e.g. 1,Z-cyclopentanedione-3-ethylcarboxylate, 1,2-cyclopentanedione-S,S-diethylcarboxylate, with o-phenylenediamine, generally in the presence of a small amount of acid such as concentrated hydrochloric acid, in a reactioninert solvent followed by peracid oxidation to give the dioxide.
  • Suitable solvents are benzene, xylene, toluene and other aromatic hydrocarbons.
  • the reaction is conducted at an elevated temperature, preferably at the reflux temperature of the solvent system, with removal of water as by azeotropic distillation.
  • Acid hydrolysis of the carbo(lower) alkoxy derivatives with a mineral acid (hydrochloric, hydrobromic, sulfuric, nitric, phosphoric) or with an alkali or alkaline earth hydroxide, bicarbonate or carbonate produces the carboxy derivative.
  • the carboxy derivatives are produced by hydrolysis, preferably acid hydrolysis,'-of the corresponding cyano derivatives. Subsequent esterification' ciency of the preparation and are non-toxic in the volume or proportion used (glycerol, propylene glycol, sorbitol).-
  • compositions suitable for extemporaneous preparation of solutions prior to administration may advantageously be made.
  • Such compositions may include liquid diluents, for example, propylene glycol, diethyl carbonate, glycerol, sorbitol, etc.; buffering agents, hyalu- .onidase, local anesthetics and inorganic salts to afford desirable pharmacological properties.
  • liquid diluents for example, propylene glycol, diethyl carbonate, glycerol, sorbitol, etc.
  • buffering agents hyalu- .onidase, local anesthetics and inorganic salts to afford desirable pharmacological properties.
  • hyalu- .onidase hyalu- .onidase
  • local anesthetics and inorganic salts to afford desirable pharmacological properties.
  • dosages of from about 1 mg./ kg. to about 60 mg./kg. of
  • the mineral acid addition salts are prepared by dissolving the free base in a suitable non-aqueous solvent, e.g. acetone, ether, lower aliphatic alcohols (ethanol, isopropanol) containing the desired acid, or to which the stoichiometric amount of the desired acid is added.
  • a suitable non-aqueous solvent e.g. acetone, ether, lower aliphatic alcohols (ethanol, isopropanol) containing the desired acid, or to which the stoichiometric amount of the desired acid is added.
  • the alkali metal and alkaline earth metal salts of the monoand dicarboxy substituted compounds of this invention are prepared by simple neutralization of the acid derivative in aqueous solution with the appropriate metal hydroxide, carbonate or bicarbonate and recovered by precipitation with a non-solvent, evaporation of the solvent or by lyophilization.
  • the herein described products of this invention are valuable agents for the control (treatment and prophyl axis) of urinary tract and systemic infections in animals including man and are of particular value against gramnegative infections both in vitro and in vivo. Further, these products and the parent 2,3-dihydro-lH-cyclopenta-[b]- quinoxaline-4,9-dioxide are effective in controlling air sacculitis (air sac disease) of poultry, and significantly promote growth and improve feed efficiency of domestic animals, especially of poultry in the presence, and in the absence, of such infections.
  • the compounds described herein can be administered orally or parenterally, e.g. by subcutaneous or intramuscular injection, at a dosage of from about 1 mg./kg. to about 100 mg./kg. of body weight.
  • parenteral administration dosages of from about 10 mg./kg. to about 100 mg./kg. of body weight are preferred.
  • Vehicles suitable for parenteral injection may be either aqueous such as water, isotonic saline, isotonic dextrose, Ringers solution, or non-aqueous such as fatty oils of vegetable origin (cotton seed, peanut oil, corn, sesame), dimethylsulfoxide and other non-aqueous vehicles which will not interfere with the therapeutic efiimals other method include mixing with the feed, the preparation of feed concentrates and supplements. Additionally, dilute solutions or suspensions, e.g. a 0.1% solution, can be supplied for drinking purposes.
  • prophylatic use about 10 to about 100 mg./kg. of body weight daily is administered.
  • the above methods of administration are suitable although administration in he animals food, water or mineral mixture is more convenient.
  • the poultry are isolated and subjected, in a confined space, to a fine dust of silica on which is dispersed or adsorbed one or more of the herein described compounds.
  • the silica comprising particles of up to 20 m or less size, is suspended in the air breathed by the poultry.
  • the unique feed compositions of this invention are found to be particularly valuable for use with poultry and especially for poultry infected with chronic respiratory disease.
  • a type of conventional feed material which may be employed is recommended to contain roughly between 50% and of grains, between 0% and 10% animal protein, between 5% and 30% vegetable protein, between 2% and 4% minerals together with supplemental vitaminaceous sources.
  • the poultry shows a marked improvement, if not complete recovery, over the infection and reach the desirable weight in a shorter period of time than usual with a markedly greater feed efiiciency. It should be noted that these valuable products eliminate, or at least minimize, the economic losses normally associated with chronic respiratory disease.
  • a low level of one or more of the herein described 2,3-dihydro-1H cyclopenta[b] quinoxaline-4,9-dioxides and derivatives thereof to the diet of healthy animals, both ruminant and non-ruminant, such that these animals receive the product over an extended period of time, at a level of from about 1 mg./ kg. to about 100 mg./kg. of body weight per day, especially over a major portion of their active growth period, results in an acceleration of the rate of growth and improved feed efficiency.
  • poultry include poultry (chickens, ducks, turkeys), cattle, sheep, dogs, cats, swine, rats, mice, horses, goats, mules, rabbits, mink,- etc.
  • poultry chickens, ducks, turkeys
  • cattle sheep, dogs, cats
  • swine rats
  • mice horses, goats, mules, rabbits, mink,- etc.
  • the beneficial effects in growth rate and feed efficiency are over and above what is normally obtained with complete nutritious diets containing all the nutrients, vitamins, minerals and other factors known to be required for the maximum healthy growth of such animals.
  • the animals thus attain market size sooner and on less feed.
  • the herein described feed compositions have been found to be particularly valuable and outstanding in the case of such animals as poultry, rats, hogs, swine, lambs, cattle, and the like. In some instances the degree of response may vary with respect to the sex of the animals.
  • the products may, of course, be administered in one component of the feed or they may be blended uniformly throughout a mixed feed; alternatively as noted above, they may be administered in an equivalent amount via the animals water ration. It should be noted that a variety of feed components may be of use in the nutritionally balanced feeds.
  • Feed efiiciency an extremely important economic factor in raising animals, may be defined as the number of pounds of feed required to produce a pound gain in weight.
  • the novel feed supplements of this invention permit the use of higher energy, higher protein diets to obtain improved feed/gain ratios and the use of feedstutfs that at present are not utilized efficiently.
  • the compositions of this invention when fed to animals are more efliciently converted to animal body weight than prior art compositions.
  • Any animal feed composition may be prepared to comprise the usual nutritional balance of energy, proteins, minerals, and vitamins together with one or more of the quinoxaline-di-N-oxides described above.
  • Some of the various components are commonly grains such as ground grain, and grain by-products; animal protein substances, such as meat, and fish by-products; vitaminaceous mixtures, e.g. vitamin A and D mixtures, riboflavin supplements and other vitamin B complexes; and bone meal, limestone, and other inorganic compounds to provide minerals.
  • animal protein substances such as meat, and fish by-products
  • vitaminaceous mixtures e.g. vitamin A and D mixtures, riboflavin supplements and other vitamin B complexes
  • the relative proportions of the present compounds in feeds and feed concentrates may vary somewhat, depending upon the compound, the feed with which they are employed and the animal consuming the same. These substances are advantageously combined in such relative proportions with edible carriers to provide concentrates which may readily be blended with standard nutritionally balanced feeds or which may be used themselves as an adjunct to the normal feedings.
  • Dry pre-mixes containing these compounds are prepared containing from 0.10 to about 10% of the active ingredient mixed with salt (sodium chloride) and other minerals which it is desired to incorporate into the poultry ration. This can then be fed on an ad libitum basis by adjusting the proportion of active ingredient in the mixture to the average daily consumption per bird so as to provide the proper daily dose as specified above. If prepared feed suplements are employed, the material can be administered in admixture with the feed. Again a concentration range of about 0.10 to 10% of the drug in the feed is employed. However, higher proportions can be satisfactorily employed depending upon the palatability of the product to the poultry. This can be readily determined by simple experimentation.
  • Suitable carriers include the following; soybean oil meal, corn gluten meal, cotton seed oil meal, sunflower seed meal, linseed oil meal, cornmeal, limestone and corncob meal.
  • the carrier facilitates uniform distribution of the active materials in the finished feed with which the concentrate is blended. This is especially important because only a small proportion of these potent materials are required.
  • the concentrate may be surface coated, if desired, with various proteinaceous materials or edible waxes, such as zein, gelatin, microcrystalline wax and the like to provide a protective film which seals in the active ingredients.
  • the proportions of the drug preparation in such concentrates are capable of wide variation since the amount of active materials in the finished feed may be adjusted by blending the appropriate proportion of concentrate with the feed to obtain the desired degree of supplementation.
  • the drug content may range from about 0.1 g. to 50 g. per pound of concentrate.
  • a particularly useful concentrate is provided by blending 2 g. of drug with 1 pound of limestone or 1 pound of limestone-soybean oil meal (1:1).
  • Other dietary supplements, such as vitamins, minerals, etc. may be added to the concentrates in the appropriate circumstances.
  • the high potency concentrates may be blended by the fed manufacturer with proteinaceous carriers, such as soybean oil meal, to produce concentrated supplements which are suitable for direct feeding to animals. In such instances the animals are permitted to consume the usual diet of corn, barley and other fibrous grains and the like.
  • the proportion of the drug in these supplements may vary from about 0.1 to 10 g. per pound of supplement.
  • the concentrates described may also be added to animal feeds to produce a nutritionally balanced, finished feed containing from about 10 to about 125 g. of the herein described compounds per ton of finished feed.
  • the finished feed should contain protein, fat, fiber, carbohydrate, vitamins and minerals, each in amount sufiicient to meet the nutritional requirements of the animal for which the feed is intended.
  • Most of these substances are present in naturally occurring feed materials, such as alfalfa hay or meal, cracked corn, whole oats, soybean oil meal, corn silage, ground corn cobs, wheat bran, and dried molasses. Bone meal, limestone, iodized salt and trace minerals are frequently added to supply the necessary minerals, and urea to provide additional nitrogen.
  • a suitable feed may contain from about 50 to of grains,, 3 to 10% animal protein, 5 to 30% vegetable protein, 2 to 4% of minerals, together with supplementary vitaminaceous sources.
