US3644059A - Cooled airfoil - Google Patents

Cooled airfoil Download PDF

Info

Publication number
US3644059A
US3644059A US43838A US3644059DA US3644059A US 3644059 A US3644059 A US 3644059A US 43838 A US43838 A US 43838A US 3644059D A US3644059D A US 3644059DA US 3644059 A US3644059 A US 3644059A
Authority
US
United States
Prior art keywords
blade
airfoil
honeycomb
fluid
skin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US43838A
Inventor
John K Bryan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Application granted granted Critical
Publication of US3644059A publication Critical patent/US3644059A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/182Transpiration cooling
    • F01D5/183Blade walls being porous
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49339Hollow blade
    • Y10T29/49341Hollow blade with cooling passage

Definitions

  • a transpiration-cooled turbine blade has a porous wall'nnd [58] Field of Search ..416/96-97, 231, may have an internal strut extending spanwise of the blade and 416/223 carrying cooling air into the blade.
  • a honeycomb material with the cells extending generally from face-to-face of the [56] References Cited blade is bonded to the interior of the blade wall and t0 the strut, if present.
  • the honeycomb extends UNITED STATES PATENTS from face-to-face, and has air supply passages cut through the honeycomb extending spanwise of the blade.
  • My invention relates to improvements in hollow fluid directing members for high-temperature turbomachines, such as vanes and blades for gas turbines. It is particularly directed to improving the cooling and providing adequate stiffening in blades in which the wall is a thin laminate of porous material or is of other material ofa porous nature so that the blade may be cooled by transpiration cooling; that is, by air or other cooling fluid which flows through the walls of the blade and is discharged from multifarious pores in the outer surface of the blade.
  • the term blade will be used here to refer to vanes and blades and other analogous structures. My invention may apply to any such which require cooling and which need to be strengthened or internally reinforced and to have the distribution of cooling fluid controlled, although the preferred embodiment is in a turbine blade.
  • the amount of heat transfer to the blade varies over the area of the blade wall.
  • external pressures vary, being generally low on the convex surface of the blade relative to the concave or high-pressure face.
  • Economy of cooling fluid and even cooling of the surface may be improved by arrangements to control or meter the flow of fluid to the lower pressure surfaces of the blade.
  • the pressure of the cooling fluid supplied to the blade must, of course, be greater than the maximum pressure outside the blade for cooling fluid to flow through the entire surface.
  • it may be desirable to throttle or meter the flow to some parts of the blade so as to reduce the pressure and prevent undue and wasteful discharge of cooling fluid through the areas exposed to lower pressure.
  • there is a tendency for the pressure within the blade to balloon the airfoil and there may be gas bending loads and buffeting forces on the blade from the motive gas, and possibly other forces which tend to deflect the walls ofthe blade or other flow-deflecting element.
  • My invention is directed to improvements in porous walled blades such as to strengthen the wall and to improve the distribution of cooling fluid to the wall.
  • the blade is an airfoil having walls formed of a laminated porous metal sheet of the type described in U.S. Pat. No. 3,584,972 of Meginnis and Bratkovich.
  • the blade walls define a hollow interior which is filled with material which distributes fluid to the blade walls, and strengthens and stiffens the blade.
  • Two forms are disclosed, in one ofwhich honeycomb material extends from face to face of the blade between the inner surfaces of the walls, thus connecting the faces together and providing a reinforcement within the blade.
  • Spanwise extending passages cut through the honeycomb material distribute the cooling fluid spanwise of the blade. and it flows from these passages through the cells of the honeycomb material to the blade wall.
  • the honeycomb serves to stiffen the blade against bending loads, as well as other deflections or ballooning.
  • a greater degree of stiffness is obtained by the use of a hollow strut of relatively heavy section compared to the blade walls.
  • the strut provides the spanwise extending cooling air passages and delivers the air to a layer of honeycomb between the strut and the blade wall.
  • the principal objects of my invention are to provide transpiration-cooled turbine blades and vanes and other analogous airfoil devices ofimproved strength and rigidity, which may be readily fabricated, and which have superior structure for distribution of the cooling air to various areas of the wall of the airfoil.