  • the quinoxaline-di-N-oxides can, of course, be used in combination with other known drugs such as the tetracycline-type antibiotics, carbomycin, neomycin, bacitracin and tylosin.
  • quinoxaline-di-N-oxides described herein have unexpectedly been found to exhibit activity against antibiotic-resistant strains of microorganisms, such as antibiotic-resistant strains of Escherichia coli orginally isolated from poultry,
  • this unexpected activity is surprisingly applicable to microorganisms in which resistance to antibiotics has been induced, as by exposure to other microorganisms already resistant to antibiotics.
  • 1,3-dichloro-2,3-dihydro- 1H cyclopenta[b]quinoxaline-4,9-dioxide is prepared using chlorine in place of bromine.
  • Method B A solution of 2,3-dihydro-1H-cyclopenta- [b]quinoxaline-4,9-dioxide (20.0 g.) in acetic anhydride (100 ml.) is refluxed for minutes and then the excess acetic anhydride removed in vacuo to yield a dark residue (33 g.). The dark color is removed by passing a solution of the residue in benzenezchloroform (1:1) through a column of acid-washed Florisil. Evaporation of the efiluent gives a mixture of the stereoisomeric diacetates as a clear gum.
  • 1,3 diacetoxy-2,3-dihydro-1H-cyclopenta[b]quinoxaline stereoisomeric mixture (11.5 g.) is dissolved in acetic acid ml.) and peracetic acid (40%, 25 ml.) added dropwise with stirring during 20 minutes. After standing 7 days at room temperature the reaction mixture is poured into one liter of water and the mixture then extracted with chloroform (4x250 ml.). The combined chloroform extract is washed repeatedly with saturated sodium bicarbonate, dried with anhydrous sodium sulfate and the chloroform removed in vacuo to yield a residual gum (6.6 g.).
  • Example IX The remaining products of Example IX are similarly hydrolyzed to the same 1,3-dihydroxy com- EXAMPLE XI 1-cyano-2,3-dihydro-1H-cyclopenta[b] quinoxaline-4,9-dioxide l-bromo 2,3 dihydro-lH-cyclopentalb]quinoxaline- 4,9-dioxide (11.2 g.) is dissolved in a solution of po- 13 tassium cyanide g.) and KI (0.5 g.) in methanol (one I.) by stirring at room temperature. After standing 2 days at room temperature the solution is diluted with 2 liters of water. and extracted with chloroform. Removal of the chloroform yields the product as a solid.
  • Example XI The cyano derivatives of Example XI are likewise hydrolyzed to their respective acids.
  • the compounds bearing lower alkanoyloxy or carbo (lower)alkoxy groups are, of
  • the carboxy compounds thus produced are converted to their sodium, potassium, calcium and magnesium salts by neutralization in aqueous solution with the appropriate metal hydroxide.
  • the salts are recovered by 'lyophilization.
  • the benzene is removed in vacuo and the residue extracted with chloroform.
  • the crude product remaining after removal of the chloroform is chromatographed on a column of acid-washed Florisil using chloroform as eluant.
  • the product is obtained as yellow needles; M.P. 190-200 C. from acetone. Further crystallization from acetone yields yellow needles; M.P. 206 208 C.
  • 1,3-di(carbo(lower)alkoxy) derivatives are similarly prepared from the appropriate 1,2-cyclopentanedione 3,5-di(lower)alkylcarboxylate: 1,3-dicarbomethoxy-, l-3-dicarbobutoxy-, 1,3-dicarboisopropoxy-, 1,3-dicarbocaproyloxy-.
  • Example XVI The remaining products of Example XVI are hydrolyzed to the same acid in like manner.
  • methyl, isopropyl, n-butyl and afnyl esters are prepared from the appropriate l-carbo-(lower) alkoxy-2,3-dihydro-1H cyclopenta[b]quinoxaline 4,9- .dioxide.
  • hydroXy derivatives of Examples VII, XI, XII, XIX, XX and XXVI are oxidized to the corre: sponding oxo-derivatives.
  • EXAMPLE XXXI Acid addition salts 18
  • EXAMPLE XXXII The eflicacy of the herein described cyclopenta[b] quinoxaline-4,9-dioxides in promoting the growth of chicks is demonstrated in a series of tests conducted with Vantress-white-rock chicks. In these tests, the day-old chicks are divided into 4 lots of 25 each of one sex, and kept in electrically heated brooders on raised wire floors. Each lot is assigned to a different compartment and fed a basal diet supplemented with 0.05% by Weight of 1,3- dihydroxy 2,3 dihydro 1H cyclopenta[b]quinoxaline-4,9-dioxide. A control in which no supplementation is added is also run. The growth and feed efficiency responses of each group are observed to 8 weeks of age- The composition of the basal ration is indicated below. The supplements are added to the diet in premix form at the expense of yellow corn meal.
  • Example XXXIII The procedure of Example XXXIII is repeated but using 1,3 -.dihydroXy-2,3-dihydro-1H-cyclopenta[b]quinoxaliue-4,9-dioxide at levels of 0.002%, 0.01% and 0.025% by weight of feed. In each case improvement in growth and feed efficiency isnoted.
  • EXAMPLE XXXIV Groups of baby pigs are fed on a completely balanced diet previously proven highly useful for this type of animal. These animals weaned at approximately six to eight days of age, are fed over several days on a pre-starter diet containing 60.1% dry skimmed milk, 10.1% soybean oil, 9.9% glucose hydrate, 1.1% brewers yeast, 0.4% of oxytetracycline feed supplement containing g./lb. of oxytetracycline, 16% soybean oil meal and a complete vitamin and mineral supplement.
  • the pigs are then fed a starter diet of fine ground yellow corn, rolled oats, soybean oil meal, glucose hydrate, dicalcium phosphate, iodized salt, soybean oil, oxytetracycline supplement, vitamin mix and mineral mix.
  • the starter feed for some of the groups is supplemented with 100 g./ton of 1-hydroxy-2,3-dihydro- 1H cyclopenta [b] quinoxaline 4,9-dioxide. This feed is given the animals when they are about three weeks old and continued over a total of four weeks.
  • the supplemented diet is found to result in important weight gain and significant improvement in feed efliciency.
  • EXAMPLE XXXV Five-week old chickens are infected with coliform air sacculities by injecting 1.0 ml. of a 24-hour broth culture containing 2 different antibiotic (tetracycline) resistant, avian pathogenic strains of Escherichia coli into the left posterior thoracic air sac.
  • the quinoxaline-di-N-oxide test compound is administered in the feed, the medicated ration being fed for a 5-day period starting 2 days prior to the coliform injection.
  • the feed is tendered to the birds for imbibition ad. libitum. Twenty-five hundred grams of medicated feed containing 0.05% by weight of the test compound is provided per birds. When this is all consumed, non-medicated basal feed is given to the end of the trial.
  • the chickens are checked as to mortality, weight change,
  • EXAMPLE XXXVI Five-week old chickens are inoculated into the left posterior thoracic air sac with 0.5 ml. of a 24-hour broth culture containing 2 different antibiotic. (tetracycline) resistant, avian pathogenic strains of E. coli. The test compound is administered by subcutaneous injection of an aqueous solution into the upper cervical region at the time of infection. Observations on mortality, feed consumption post-injection, weight change and, after sacrifice, air sac lesions core are made. Ten birds are used for each test.
  • EXAMPLE XXXVII The relative efiicacy of the quinoxaline-di-N-oxides against Mycoplasma gallisepticum infection in chicks is demonstrated by exposing six-week old chicks, divided into groups of 10 birds to the Mycoplasma infection by injection of 0.5 ml. of a 72-hour broth culture, diluted with an equal volume of sterile heart infusion broth into the left posterior thoracic air sac. The test compound is administered in the basal feed at a level of 0.05 Medication is started 48 hours before exposure and continued for 72 hours past exposure for a total of 5 days medication. Two replicates of each test are run.
  • a method for the control of coliform air sacculitis in poultry which comprises orally or parenterally administering to said poultry a coliform air sacculitis controlling amount of a compound selected from the group consisting of (a) 2,3-dihydro-lH-cyclopenta[b]quinoxaline-4,9-
  • R is selected from the group consisting ofhy-' droxy, lower alkoxy, mercapto, lower alkylmercapto, lower alkanoyloxy, cyano, carboxy, carbo-(1ower)alkoxy, chloro and bromo and R is selected from the group consisting of hydrogen and R (f) the non-toxic mineral acid addition salts thereof and (g) when either or both of R and R is carboxy, the alkali metal and alkaline earth metal salts thereof.
  • a method for promoting growth and improving feed efliciency of domestic animals which comprises orally or parenterally administering to a domestic animal a growthpromoting amount of a compound selected from the group consisting of (al Z3 dihydro-1H-cyclopentaw]quinoxaline-4,9-dioxide,
  • R is selected from the group consisting of hydroxy, lower alkoxy, mercapto, lower alkylmercapto, lower alkanoyloxy, cyano, carboxy, carbo-(lower)alkoxy, chloro and bromo and R is selected from the group consisting of hydrogen and R (f) the non-toxic mineral acid addition salts thereof and (g) when either or both of R and R is carboxy, the alkali metal and alkaline earth metal salts thereof.
  • a feed composition comprising a nutritionally balanced domestic animal feed containing a growth promoting'amount of a compound selected from the group consisting of (a) 2,3-dihydro-lH-cyclopenta[b]quinoxaline- 4,9-dioxide,

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

SERIES OF 2,3-DILHYDRO-1H-CYCLOPENTRA(B) QUINOXALINE-4,9DIOXIDES USEFUL IN THE CONTROL OF GRAM-NEGATIVE INFECTIONS IN ANIMALS AND FOR THE PROMOTION OF WEIGHT GAIN AND FEED EFFICIENCY OF ANIMALS AND NOVEL FEED COMPOSITIONS CONTAINING SAID COMPOUNDS.

Description

United States Patent O Divided and this application Apr. 9, 1969, Ser. No;
Int. Cl. A61k 27/00 U.S. Cl. 424-250 6 Claims ABSTRACT OF THE DISCLOSURE Series of 2,3-dihydro-1H-cyclopenta[b]quinoxaline-4,9- dioxides useful in the control of gram-negative infections in animals and for the promotion of weight gain and feed efiiciency of animals and novel feed compositions containing said compounds.
This application is a division of application Ser. No. 587,406 as filed Oct. 18, 1966, now U.S. Pat; 3,485,836, which, in turn, is a continuation-in-part of application Ser. No. 463,933, filed June 14, 1965 and now abandoned.
This invention relates to novel polymethylene quinoxaline-1,4-dioxides useful as therapeutic agents and to' processes for the treatment of antibacterial infections and for the promotion of growth in animals. More particularly, it relates to a series of 2,3-dihydro-lH-cyclopenta- [b]quinoxaline-4,9-dioxides useful for the control of gram-negative infections in animals, and for promotion of weight gain and feed efiiciency of animals, and to novel feed compositions containing said compounds.
The novel compounds of this invention have the general formulae:
wherein R is selected from the group consisting of hydroxy, lower alkoxy, mercapto, lower alkyl-mercapto, lower alkanoyloxy, cyano, carboxy, carbo(lower)alkoxy,
chloro and bromo; R is selected from the group consisting of hydrogen and R Of the lower alkoxy, carbo(lower) alkoxy, lower alkylmercapto and lower alkanoyloxy groups, those having from one to four carbon atoms in the alkoxy, alkylmercapto and alkanoyloxy moieties are preferred since they are more readily prepared.
Also included .within this invention are the non-toxic mineral acid addition salts of the above mentioned bases and the non-toxic alkali metal and alkaline earth metal salts of those compounds wherein R and/or R is carboxy. By non-toxic salts is meant those salts which do not cause a toxic reaction to the animal in the dosages administered. The preferred acid addition salts of the above mentioned bases which may be employed are the hydrochloride, hydrobromide, phosphate, nitrate and sulfate. The non-toxic metal salts of particular interest are 3,644,622 Patented Feb. 22, 1972 ICC the sodium, potassium, calcium and magnesium salts.
The disubstituted 2,3-dihydro-1H-cyclopenta[b]quinoxaline-4,9-dioxides of Formula I and their free bases exist in two epimeric forms. Both epimers of a given compound are active antibacterial agents.
The antibacterial activity of several 2,3-polymethylene quinoxaline 1,4-dioxides has been disclosed in the literature. Ursprung, U.S. Patent 2,891,062, describes the activity of certain l-hydroxyand 1,4-dihydroxy-l,2,3,4- tetrahydrophenazine-S,10-dioxides as anti-infective agents, especially against Proteus vulgaris. The antifungal activity of the epimeric 1,4-dibromo-1,2,3,4-tetrahydrophenazine- 5,10-dioxides is disclosed by Gordon et al. in U.S. Patent 2,921,937. Iland (Nature 161, 1010, 1948) and Mcllwain .(J. Chem. Soc. 323-325, 1943) describe the antibacterial properties of 1,2,3,4-tetrahydrophenazine-5,10-dioxide.
Hurst et al., Brit. LPharmacol 8, 297-305 (1953), report on the activity of several 1,2,3,4-tetrahydrophenazine- 5,10-dioxides and of 2,3-pentamethylenequinoxaline-1,4- dioxide against the largest viruses of the psittacosis lymphogranuloma group and note that toxic side-reactions preclude their use in man. The latter compound was found to be, at most, only slightly active against the viruses studied. Landquist, J. Chem. Soc. 2551-2553 (1956), describes the preparation of a series of 2,3-polymethylene quinoxaline-1,4-dioxides wherein the polymethylene moiety is tri-, tetraand pentamethylene as potential chemotherapeutic agents. The preparation and bacteriostatic study of several substituted1,2,3,4-tetrahydrophenazine-S,10-dioxides are reported by King et al., J. Chem. Soc. 3012-3016 (1949).
The valuable compounds of this invention are readily prepared by methods well known in the art. The most convenient methods from the standpoint of availability of materials, ease and simplicity of reaction, yield and purity of product for preparing compounds of Formula I are the condensation of 1,2-cyclopentanedione with o-phenylenediamine, and of the reaction of cyclopentanone with o-aminoazobenzene. The parent 2,3-dihydro- 1H-cyclopenta[b]quinoxaline thus obtained is then oxidized by means of peracids, e.g., hydrogen peroxide in glacial acetic acid, peracetic acid, m-chlorperbenzoic acid, performic acid or monoperphthalate acid, to the corresponding monoor dioxide depending upon the molar proportion of oxidizing agent used.
The mono-, or dioxide, is then treated with a lower alkanoic acid anhydride to produce the corresponding l-lower alkanoyloxy quinoxaline compound, or in the case of the dioxide the corresponding 1,3-di(lower) alkanoyloxy quinoxaline compound, in a Boekelheide rearrangement. Peracid oxidation of the lower alkanoyloxy compounds alfords the desired lower alkanoyloxy substituted 2,3-dihydro-1H-cyclopenta[b]quinoxaline dioxides. Acid hydrolysis provides the corresponding monoor dihydroxy derivatives.
The rearrangement is conveniently conducted by heating the 2,3-dihydro-1H-cyclopenta[blquinoxaline-l-oxide or 1,4-dioxide at an elevated temperature, e.g., from about 50 C. to the boiling point of the solvent medium, with an excess of the desired lower alkanoyl anhydride. The excess anhydride generally serves as solvent medium. However, reaction-inert solvents, that is, solvents which do not react in an undesired manner with the reactants or products under the conditions of the reaction can be used. A minimum of laboratoryexperimentation will permit the selection of suitable solvents -for this reaction. Exemplary of such solvents are dioxane, tetrahydrofuran, carbon tetrachloride, chloroform, methyl ether of diethylene glycol and the methyl ether of ethylene glycol. The reaction is run for a period of about 30 minutes, or longer if necessary, and the product recovered by removal of the excess lower alkanoyl anhydride and/or solvent medium.
Alternatively, the lower alkanoyloxy derivatives can be prepared as described by Gordon, US. Patent 2,921,937, which comprises reacting the halogenated derivatives with a tertiary amine salt of the appropriate lower alkanoic acid. The amine salt is conveniently, but not necessarily, formed in situ by simply mixing the amine and acid. Although any tertiary amine is suitable, pyridine, trimethylamine, triethylamine and dimethylaniline are favored because of their availability.
In general, an excess of the tertiary amine and lower alkanoic acid are used, about 2 to 3 moles of tertiary amine and about 4 to 5 moles of lower alkanoic acid per mole of dihalogenated compound. Larger or smaller ratios of amine and acid can be used but afford no advantages. Smaller ratios of amine and acid increase the length of time required for the reaction. The liquid alkanes an'd halogenated alkanes serve as solvents for this reaction. Temperatures of from about to 120 C. and reaction periods of from about one to about 24 hours provide satisfactory yields.
The lower alkanoyloxy substituted 2,3-dihydro-1H-cyclopenta[b]quinoxaline dioxides thus obtained serve as intermediates for the remaining novel products of this inthan do lower concentrations.
The formyloxy derivatives are prepared by the acylation of the corresponding monoor dihydroxy compound, e.g., by means of acetoformic acid, at a temperature of from about C. to about C., or of formyl fluoride.
Acetoformic acid reagent suitable for the present process is prepared by mixing one volume of 100% formic acid with two volumes of acetic anhydride. Approximately 72 ml. of this reagent is equivalent to one mole of acetoformic acid anhydride. Excess of acetoformic acid reagent is employed when higher reaction temperatures are employed since the reagent is decomposed in the presence of basic substances to provide acetic acid and carbon monoxide. This side reaction becomes increasingly rapid above 10 C. Therefore, it is preferred to operate below this temperature. As a practical matter, the range from 0 to 10 C. is preferred for best results and economy. When operating in this temperature range, from 1.5 to 2 milliliters of acetoformic acid reagent per gram of antibiotic reactant is satisfactory. An equimolecular proportion of the reagent is adequate at the lower level of the temperature range.
Diluents which are non-reactive and do not catalyze decomposition of the reagent at the reaction temperature can sometimes be advantageously employed in the present process. Illustrative of operable diluents are non-hydroxyl containing solvents such as dioxane, toluene, benzene, dimethylformamide, ethyl acetate, methyl isobutyl ketone, acetone, pyridine, quinoline, etc. Hydroxylated solvents such as the lower alkanols and glycols are not satisfactory due to the tendency of acetoformic acid reagent to react with these materials. It has been found that the present process is particularly adapted to the use of pyridine as a solvent medium.
The hydroxy group (or groups) can be replaced by chloro and bromo by reaction with thionyl chloride, thionyl bromide, phosphorous tribromide or phosphorous trichloride in the presence of a tertiary organic base such as pyridine, dimethyl.- and diethylaniline.
The monohalo (chloro and bromo) derivatives of Formula I are preferably prepared by halogenation of 2, 3-dihydro-lH-cyclopenta[b]quinoxaline dioxide in a reaction-inert solvent medium such as a liquid alkane, a liquid 1 halogenated alkane and N-alkylated lower amide; e.g. n-
hexane, chloroform, carbon tetrachloride, N-methyl formamide, N,N-dimethylformamide. Molar ratios of halogenating agent to 2,3-dihydro1H-cyclopenta[b]quinoxaline-1,4-dioxide of 1:1- favor production of monohalogenated derivatives. For the production of dihalogenated products molar ratios of about 2 to 8 moles of halogenating agent to starting compound are used. Larger amounts of halogenating agent can be used but afford no apparent advantages. The reaction is conducted at a temperature of from about 15 to about 180 C. for a period of from about 1. to about 3 hours and most conveniently at the reflux temperature of the solvent medium for periods of from about 1 to about 5 hours,
Suitable halogenating agents for the present process include bromine; chlorine; iodochloride; iodobromide; N- chloro, and N-bromo lower alkanoic acid amide, e.g. N- chlor, and N-bromacetamide; hydrocarbon dicarboxylic acid imides, e.g. N-chloro-, N-bromosuccinimide, phthalimide, and the like and N-lower-alkanoyl anilines, e.g. N- bromoacetanilide, propionanilide and the like; 3-chloro-,
' 3-bromo-, 3,5-dichloro and 3,5-dibromo-5,5-dirnethylhydantoin; pyridinium perbromide and perchloride hydrohalides, e.g. pyridinium perbromide hydrobromide; pyridinium perchloride hydrochloride; and lower alkyl hypochlorites, e.g. tertiary butylhypochlorite. It is obvious that, in general, any halogenating agent employed in the art is operable, but the above are preferred.
The products are thus obtained as their hydrohalide salts. The salts are converted to the free bases by treatment with an alkaline reagent such as an alkali metal or alkaline earth metal hydroxide, carbonate or bicarbonate.
The chloro and bromo groups are then converted by metathesis to cyano, mercapto, lower alkyl mercapto or lower alkoxy groups by a Williamson type reaction using metallic salts ofhydrogen cyanide, hydrogen sulfide, lower alkyl mercaptans or lower alcohols as reactants. The preferred metal salts are those of the alkali metals, especially sodium and potassium. Other metal salts such as the lead, zinc, magnesium salts can also be used,
Alternatively, the methoxy and methyl-mercapto ethers are prepared by methylation of the oxyor mercapto groups with dimethyl sulfate or diazo methane according to known methods.