  • FIG. I is an elevation view of a turbine blade.
  • FIG. 2 is a cross section of the same taken on the plane indicated by the line 2-2 in FIG. 1.
  • FIG. 3 is a considerably enlarged view of a fragment of FIG.
  • FIG. 4 is a fragmentary sectional view taken on a curved surface indicated generally by the line 44 in FIG. 3.
  • FIG. 5 is a sectional view, taken on a plane similar to that of FIG. 2, of a second form of blade structure.
  • FIG. 1 illustrates what may be regarded as a typical turbine blade except for structure not shown in FIG. 1.
  • the blade 6 includes a fluid-directing airfoil 7 and a base 8 by which it is mounted on a turbine rotor.
  • the base is an integral cast structure comprising a platform 10, a stalk 11, and a root 12.
  • the airfoil 7 is a formed structure of sheet metal of controlled porosity for diffusion of cooling air through the walls of the blade for transpiration cooling. While various types of porous material may be employed in the blade wall, the preferred material is that described and claimed in the Bratkovich et al., patent referred to above.
  • the airfoil may be bicast or otherwise secured to the base 8.
  • the airfoil 7 may have any suitable shape but, as illustrated more clearly in FIG. 2, is of cambered airfoil cross section having a convex or low-pressure face 14 and a concave or high-pressure face 15, these extending from a rounded leading edge 16 to a sharp-t
  • Cooling air may be admitted to the interior of the airfoil 7 through an opening 19 in the blade base and the free end or tip of the blade is closed by a cap 20 or other suitable closure.
  • the air introduced into the blade escapes through numerous small pores 22 distributed over the surface of the airfoil.
  • the blade structure illustrated in FIGS. 1, 2, and 3 includes a hollow strut 23, which may be a cast structure, and which may be cast integral with the blade base 8 or be otherwise secured to it.
  • Strut 23 may be the means to fix the blade wall to the blade base, or part of such means.
  • Strut 23 is of such contour as generally to parallel the interior of the blade wall but be spaced a substantial distance from it. It includes a number of cross walls 24 in the preferred structure, these defining with the outer wall of the strut a number of spanwise extending cooling air passages 26.
  • a layer of honeycomb material 27 defined by walls extending across the gap from the strut 23 to the interior of the airfoil wall 7 is bonded both to the wall and to the strut by any suitable process, preferably diffusion bonding, although some such process as brazing might be employed.
  • the honeycomb material defines a number of polyhedral cells 28, preferably hexagonal, terminating at the airfoil wall and at the strut.
  • Numerous apertures 30 are provided in the wall of strut 23 to distribute the cooling air from the passages 26 into the cells of the honeycomb. The size and spacing of these apertures should be such as to meter the cooling fluid to the respective areas of the blade as needed for proper cooling, providing sufficient differential pressure between the interior and the exterior of the blade for this purpose.
  • the apertures 30 may communicate with various ones of the cells 28 but need not connect directly to all of the cells, since they are interconnected as seems desirable through pores 31 in the walls of the honeycomb. Thus air may flow through apertures 30 and pores 31 to the intcrior of wall 7.
  • the airfoil or wall 7 is indicated as a porous structure by numerous pores 32 through the wall. These are, in a sense, schematic IOI024 (I606 since the wall 7 may not have pores specifically as illustrated in the FIG. 3. In many cases it is desirable to obtain a preferred wall thickness by laminating layers of metal. However, for the present purpose, the wall 7 as illustrated may be considered as a representation of a porous wall of whatever structure is suitable for the purpose. Several types of porous sheet material are presently available commercially.
  • the strut terminates considerably ahead of the trailing edge but the strut may be provided with air discharge apertures 34 at the trailing edge communicating with the honeycomb adjacent the trailing edge which may have openings through the honeycomb wall, generally as illustrated in FIG. 4, to conduct the fluid toward the trailing edge of the blade.
  • the overall blade is extremely stiff and resistant to ballooning or tinpanning, as well as rigid to resist bending because of the beam loads due to the pressure of motive fluid on the blade.
  • the honeycomb material provides a very suitable path for conduction of cooling air from the strut to the porous surface ofthe blade with a minimum of obstruction of the interior of the blade wall. Only the narrow edges of the metal strips which define the honeycomb are in abutting relation to the wall.