Oxidation of the hydroxy group or groups as the case may be produces the corresponding monoor di-keto compounds (Formulae II and III). Suitable oxidizing agents are chromium trioxide, potassium dichromate and potassium permanganate. The oxidation of the hydroxy group or groups can be accomplished before, after or simultaneously with introduction of the N-oxide groups.
Dehydration of the monohydroxy compounds by suitable agents, e.g. sulfuric acid, produces the corresponding monounsaturated compounds (Formula IV).
The novel carboxy and carbo(lower)alkoxy derivatives are prepared by condensation of the appropriate 1,2-cyclopentanedione monoor dicarbo(lower)alkoxy compound, e.g. 1,Z-cyclopentanedione-3-ethylcarboxylate, 1,2-cyclopentanedione-S,S-diethylcarboxylate, with o-phenylenediamine, generally in the presence of a small amount of acid such as concentrated hydrochloric acid, in a reactioninert solvent followed by peracid oxidation to give the dioxide. Suitable solvents are benzene, xylene, toluene and other aromatic hydrocarbons. The reaction is conducted at an elevated temperature, preferably at the reflux temperature of the solvent system, with removal of water as by azeotropic distillation.
Acid hydrolysis of the carbo(lower) alkoxy derivatives with a mineral acid (hydrochloric, hydrobromic, sulfuric, nitric, phosphoric) or with an alkali or alkaline earth hydroxide, bicarbonate or carbonate produces the carboxy derivative. Alternatively, the carboxy derivatives are produced by hydrolysis, preferably acid hydrolysis,'-of the corresponding cyano derivatives. Subsequent esterification' ciency of the preparation and are non-toxic in the volume or proportion used (glycerol, propylene glycol, sorbitol).-
Additionally, compositions suitable for extemporaneous preparation of solutions prior to administration may advantageously be made. Such compositions may include liquid diluents, for example, propylene glycol, diethyl carbonate, glycerol, sorbitol, etc.; buffering agents, hyalu- .onidase, local anesthetics and inorganic salts to afford desirable pharmacological properties. For oral administration dosages of from about 1 mg./ kg. to about 60 mg./kg. of body weightare'favored. This can be achieved by a number of methods including dosage unit formulations such as capsules, tablets, lozenges, troches, liquid mixtures and solutions. In the case of poultry and domestic ani- The mineral acid addition salts are prepared by dissolving the free base in a suitable non-aqueous solvent, e.g. acetone, ether, lower aliphatic alcohols (ethanol, isopropanol) containing the desired acid, or to which the stoichiometric amount of the desired acid is added. The alkali metal and alkaline earth metal salts of the monoand dicarboxy substituted compounds of this invention are prepared by simple neutralization of the acid derivative in aqueous solution with the appropriate metal hydroxide, carbonate or bicarbonate and recovered by precipitation with a non-solvent, evaporation of the solvent or by lyophilization.
The herein described products of this invention are valuable agents for the control (treatment and prophyl axis) of urinary tract and systemic infections in animals including man and are of particular value against gramnegative infections both in vitro and in vivo. Further, these products and the parent 2,3-dihydro-lH-cyclopenta-[b]- quinoxaline-4,9-dioxide are effective in controlling air sacculitis (air sac disease) of poultry, and significantly promote growth and improve feed efficiency of domestic animals, especially of poultry in the presence, and in the absence, of such infections.
When used for such purposes the compounds described herein can be administered orally or parenterally, e.g. by subcutaneous or intramuscular injection, at a dosage of from about 1 mg./kg. to about 100 mg./kg. of body weight. For parenteral administration dosages of from about 10 mg./kg. to about 100 mg./kg. of body weight are preferred. Vehicles suitable for parenteral injection may be either aqueous such as water, isotonic saline, isotonic dextrose, Ringers solution, or non-aqueous such as fatty oils of vegetable origin (cotton seed, peanut oil, corn, sesame), dimethylsulfoxide and other non-aqueous vehicles which will not interfere with the therapeutic efiimals other method include mixing with the feed, the preparation of feed concentrates and supplements. Additionally, dilute solutions or suspensions, e.g. a 0.1% solution, can be supplied for drinking purposes.
For prophylatic use, about 10 to about 100 mg./kg. of body weight daily is administered. The above methods of administration are suitable although administration in he animals food, water or mineral mixture is more convenient. I
In still another modification of this invention the poultry are isolated and subjected, in a confined space, to a fine dust of silica on which is dispersed or adsorbed one or more of the herein described compounds. The silica, comprising particles of up to 20 m or less size, is suspended in the air breathed by the poultry.
The unique feed compositions of this invention are found to be particularly valuable for use with poultry and especially for poultry infected with chronic respiratory disease. A type of conventional feed material which may be employed is recommended to contain roughly between 50% and of grains, between 0% and 10% animal protein, between 5% and 30% vegetable protein, between 2% and 4% minerals together with supplemental vitaminaceous sources. When a feed containing a major proportion of these substances and a minor proportion of one of the herein mentioned drugs is employed, the poultry shows a marked improvement, if not complete recovery, over the infection and reach the desirable weight in a shorter period of time than usual with a markedly greater feed efiiciency. It should be noted that these valuable products eliminate, or at least minimize, the economic losses normally associated with chronic respiratory disease.
Further, the addition of a low level of one or more of the herein described 2,3-dihydro-1H cyclopenta[b] quinoxaline-4,9-dioxides and derivatives thereof to the diet of healthy animals, both ruminant and non-ruminant, such that these animals receive the product over an extended period of time, at a level of from about 1 mg./ kg. to about 100 mg./kg. of body weight per day, especially over a major portion of their active growth period, results in an acceleration of the rate of growth and improved feed efficiency. Included in these two classes of animals are poultry (chickens, ducks, turkeys), cattle, sheep, dogs, cats, swine, rats, mice, horses, goats, mules, rabbits, mink,- etc. The beneficial effects in growth rate and feed efficiency are over and above what is normally obtained with complete nutritious diets containing all the nutrients, vitamins, minerals and other factors known to be required for the maximum healthy growth of such animals. The animals thus attain market size sooner and on less feed.
The herein described feed compositions have been found to be particularly valuable and outstanding in the case of such animals as poultry, rats, hogs, swine, lambs, cattle, and the like. In some instances the degree of response may vary with respect to the sex of the animals. The products may, of course, be administered in one component of the feed or they may be blended uniformly throughout a mixed feed; alternatively as noted above, they may be administered in an equivalent amount via the animals water ration. It should be noted that a variety of feed components may be of use in the nutritionally balanced feeds.
The resulting new feed compositions have marked effects on the rate of growth and feed efiiciency. Feed efiiciency, an extremely important economic factor in raising animals, may be defined as the number of pounds of feed required to produce a pound gain in weight. The novel feed supplements of this invention permit the use of higher energy, higher protein diets to obtain improved feed/gain ratios and the use of feedstutfs that at present are not utilized efficiently. Simply stated, the compositions of this invention when fed to animals are more efliciently converted to animal body weight than prior art compositions. Any animal feed composition may be prepared to comprise the usual nutritional balance of energy, proteins, minerals, and vitamins together with one or more of the quinoxaline-di-N-oxides described above. Some of the various components are commonly grains such as ground grain, and grain by-products; animal protein substances, such as meat, and fish by-products; vitaminaceous mixtures, e.g. vitamin A and D mixtures, riboflavin supplements and other vitamin B complexes; and bone meal, limestone, and other inorganic compounds to provide minerals.
The relative proportions of the present compounds in feeds and feed concentrates may vary somewhat, depending upon the compound, the feed with which they are employed and the animal consuming the same. These substances are advantageously combined in such relative proportions with edible carriers to provide concentrates which may readily be blended with standard nutritionally balanced feeds or which may be used themselves as an adjunct to the normal feedings.
Dry pre-mixes containing these compounds are prepared containing from 0.10 to about 10% of the active ingredient mixed with salt (sodium chloride) and other minerals which it is desired to incorporate into the poultry ration. This can then be fed on an ad libitum basis by adjusting the proportion of active ingredient in the mixture to the average daily consumption per bird so as to provide the proper daily dose as specified above. If prepared feed suplements are employed, the material can be administered in admixture with the feed. Again a concentration range of about 0.10 to 10% of the drug in the feed is employed. However, higher proportions can be satisfactorily employed depending upon the palatability of the product to the poultry. This can be readily determined by simple experimentation. It is sometimes convenient to mix the daily dose with only a portion of the average daily allotment to insure complete consump tion of the dose. The balance of the daily feed supplement can then be fed after consumption of the medicated portion in the usual fashion. These methods are particularly useful for prophylactic treatment, but similar compositions can be employed for therapeutic use.
In the preparation of concentrates a wide variety of carriers may be employed containing the aforesaid drugs. Suitable carriers include the following; soybean oil meal, corn gluten meal, cotton seed oil meal, sunflower seed meal, linseed oil meal, cornmeal, limestone and corncob meal. The carrier facilitates uniform distribution of the active materials in the finished feed with which the concentrate is blended. This is especially important because only a small proportion of these potent materials are required. The concentrate may be surface coated, if desired, with various proteinaceous materials or edible waxes, such as zein, gelatin, microcrystalline wax and the like to provide a protective film which seals in the active ingredients. It will be appreciated that the proportions of the drug preparation in such concentrates are capable of wide variation since the amount of active materials in the finished feed may be adjusted by blending the appropriate proportion of concentrate with the feed to obtain the desired degree of supplementation. In the preparation of high potency concentrates, i.e. premixes, suitable for blending by feed manufacturers to produce finished feeds or concentrates of lower potency, the drug content may range from about 0.1 g. to 50 g. per pound of concentrate. A particularly useful concentrate is provided by blending 2 g. of drug with 1 pound of limestone or 1 pound of limestone-soybean oil meal (1:1). Other dietary supplements, such as vitamins, minerals, etc. may be added to the concentrates in the appropriate circumstances.
The high potency concentrates may be blended by the fed manufacturer with proteinaceous carriers, such as soybean oil meal, to produce concentrated supplements which are suitable for direct feeding to animals. In such instances the animals are permitted to consume the usual diet of corn, barley and other fibrous grains and the like. The proportion of the drug in these supplements may vary from about 0.1 to 10 g. per pound of supplement.
The concentrates described may also be added to animal feeds to produce a nutritionally balanced, finished feed containing from about 10 to about 125 g. of the herein described compounds per ton of finished feed. In the case of ruminants, the finished feed should contain protein, fat, fiber, carbohydrate, vitamins and minerals, each in amount sufiicient to meet the nutritional requirements of the animal for which the feed is intended. Most of these substances are present in naturally occurring feed materials, such as alfalfa hay or meal, cracked corn, whole oats, soybean oil meal, corn silage, ground corn cobs, wheat bran, and dried molasses. Bone meal, limestone, iodized salt and trace minerals are frequently added to supply the necessary minerals, and urea to provide additional nitrogen.
As is well known to those skilled in the art, the types of diets are extremely variable depending upon the purpose, type of feeding operation, species, etc. Specific diets for various purposes are listed by Morrison in the Appendix of Feeds and Feeding, The Morrison Publishing Company, Clinton, Iowa, 1959.
In the case of non-ruminant animals, such as hogs, a suitable feed may contain from about 50 to of grains,, 3 to 10% animal protein, 5 to 30% vegetable protein, 2 to 4% of minerals, together with supplementary vitaminaceous sources.
Many of the compounds described herein have, in addition to the above mentioned utilities, unexpectedly significant activity in vivo against a variety of small and medium viruses such as the myxoviruses and especially against influenza PR8 and BGL. Care should, of course, be exercised when using these compounds for this purpose. Therapeutic dosages and regimens commensurate with the therapeutic index of these compounds can be administered without substantial adverse efifect.
'- When used for the purposes described herein the quinoxaline-di-N-oxides can, of course, be used in combination with other known drugs such as the tetracycline-type antibiotics, carbomycin, neomycin, bacitracin and tylosin.
In addition to the above' mentioned utilities, the quinoxaline-di-N-oxides described herein have unexpectedly been found to exhibit activity against antibiotic-resistant strains of microorganisms, such as antibiotic-resistant strains of Escherichia coli orginally isolated from poultry,
and from man. Further, this unexpected activity is surprisingly applicable to microorganisms in which resistance to antibiotics has been induced, as by exposure to other microorganisms already resistant to antibiotics.
The following examples are provided to illustrate in V greater detail the manner of practicing the present invention. They are, however, not to be considered as limiting the scope thereof in any way.
EXAMPLE I 2,3-dihydro-1H-cyclopenta [b] quinoxaline Cyclopentanedione (230 g.), o-phenylenediamine (250 g.) and 1 ml. concentrated hydrochloric acid are refluxed.
in-3 liters benzene for 6 hours and the by-product water (45 ml.) collected in a Dean-Stark trap. The reaction- EXAMPLE II 2,3-dihydrolH-cyclopenta [b] quinoxaline-4-oxide A solution of 2,3-dihydro-lH-cyclopenta[b]quinoxaline (170 g.) and m-chloroperbenzoic acid (200 g., 85%) dis solved in 2 liters of chloroform is allowed to stand at room temperature for 24 hours and is then refluxed for 15 minutes. The mixture is extracted with excess aqueous sodium bicarbonate solution, the chloroform solution dried with anhydrous sodium sulfate and the solvent removed in vacuo. Crystallization from acetone/hexane yields the crude product (32.1 g.); M.P. 144149 C. (dec.). The mother liquors are reduced to dryness and the residue chromatographed on a column of acid-washed Florsil using chloroform as eluant. Crystallization of the material obtained by evaporation of the chloroform eluate by precipitation from a hot, concentrated acetone solution with hexane yields the product; M.P. 100.5 103 C. (154.0 g.). Repeated recrystallizations as above provide the pure product; M. P. 103l04.5 C.
Analysis.Calc. for C I-I ON C, 70.95; H, 5.41; N, 15.05. Found: C, 71.14; H, 5.25; N, 15.12.
U.V. (CH OH): A244(e=52,400); A317(e=l0,900); k323(e=11,000); X339(e=8,560).
EXAMPLE III 2, 3-dihydrolH-cyclopenta [b] quinoxaline-4,9-dioxide m-Chloropcrbenzoic acid (70 g., 85%) is added to a solution of 2,3-dihydro-lH-cyclopenta[b]quinoxaline (37.0 g.) in 750 ml. chloroform with stirring. The reaction becomes exothermic after 10-15 minutes and is held at room temperature for 24 hours. The precipitated mchlorobenzoic acid is filtered off and the mother liquid refluxed for 30 minutes. The mixture is cooled, washed twice with excess aqueous sodim bicarbonate solution, treated with activated charcoal and dried over anhydrous sodium sulfate. The residue obtained after removal of the solvent is crystallized from acetone/hexane to give yellow crystals; M.P. 160163 C. (13. 1 g.). The mother liquors yield a second crop; M.P. 160-166 C. (5.4 g.). An analytical sample, obtained by recrystallization of the crude according to the procedure of Example I, melts at 172175 C.
Analysis.-Calc. for C H O N C, 65.33; H, 4.98; N, 13.86%. Found: C, 65.18; H, 4.85; N, 13.51%.
U.V. (CH OH): k235(e=19,450); A262e=36,800); shoulder A355(e=12,500); h368(e=15.050).
EXAMPLE IV 1-aoetoxy-2,3-dihydrolH-cyclopenta [b] quinoxaline A solution of 2,3-dihydro-1H-cyclopenta[b]quinoxaline-4-oxide (5.0 g.) in acetic anhydride (25 ml.) is refluxed for 1 hour using a Sunbeam heat lamp as heat j source. The acetic anhydride is then removed in vacuo and the resulting gum chromatographed on acid-washed Florisil using a 1:1 mixture of benzene-chloroform as eluant. Evaporation of the eluate gives 4.3 g. product which when twice recrystallized from ether/hexane as described in Example I yields crystals; M.P. l02103.5 C.
Analysis.-Calc.- for C13H1202N2I C H, N, 12.27%. Found: C, 68.32; H, 5.42; N, 12.39%.
LR. Principal absorption maxima 5.74 and 8.1-8.3 (u). U.V. (CH OH): X240(*e=24,000) X232(e=8,450).
The following lower alkanoyloxy derivatives are prepared as described above using the appropriate acid anhydride in place of acetic anhydride:
1-propionyloxy-2,3-dihydrol H-cyclopenta [b] quinoxaline l-butyryloxy-2,3-dihydrolH-cyclopenta [b quinoxaline l-valeryloxy-2,3-dihydro lH-cyclopenta [b] quinoxaline 1-caproyloxy-2,3 -dihydrolH-cyclopenta [b] quinoxaline 1-isobutyryloxy-2, 3-dihydrolH-cyclopenta [b] quinoxaline l-isovaleryloxy-Z,3-dihydrolH-cyclopenta [b] quinoxaline EXAMPLE V 1-acetoxy-2,3 -dihydrolH-cyclopenta [b] quinoxaline-4,9- dioxide g. of m-chloroperbenzoic acid is added to a solution of 1-acetoxy-2,3-dihydro-lH-cyclopenta[b]quinoxaline (44 g.) in chloroform (500 ml.) with stirring at room temperature. The reaction mixture is allowed to stand for seven days at room temperature after which the precipitated n-chlorobenzoic' acid is filtered off. The mother liquid is washed several times with saturated sodium bicarbonate solution, dried with anhydrous sodium sulfate, treated with activated charcoal, then taken to dryness in vacuo. Chromatography of the residue on an acid-washed Florisil column using benzene/chloroform mixtures for elution yields, after evaporation of the eluate and crystallization of the residue from acetone/hexane, 32.8 g. product; M.P. 152 C. Recrystallization from acetone/hexane yields pure l-acetoxy-2,3-dihydro- 1H-cyclopenta[b]quinoxaline-4,9-dioxides; M.P. 155.5 C. (dec.).
Analysis.-Calcd. for C H O N C, 59.99; H, 4.65; N, 10.77%. Found: C, 60.07; H, 4.35; N, 10.31%.
LR. (CHCL Principal absorption maxima 5.70, 7.34 (u.). U.V. (CH OH): A239(e=l8,400);
shoulder A363(e=l1,100); A378(e=13,700).
In hke manner the remaining lower alkanoyloxy derivattiivessf Example IV are converted to the corresponding 10x1 es.
EXAMPLE VI 1-hydroxy-2,3-dihydrolH-cyclopenta [b] quinox aline- 4,9-dioxide ness on a rotary evaporator at a bath temperature below 40 C. The product, 8.2 g., M.P. 156-158 C. (dec.) is obtained by crystallization of the residue from acetone/ hexane. Recrystallization from chloroform/hexane yields pure product; M.P. 158160 C. (dec.)
Analysis.'Ca1c. for C H O N C, 60.54; H, 4.62; N, 12.84%. Found: c, 60.40; H, 4.50; N, 12.82%.
U.V. (CH OH): x234(e=1s,600 x263 =33,000 shoulder A361(e=12,000); A376(e=14,200).
Hydrolysis of the remaining lower alkanoyloxy derivatives of Example V produces the same compound.
EXAMPLE VII 1-bromo-2,3-dihydro-1H-cyclopenta[b] quinoxaline- 4,9-dioxide with saturated sodium bicarbone solution and the product isolated by concentration of the chloroform solution and crystallization from chloroform/hexane.
Repetition of this procedure but substituting the proper halogen and the appropriate polymethylene quinoxaline dioxide for the above above reactants yields the following compounds.
EXAMPLE VIII l,3-dibromo-2,3-dihydro-lH-cyclopenta [b] quinoxaline-4,9-dioxide To a solution of 2,3-dihydro-1H-cyclopenta[b]quinoxaline-4,9-dioxide (202.2 g., 1 mole) in 1500 ml. of chloroform there is added 2.5 moles of bromine in 800 ml. of chloroform. The solution is refluxed for 2 hours during which time hydrogen bromide is evolved. The mixture is concentrated to half volume in vacuo then cooled to 10-15 C. and filtered to remove the precipitated hydrogen bromide salt. The free base is obtained by slurrying the salt in an excess of 5% aqueous sodium bicarbonate solution. The base is then filtered 01f, washed free of inorganic salts and dried.
By means of this procedure 1,3-dichloro-2,3-dihydro- 1H cyclopenta[b]quinoxaline-4,9-dioxide is prepared using chlorine in place of bromine.
EXAMPLE IX 1,3-diacetoxy-2,3-dihydro-lH-cyclopenta[b] quinoxaline-4,9-dioxide Method A.-To a solution of 1,3-dibromo-2,3-dihydro- 1H-cyclopenta[b]quinoxaline-4,9'-dioxide (180 g., 0.5
mole) in 1500 ml. of chloroform there is added acetic acid (2.75 moles) together with triethylamine (1.25 mole). The reaction mixture is refluxed in the dark for 4 hours then concentrated to about 150 ml. to obtain a mixture of the epimeric 1,3-diacetoxy-2,3-dihydro-lH-cyclopenta[b]quinoxaline-4,9-dioxides. The product is identical to that of Method B.