  • FIG. 5 illustrates a different structure, which is in some respects simpler, and in which the strut such as 23 of FIG. 2 is omitted.
  • the blade base and airfoil may be as previously described and are given the same reference numerals.
  • the blade wall 7 is reinforced by honeycomb material extending from face to face of the blade and bonded to the interior of the wall at both faces of the blade by diffusion bonding or otherwise.
  • a number of cells 37 are defined by walls indicated at 38, these walls defining a honeycomb structure generally as indicated in FIG. 4, although the cells may be of larger cross section.
  • a number of spanwise extending passages 40 are machined in the honeycomb material, cutting through the walls of the cells to distribute fluid from the blade base throughout the length of the airfoil. These passages communicate directly with many of the cells 37, which in turn direct the fluid to the interior of the wall 7 through which it flows for transpiration cooling. Moreover, apertures 42, as indicated at various points. may be provided through the walls of the cells to distribute fluid into various cells which do not otherwise communicate with the spanwise extending passages 40. Since each spanwise extending passage distributes fluid to a particular portion of the chordwise extent of the blade, the cooling fluid may be metered either by the size of the passage, by the entrance to the passage. or otherwise so that the quantity of fluid is appropriate to the requirements of the particular chordwise portion ofthe blade.
  • a fluid-directing airfoil member for use in hot environ ments comprising, in combination, an outer skin defining the airfoil contour, the-outer skin being of a porous material adapted for transpiration cooling by flow of coolant outwardly through the skin; an open-cell honeycomb structural material lining the outer skin and bonded to the outer skin. with the cells of the honeycomb open to the skin and extending inwardly from the skin to define cooling fluid passages from the interior of the airfoil element to the inner surface of the skin and providing a structural reinforcement for the skin resisting displacement of the skin; and means for conducting a cooling fluid through the interior of the airfoil member into the honeycomb material for flow through the said passages and skin.
  • a member as defined in claim 1 in which the last-recited means includes a rigid hollow strut extending spanwise of the blade bonded to the honeycomb material.
  • a hollow flow-directing airfoil member comprising, in combination, a wall of controlled porosity adapted for transpiration cooling effected by fluid flowing outward through the wall, the member being of airfoil cross section with a high pressure face and a low-pressure face, a fluid distributing and metering layer bonded to the inner surface of the wall at both faces, and an internal strut adapted to support the wall against deflection and to supply a cooling fluid to the wall, the internal strut being a hollow structureextending spanwise of the airfoil and defining at least one cooling fluid passage extending spanwise of the airfoil, the said layer being bonded to the strut and being composed of a honeycomb material with cells extending from the strut to the interior surface of the wall, and fluid distributing apertures in the strut connecting the said duct to the said layer.
  • a member as defined in claim 6 including also apertures between some of the honeycomb material cells for further distribution of the fluid.
  • a fluid-directing airfoil member for use in hot environments comprising, in combination, an outer skin defining the airfoil contour, the outer skin being of a porous material adapted for transpiration cooling; the skin defining an airfoil with a leading edge, a trailing edge, and highand low-pressure faces extending from the leading edge to the trailing edge and enclosing the interior ofthe blade; a reinforcing and fluiddistributing structure within the airfoil comprising a structural honeycomb extending between, and bonded to the interior of, the inside of the skin of the faces, the honeycomb having open cells extending from face to face of the blade; passages within the honeycomb material extending spanwise of the airfoil being defined by voids in the honeycomb material, the passages communicating with the cells of the honeycomb material, so that a cooling fluid may be supplied through the passages and thence through the cells ofthe honeycomb to the interior of the outer skin.
  • a member as defined in claim 8 including also apertures between some of the honeycomb material cells for further distribution of the fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