Repetition of this procedure but substituting acetic acid by propionic acid, butyric and valeric acid produces the corresponding lower alkanoyloxy compounds.
Method B.A solution of 2,3-dihydro-1H-cyclopenta- [b]quinoxaline-4,9-dioxide (20.0 g.) in acetic anhydride (100 ml.) is refluxed for minutes and then the excess acetic anhydride removed in vacuo to yield a dark residue (33 g.). The dark color is removed by passing a solution of the residue in benzenezchloroform (1:1) through a column of acid-washed Florisil. Evaporation of the efiluent gives a mixture of the stereoisomeric diacetates as a clear gum.
Principal absorption maxima: LR. (CHCl 5.71 and 8.0-8.2 (u.).
1,3 diacetoxy-2,3-dihydro-1H-cyclopenta[b]quinoxaline stereoisomeric mixture (11.5 g.) is dissolved in acetic acid ml.) and peracetic acid (40%, 25 ml.) added dropwise with stirring during 20 minutes. After standing 7 days at room temperature the reaction mixture is poured into one liter of water and the mixture then extracted with chloroform (4x250 ml.). The combined chloroform extract is washed repeatedly with saturated sodium bicarbonate, dried with anhydrous sodium sulfate and the chloroform removed in vacuo to yield a residual gum (6.6 g.). Chromatography on an acid-Washed Florisil (an activated magnesium silicate) column using benzene/ chloroform mixtures yields approximately 2.0 g. of the product which crystallizes from acetone/hexane to give yellow crystals; M.P. 189-191 C.
Analysis.Calc. for C H O N C, 56.60; H, 4.43; N, 8.80%. Found: C, 56.77; H, 4.42; N, 8.88%.
LR. (CHCl Principal absorption maxima 5.75, 7.44 (u.). U.V. (CH OH): x235(e=21,800); A266 (e=38,000); shoulder A370(e=11,500), A383(e=13,000).
Repetition of this method but using the appropriate acid anhydride in place of acetic anhydride produces the following 1,3 di(lower)alkanoxyloxy derivatives: dipropionyloxy-, dibutyryloxy-, divaleryloxy-, diisovaleryl-, oxyand dicaproyloxy.
EXAMPLE X 1,3-dihydroxy-2,3-dihydro-lH-cyclopenta [b] quinoxaline-4,9'-dioxide The title product of Example DC (10 g.) is dissolved in methanol (300 ml.) and 20% sulfuric acid ml.) added. The mixture is held at room temperature for days, during which time the product separates as crystals. The product is separated by filtration, washed with water and recrystallized from acetone to give the pure product. The remaining products of Example IX are similarly hydrolyzed to the same 1,3-dihydroxy com- EXAMPLE XI 1-cyano-2,3-dihydro-1H-cyclopenta[b] quinoxaline-4,9-dioxide l-bromo 2,3 dihydro-lH-cyclopentalb]quinoxaline- 4,9-dioxide (11.2 g.) is dissolved in a solution of po- 13 tassium cyanide g.) and KI (0.5 g.) in methanol (one I.) by stirring at room temperature. After standing 2 days at room temperature the solution is diluted with 2 liters of water. and extracted with chloroform. Removal of the chloroform yields the product as a solid.
The following cyano derivatives of Formula I wherein R is CN are similarly prepared from the appropriate bromoor chloro derivatives of Examples VII and VIII. In the case of the dicyano derivatives the proportion of potassium cyanide used is doubled.
-CN OC5Hu '-'OCOCHI -sH OOOCaH1 SCHa OCOC5H11 SCeH1s 0COC4H9 COOH H -COOCH2 -OCH3 COOC6H11 OC2H6 EXAMPLE XII l-carb oxy-2,3-dihydrol H-cyclopenta [b] quinoxaline- 4,9-dioxide 1-cyano-2,3-dihydro-lH-cyclopenta[b] quinoxaline-4,9 dioxide (5.0 g.) is dissolved in a solution of acetic acid (100 ml.) and hydrochloric acid (50 ml.) and refiuxed for 2 hours. Removal of the solvent affords the solid product.
The cyano derivatives of Example XI are likewise hydrolyzed to their respective acids. The compounds bearing lower alkanoyloxy or carbo (lower)alkoxy groups are, of
course, hydrolyzed to the precursor hydroxy and carboxy derivatives. They are reacylated or re-esterfied according to known procedures.
The carboxy compounds thus produced are converted to their sodium, potassium, calcium and magnesium salts by neutralization in aqueous solution with the appropriate metal hydroxide. The salts are recovered by 'lyophilization.
EXAMPLE XIII 1-carbomethoxy-2,3-dihydro-1H-cyclopenta[b] quinoxaline-4,9-dioxide EXAMPLE XIV l,3-dicarbethoxy-2,3-dihydro1H-cyclopenta [b] quinoxaline To 1,2-cyclopentanedione-3,S-diethylcarboxylate (8.4 g.) dissolved in benzene (250 ml.), o-phenylene-diamine 3.75 g.) and one drop of concentrated hydrochloric acid are added and the reaction mixture refluxed for 3 hours, the by-product water being removed by means of a Dean- Stark trap. The benzene is removed in vacuo and the residue extracted with chloroform. The crude product remaining after removal of the chloroform is chromatographed on a column of acid-washed Florisil using chloroform as eluant. The product is obtained as yellow needles; M.P. 190-200 C. from acetone. Further crystallization from acetone yields yellow needles; M.P. 206 208 C.
Analysis.Calcd. for C H O N C, 64.95; H, 5.77; N, 8.91%. Found: C, 65.17; H, 5.90; N, 8.84%.
IR. (CHCI Principal absorption maxirna 6.19, 6.27, 7.23 (u.) U.V. (CH O'H): X262(e=39,400); shoulder }\323(e=l1,600), x337(e=14,500), k348(e=14,800);
14 shoulder x367(e=12,700); A389.(e=14,300); A413(e= 9,250).
The following 1,3-di(carbo(lower)alkoxy) derivatives are similarly prepared from the appropriate 1,2-cyclopentanedione 3,5-di(lower)alkylcarboxylate: 1,3-dicarbomethoxy-, l-3-dicarbobutoxy-, 1,3-dicarboisopropoxy-, 1,3-dicarbocaproyloxy-.
EXAMPLE XV 1,3-dicarbethoxy-2,3-dihydro-1H-cyclopenta[b] quinoxaline-4-oxide A solution of 1,3 dicarbethoxy-2,3-dihydro-lH-cyclopenta[b]quinoxaline (Example XIV, 7.5 g.) in chloroform (1000 ml.) is added dropwise during 30 minutes to a soltuion of m-chloroperbenzoic acid (5.5 g., in chloroform (50 ml.) with stirring. The reaction mixture is held overnight at room temperature then washed several times with saturated sodium bicarbonate solution and dried with anhydrous sodium sulfate. The crude product obtained by removal of the chloroform in vacuo is chromatographed on a column of acid-washed Florisil. Elution with chloroform yields the product which crystallizes from )acetone/hexane; M.P. -162 C. .(1.5 g.)
Further recrystallization yields an analytical sample; M.P. -177 C.
Analysis.-Calc. for C H O N C, 61.81; H, 5.49; N, 8.48%. Found: C, 62.04; H, 5.50; N, 8.58%.
IR. (CHCl Principal absorption maxima 5.75, 6.00, 6.16, 7.79, 7.95-8.10 .(u.). U.V. (CH OH): A239(e= 8,800), shoulder x272(e=12,460), shoulder A284e= 15,150), A294-305(e=18,500), A419(e=9,100), A430 (e=9,100).
Substitution of the remaining esters of Example XIV for the dicarbethoxy ester in the above process produces the corresponding 4-oxides.
EXAMPLE XVI 1,3-dicarbethoxy2,3-dihydro-1I-I-cyclopenta[b] quinoxaline-4,9-dioxide 1,3 dicarbethoxy-2,3-dihydro-1H-cyclopenta[b]quinoxaline (Example XIV, 20.29 g.) is dissolved in chloroform (250 ml.). m-Chloroperbenzoic acid (50.0 g.) is then added to the solution and the mixture allowed to stand for three days at room temperature. The by-product, m-chlorobenzoic acid, is filtered off and the filtrate Washed with a saturated sodium bicarbonate solution. The residue remaining after evaporation of the solvent is crystallized from acetone/hexane; M.P. 138'l42 C.
IR. (CHCl Principal absorption maxima 5.75, 8.0 and 8.75 (u.). U.V. (C-H OH): x242(=33,000) shoulder x315.(e=7,-800), k325(e=10,000); shoulder 7644(5: 4,500).
The remaining esters of Example XIV are likewise converted to their corresponding dioxides.
EXAMPLE XVII l,3-dicar-boxy-2,3-dihydrolH-cyclopenta [b] quinoxa'line-4,9-dioxide The title product of Example XVI, 1,3-dicarbethoxy- 2,3-dihydro-1H-cyclopenta[b]quinoxaline-4,9-dioxide (5 g.), is dissolved in ethanol (250 ml.) and 2NHCl (50 ml.). The solution is refluxed for 6 hours and then concentrated to /3 volume. The product (1.5 g.) crystallizes on cooling.
The remaining products of Example XVI are hydrolyzed to the same acid in like manner.
Neutralization of the dicarboxy acids with one and two molar proportions of sodium, potassium, calcium and magnesium hydroxide provides the corresponding metal salts.
EXAMPLE XVIII 1-bromo-2,3-dihydro-1H-cycl0penta[b] quinoxaline- 4,9-dioxide 1-hydroxy-2,3-dihydro-1I-I cyclopenta[b]quinoxaline- 4,9-dioxide (11 g.) dissolved in a mixture of pyridine (50 m1.) and chloroform (100 ml.) is treated with phosphorus tribromide (15 g.). The mixture is allowed to stand at room temperature for 24 hours then washed with water (3x500 ml.). The product is isolated from the residue obtained after removal of the chloroform by vacuum distillation.
Following this procedure the dihydroxy compound of Example X is converted to l,3-dibromo-2,3-dihydro-1H cyclopenta[b] quinoxaline-4,9-dioxide.
EXAMPLE XIX 1-meth'ylmercapto-2,3-dihydro-lH-cyclopenta [b] quinoxaline-4,9-dioxide 1-bromo-2,3-dihydro 1H cyclopenta[b]quinoxaline- 4,9-dioxide is added to a solution containing a two-fold excess of sodium methylmercaptide (10 g.) in ethanol (one 1.). The mixture is stirred for 48 hours at room temperature then poured into Water (3 l.) and the resulting solution extracted with chloroform. The cloroform solution is dried over anhydrous sodium sulfate and evaporated to a gum. The residual gum is crystallized from acetone/hexane to yield the crystalline product.
This procedure is repeated but using the appropriate mercaptide and the halogenated polymethylene quinoxaline dioxides of Examples VII and VIII to produce the following compounds:
Repetition of the procedure of Example XIX but using the appropriate sodium alkoxide as reactant in place of sodium methyl mercaptide produces the following compounds:
lH-cyclopenta [b] quinoxaline-4,9-dioxide 1-hydroxy-2,3-dihydro-1H cyclopenta[b]quinoxaline- 4,9-dioxide (4.0 g.) is dissolved in concentrated sulfuric acid (15 ml.) at room temperature. A dark-green solution rapidly forms and, after 10 minutes, is poured onto cracked ice and the resulting aqueous solution extracted with chloroform. The chloroform solution is dried (anhydrous sodium sulfate) then evaporated to dryness in vacuo. The residue is crystallized from chloroform/ hexane. Recrystallization from chloroform/hexane gives the pure product.
Application of this procedure to the hydroxy substituted compounds of Examples VII, XI, XII, XIII, XIX, XX and XXVI produces the corresponding unsaturated compounds.
EXAMPLE XXII 1-bromo-3-carbethoxy-2,3-dihydro-1H-cyclopenta [b] quinoxaline-4,9-dioxide (13.7 g.) in chloroform (250 ml.) at reflux is added a solution of bromine (8 g.) in chloroform ml.) dropwise during 30 minutes. After an additional 30 minutes at reflux the solution is cooled, washed with saturated sodium bicarbonate and dried with anhydrous sodium sulfate. Evaporation of the chloroform in vacuo at 30-40 C. provides the product.
In like manner the methyl, isopropyl, n-butyl and afnyl esters are prepared from the appropriate l-carbo-(lower) alkoxy-2,3-dihydro-1H cyclopenta[b]quinoxaline 4,9- .dioxide.
EXAMPLE XXIII l-carboxylI- I-cyclopenta [b] quinoxaline-4,9-dioxide l-cyano-1H-cyclopenta[b]quinoxaline-4,9 dioxide (50 g., Example XXI) is dissolved in a solution of acetic acid (100 ml.) and 10% hydrochloric acid (50 ml.) and refluxed for two hours. The product is isolated by removal of the solvent.
Esterification of the acid according to the procedure of Example XIII produces the corresponding lower alkyl esters.
Neutralization with the hydroxides of sodium, potassium, calcium and magnesium produces the corresponding salts.
EXAMPLE XXIV l-acetoxy-l H-cyclopenta [b] quinoxaline'4,9-dioxide I-bromo-lH-cyclopenta [b] quinoxaline-4,9-dioxide (Example XXI, 4.0 g.) is treated with acetic acid and triethylamine according to Method A of Example IX to produce the title compound.
Hydrolysis of the acetoxy group as described in Example VI affords the corresponding l-hydroxy compound,
EXAMPLE XXV 1-carbethoxy-2,3-dihydro-1H-cyclopenta[b] quinoxaline-4,9-dioxide One drop of concentrated hydrochloric acid is added LO a solution of 1,2-cyclopentanedione-3-ethylcarboxylate (8.5 g.) and o-phenylenediamine (3.75 g.) in benzene (250 ml.). The solution is refluxed for three hours, the by-product water being removed by means of a Dean- Stark trap. The benzene is evaporated in vacuo and the residue taken up in chloroform. The residue remaining after removal of the chloroform is chromatographed on a column of acid washed Florisil using chloroform as eluant. The product is obtained by evaporation of the eluate. v
Oxidation of the product by the procedure of Example XVI provides the title product.
Replacement of 1,2-cyclopentanedione-3-ethy1carboxylate by the homologous methyl-, propyland caproyl esters produces the corresponding quinoxaline-4,9-dioxides.
l-acetoxy-3-carbethoxy-2,3-dihydro- 1H-cyc1openta[b] quinoxaline-4,9-dioxide Application of the procedure of Method A of Example IX to 1-bromo-3-carbethoxy-2,3-dihydro-1H-cyclopenta [b]quinoxaline-4,9-dioxide provides the title compound.
Acid hydrolysis of the product according to the procedure of Example VI affords 1-hydroxy-3-carboxy-2,3- dihydro 1H cyclopenta[b]quinoxaline 4,9 dioxide which upon dehydration by the procedure of Example XXI affords 1 -carboxy 1H cyclopenta[b] quinoxaline- 4,9-dioxide.
EXAMPLE XXVII 1-oxo-2,3-dihydro-lH-cyclopenta [b quinoxaline- 4,9-dixide l hydroxy 2,3 dihydro 1H cyclopenta[b] quinoxaline-4,9-dioxide (6.0 g.) is dissolved in alcohol free chloroform (200 ml.) and shaken with a solution of chromium trioxide g.) in water (50 ml.) for 12 hours. The chloroform layer is separated, washed with Water, dried with anhydrous sodium sulfate and evaporated in vacuo to give the desired product.
Similarly, the hydroXy derivatives of Examples VII, XI, XII, XIX, XX and XXVI are oxidized to the corre: sponding oxo-derivatives.
EXAMPLE XXVIII 1-oxo-3-acetoxy-2,3-dihydro-1H-cyclopenta [b] quinoxaline-4,9-dioxide 1 oxo 3 bromo 2,3 dihydro 1H cyclopenta [b]quinoxaline-4,9-dioxide (3.0 g., 0.01 mole; Example XVII) is treated with acetic acid (0.05 mole) and triethyl-amine (0.03 mole) according to the procedure of Example ]X to give the title product.
Repetition of the procedure of this example but using propionic and butyric acids in place of acetic acid produces the corresponding alkanoyloxy compounds.
EXAMPLE XXIX 1-oxo-3-hydroxy-2,3-dihydro-lH-cyclopenta[b] quinoxaline-4,9-dioxide Acid hydrolysis of the title compound of Example XXV III according to the procedure of Example X affords the title compound.
EXAMPLE XXX 1,3-=dioxo-2,3-dihydro-lH-cyclopenta[b] quinoxaline-4,9-dioxide To a solution of 1,3-dihydroxy-2,3-dihydro-1H-cyclopenta[b]quinoXaline-4,9-dioXide (6.0 g.) in alcohol free chloroform (200 ml.) is added a solution of chromium trioxide (20 g.) in water (100 ml.) The mixture is shaken for 12 hours. The chloroform layer is separated, washed with water and dried with anhydrous sodium sulfate. Evaporation of the solvent in vacuo gives the product.
EXAMPLE XXXI Acid addition salts 18 EXAMPLE XXXII The eflicacy of the herein described cyclopenta[b] quinoxaline-4,9-dioxides in promoting the growth of chicks is demonstrated in a series of tests conducted with Vantress-white-rock chicks. In these tests, the day-old chicks are divided into 4 lots of 25 each of one sex, and kept in electrically heated brooders on raised wire floors. Each lot is assigned to a different compartment and fed a basal diet supplemented with 0.05% by Weight of 1,3- dihydroxy 2,3 dihydro 1H cyclopenta[b]quinoxaline-4,9-dioxide. A control in which no supplementation is added is also run. The growth and feed efficiency responses of each group are observed to 8 weeks of age- The composition of the basal ration is indicated below. The supplements are added to the diet in premix form at the expense of yellow corn meal.
Ingredient: Percent of mix Yellow Corn Meal 56.65 Soybean Oil Meal (50% Protein) 33.75 Alfalfa Meal (17% Protein) 2.00 Stabilized Animal Fat 3.50 Multi-Phos (Dicalcium Phosphate) 2.00 Iodized Salt 0.50 Trace Mineral Vitamin Premix 0.60 Limestone 1.00
Total 100.00
*Trace Mineral Vitamin Premix.
Vitamin-5% of Feed: Percent of premix Vitamin A-lO 10 Vitamin D =30O0 10 Choline chloride (25%) .E 35.25 Niacin 0.55
Calcium Pantothenate (45%) l0 Riboflavin-4 0.39 B-12- 60 0.2 Vigofac-6 30 Fine Corn Meal 3.75
Mineral Mix0.05% of Feed: Percent of mineral premix Manganese 24.0 Iodine 0.43 Iron 8.0 Copper 0.8 Zinc 0.04 Cobalt 0.08
2,3-dihydro-1I-I-cyclopenta [b]quinoxaline-4,9-dioxide 1-hydroxy-2,3-dihydro-lH-cyclopenta[b]quinoxaline-4,9-
dioxide 1-acetoxy-2,3 -dihydrolH-cyclopenta [b] quinoxaline-4,9-
dioxide 1,3-diacetoxy-2,3-dihydro-1H-cyclopenta [b]quinoxaline- 4,9-di0xide 1-methoxy-2,3-dihydrolH-cyclopenta [b] quinoxaline-4,9-
dioxide 1-oxo-2,3 -dihydrolH-cyclopenta [b] quinoxaline-4',9-
dioxide 1-oxo-3 -carboxy-2",3-dil i ydro-lH-cyclopenta [blquinoxaline-4,9-dioxide 19 EXAMPLE XXXIII The procedure of Example XXXIII is repeated but using 1,3 -.dihydroXy-2,3-dihydro-1H-cyclopenta[b]quinoxaliue-4,9-dioxide at levels of 0.002%, 0.01% and 0.025% by weight of feed. In each case improvement in growth and feed efficiency isnoted.
EXAMPLE XXXIV Groups of baby pigs are fed on a completely balanced diet previously proven highly useful for this type of animal. These animals weaned at approximately six to eight days of age, are fed over several days on a pre-starter diet containing 60.1% dry skimmed milk, 10.1% soybean oil, 9.9% glucose hydrate, 1.1% brewers yeast, 0.4% of oxytetracycline feed supplement containing g./lb. of oxytetracycline, 16% soybean oil meal and a complete vitamin and mineral supplement. The pigs are then fed a starter diet of fine ground yellow corn, rolled oats, soybean oil meal, glucose hydrate, dicalcium phosphate, iodized salt, soybean oil, oxytetracycline supplement, vitamin mix and mineral mix. The starter feed for some of the groups is supplemented with 100 g./ton of 1-hydroxy-2,3-dihydro- 1H cyclopenta [b] quinoxaline 4,9-dioxide. This feed is given the animals when they are about three weeks old and continued over a total of four weeks.
The supplemented diet is found to result in important weight gain and significant improvement in feed efliciency.
EXAMPLE XXXV Five-week old chickens are infected with coliform air sacculities by injecting 1.0 ml. of a 24-hour broth culture containing 2 different antibiotic (tetracycline) resistant, avian pathogenic strains of Escherichia coli into the left posterior thoracic air sac. The quinoxaline-di-N-oxide test compound is administered in the feed, the medicated ration being fed for a 5-day period starting 2 days prior to the coliform injection. The feed is tendered to the birds for imbibition ad. libitum. Twenty-five hundred grams of medicated feed containing 0.05% by weight of the test compound is provided per birds. When this is all consumed, non-medicated basal feed is given to the end of the trial.
The chickens are checked as to mortality, weight change,
feed consumption preand post-injection and, after sacrifice 3 dayspost-injection, for air sac lesions. The following quinoxaline-di-N-oxides are tested:
2,3-dihydro-1H-cyclopenta [b] quinoxaline-4,9-dioxide -l-hydroxy-2,3-dihydrolH-cyclopenta [b] quinoxaline-4,9-
dioxide 1,3-dihydroxy-2,S-dihydro-lH-cyclopenta [b] quinoxaline- 4,9-dioxide 1-oxo-2,3-dihydro-lH-cyclopenta [b] quinoxaline-4,9-
dioxide l,3-diacetoxy-2,3-dihydro-lH-cyclopenta[bJquinoxaline- 4,9-dioxide 1,3-dimethoxy-2,3 -dihydro-1H-cyclopenta [b] quinoxaline- 4,9-dioxide 1-carbethoxy-2,3-dihydrolH-cyclopenta [b] quinoxaline- 4,9-dioxide -1-bromo-3-oxo-2,3-dihydro-lH-cyclopenta[b]quinoxaline- 4,9-dioxide 1-methylmercapto-2,3-dihydro-lH-cyclopenta[b] quinoxaline-4,9-dioxide 1-carboxy-2,3-dihydro-lH-cyclopenta[b]quinoxaline- 4,9-dioxide sodium salt l-chloro-Z, 3-dihydro-1H-cyclopenta [b quinoxaline-4,9-
dioxide hydrochloride 1-hydroxy-2,3-dihydrolH-cyclopenta [b] quinoxaline4,9-
dioxide sulfate All compounds are effective in reducing mortality,
lesion scars and in increasing body weight and feed consumption. Effective control of the infection is realized.
20 EXAMPLE XXXVI Five-week old chickens are inoculated into the left posterior thoracic air sac with 0.5 ml. of a 24-hour broth culture containing 2 different antibiotic. (tetracycline) resistant, avian pathogenic strains of E. coli. The test compound is administered by subcutaneous injection of an aqueous solution into the upper cervical region at the time of infection. Observations on mortality, feed consumption post-injection, weight change and, after sacrifice, air sac lesions core are made. Ten birds are used for each test.
Effective control of the coliform infection is observed particularly at dosage levels of approximately 10 mg./kg. body weight and higher with the following 2,3-dihydrolH-cyclopenta[b]quinoxaline-4,9-dioxides:
Compound: Dose mg./kg. 1,3-dihydroxy- 10 1,3-diacetoxy- 10 1,3-dibutyryloxy- 10 1,3-dibromo (used as hydrochloride salt) 10 1,3-dibromo 5 l-hydroxy- 5 l-hydroxy- 2.5 l-oxo 10 1-acetoxy-3-carbethoxy- 10 l-acetoxy-3-carbethoxy- 20 l-carboxy- (used as sodium salt) 10 and l carboxy-1H-cyclopenta[b]quinoxaline-4,9-dioxide sodium salt.
EXAMPLE XXXVII The relative efiicacy of the quinoxaline-di-N-oxides against Mycoplasma gallisepticum infection in chicks is demonstrated by exposing six-week old chicks, divided into groups of 10 birds to the Mycoplasma infection by injection of 0.5 ml. of a 72-hour broth culture, diluted with an equal volume of sterile heart infusion broth into the left posterior thoracic air sac. The test compound is administered in the basal feed at a level of 0.05 Medication is started 48 hours before exposure and continued for 72 hours past exposure for a total of 5 days medication. Two replicates of each test are run.
The Mycoplasrna infection alone exerts a pronounced effect on the lesion score. Significant improvement of this characteristic reaction is obtained with 2,3-dihydro-1H- cyclopenta[b]quinoxaline-4,9 dioxide, with 1,3 dihydroxyand 1,3 diacetoxy-2,3-dihydro-1H-cyclopenta[b] quinoxaline-4,9-dioxide and with the remaining compounds of this invention.
Similar results are obtained when this procedure is repeated but using N-type PPLO as the infecting organism.
What is claimed is: w
- 1. A method for the control of coliform air sacculitis in poultry which comprises orally or parenterally administering to said poultry a coliform air sacculitis controlling amount of a compound selected from the group consisting of (a) 2,3-dihydro-lH-cyclopenta[b]quinoxaline-4,9-
wherein R is selected from the group consisting ofhy-' droxy, lower alkoxy, mercapto, lower alkylmercapto, lower alkanoyloxy, cyano, carboxy, carbo-(1ower)alkoxy, chloro and bromo and R is selected from the group consisting of hydrogen and R (f) the non-toxic mineral acid addition salts thereof and (g) when either or both of R and R is carboxy, the alkali metal and alkaline earth metal salts thereof.
2. The method of claim 1 wherein the compound is administered orally.
3. The method of claim 1 wherein the compound is administered parenterally.
4. A method for promoting growth and improving feed efliciency of domestic animals which comprises orally or parenterally administering to a domestic animal a growthpromoting amount of a compound selected from the group consisting of (al Z3 dihydro-1H-cyclopentaw]quinoxaline-4,9-dioxide,
T i J R2 wherein R is selected from the group consisting of hydroxy, lower alkoxy, mercapto, lower alkylmercapto, lower alkanoyloxy, cyano, carboxy, carbo-(lower)alkoxy, chloro and bromo and R is selected from the group consisting of hydrogen and R (f) the non-toxic mineral acid addition salts thereof and (g) when either or both of R and R is carboxy, the alkali metal and alkaline earth metal salts thereof.
5. A feed composition comprising a nutritionally balanced domestic animal feed containing a growth promoting'amount of a compound selected from the group consisting of (a) 2,3-dihydro-lH-cyclopenta[b]quinoxaline- 4,9-dioxide,
References Cited UNITED STATES PATENTS 3,479,354 11/1969 Galt 424-250 3,480,713 11/1969 Johnston 424-250 3,485,836 12/ 1969 Johnston 424-250 3,507,870 4/ 1970 Johnston 424250 JEROME D. GOLDBERG, Primary Examiner V. D. TURNER, Assistant Examiner US. Cl. X.R. 99-2 M, 2 G
PC4050 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent No. 36415622 Dated February 22, 7
James David Johnston Inventor(s) It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Columns 5 and 6, lines 32-40, that portion of the righthand formula reading should read Column 10, line 10, "15.050" should read 15,050
Column l t, line 32, "18,500" should read 18,550
Signed and sealed this 11 th day of July 1972.
(SEAL) Attest:
EDWARD M.FLETCHER,JR. ROBERT GOTTSCHALK Attesting Officer Commissicner of Patents
US833231*A 1969-04-09 1969-04-09 Novel polymethylene quinoxaline dioxides for treating respiratory diseases and as growth promotants Expired - Lifetime US3644622A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US83323169A 1969-04-09 1969-04-09

Publications (1)

Publication Number Publication Date
US3644622A true US3644622A (en) 1972-02-22

Family

ID=25263812

Family Applications (1)

Application Number Title Priority Date Filing Date
US833231*A Expired - Lifetime US3644622A (en) 1969-04-09 1969-04-09 Novel polymethylene quinoxaline dioxides for treating respiratory diseases and as growth promotants

Country Status (1)

Country Link
US (1) US3644622A (en)

Similar Documents

Publication Publication Date Title
US3371090A (en) Novel antibacterial agents
US3344022A (en) Method of treating chronic respiratory disease in poultry
US3926992A (en) Aldol products of 2-quinoxalinecarboxaldehy-1,4-dioxides
US3974277A (en) 2-[2-(5-Nitro-2-furyl)vinyl]-4-(anilino)quinazolines as growth promotants and feed efficiency enhancing agents
US3485836A (en) Polymethylene quinoxaline dioxides
US3644622A (en) Novel polymethylene quinoxaline dioxides for treating respiratory diseases and as growth promotants
US3752812A (en) 2-trifluoromethylquinoxalinedi n oxides
US3507870A (en) 1,4-disubstituted-1,2,3,4-tetrahydrophenazine-5,10-dioxides
US3563991A (en) 1-oxo-1,2,3,4-tetrahydrophenazine-5,10-dioxides
US3520888A (en) 3,4-dihydrophenazine-5,10-dioxides
US3564093A (en) Use of pentamethylene quinoxaline di-oxides as antibacterial agents and animal growth promotants
US3471492A (en) 7,8,9,10-tetrahydro-6h-cyclohepta(b) quinoxaline-5,11-dioxides
US3591694A (en) Treatment of chronic respiratory disease in poultry with 1,2,3,4-tetrahydrophenazine - 5,10 - dioxides and derivatives thereof
US4100284A (en) 1,4-Dioxo- and 4-oxoquinoxaline-2-carboxaldehyde sulfonylhydrazones and certain derivatives thereof
US3480713A (en) 1,2,3,4-tetrahydrophenazine-5,10-dioxides as growth promoting agents
US3887583A (en) Products and process
US3728345A (en) Preparation of quinoxaline-2-carboxamide derivatives
US3931174A (en) Alkylmercaptomethylquinoxaline-1,4-dioxides and oxidized derivatives thereof
US3763162A (en) Transesterification of quinoxaline-2-carboxylic acid esters
US3970648A (en) 2-[2-(5-Nitro-2-furyl)vinyl]-4-(anilino)quinazolines
US3973021A (en) 2-[2-(5-Nitro-2-furyl)vinyl]-4-(phydroxyanilino)quinazoline as a bactericide
US3767657A (en) Process for the preparation of quinoxaline di n oxides
US3803145A (en) Quinoxaline-di-n-oxides
US3948911A (en) Substituted quinoxaline-2-carboxamide 1,4-dioxides
US3644360A (en) 3-substituted methylquinoxaline-2-carboxamide-1 4-dioxides