A transpiration-cooled turbine blade has a porous wall and may have an internal strut extending spanwise of the blade and carrying cooling air into the blade. A honeycomb material with the cells extending generally from face-to-face of the blade is bonded to the interior of the blade wall and to the strut, if present. If there is no strut, the honeycomb extends from faceto-face, and has air supply passages cut through the honeycomb extending spanwise of the blade.

Description

United States Patent 1151 3,644,059 Bryan Feb. 22, 1972 [54] COOLED AIRFOIL 3,114,961 12/1963 Chambers et al. ..416/223 X 3,172,621 3/1965 Erwin 416/97 X [721 3" 3"? 3 Dme 3,224,194 12/1965 DeFeo at al.. ..416/231 x 3,240,468 3/1966 Watts et al "416/231 [22] Filed: June 5, 1970 Primary Examiner-Everette A. Powell. Jr. PP 43,338 Attorney-Paul Fitzpatrick and Jean 1-. C arpcntcr 52 U.S.C1 ..4l6/97,416/231 [57] ABSTRACT [51] ..F0ld 5/18 A transpiration-cooled turbine blade has a porous wall'nnd [58] Field of Search ..416/96-97, 231, may have an internal strut extending spanwise of the blade and 416/223 carrying cooling air into the blade. A honeycomb material with the cells extending generally from face-to-face of the [56] References Cited blade is bonded to the interior of the blade wall and t0 the strut, if present. If there is no strut, the honeycomb extends UNITED STATES PATENTS from face-to-face, and has air supply passages cut through the honeycomb extending spanwise of the blade. 2,828,106 3/1958 Schramm et al. ..416/97 X 2,851,216 9/1958 Scanlan et al ..416/231 X 9 Claims, 5 Drawing Figures PAINTEUFEB22 I972 ATTORNEY COOLED AIRFOIL The invention herein described was made in the course of work under a contract or subcontract thereunder with the Department of Defense."
Thispatent application was filed under the provisions of 35 US. Code Section 1 18 by General Motors Corporation, a corporation of Delaware, which asserts ownership of the application by virtue ofa contract of employment of the inventor with General Motors Corporation. 1
DESCRIPTION My invention relates to improvements in hollow fluid directing members for high-temperature turbomachines, such as vanes and blades for gas turbines. It is particularly directed to improving the cooling and providing adequate stiffening in blades in which the wall is a thin laminate of porous material or is of other material ofa porous nature so that the blade may be cooled by transpiration cooling; that is, by air or other cooling fluid which flows through the walls of the blade and is discharged from multifarious pores in the outer surface of the blade. The term blade" will be used here to refer to vanes and blades and other analogous structures. My invention may apply to any such which require cooling and which need to be strengthened or internally reinforced and to have the distribution of cooling fluid controlled, although the preferred embodiment is in a turbine blade.
Considering a turbine blade, the amount of heat transfer to the blade varies over the area of the blade wall. Also, external pressures vary, being generally low on the convex surface of the blade relative to the concave or high-pressure face. Economy of cooling fluid and even cooling of the surface may be improved by arrangements to control or meter the flow of fluid to the lower pressure surfaces of the blade. The pressure of the cooling fluid supplied to the blade must, of course, be greater than the maximum pressure outside the blade for cooling fluid to flow through the entire surface. Thus, it may be desirable to throttle or meter the flow to some parts of the blade so as to reduce the pressure and prevent undue and wasteful discharge of cooling fluid through the areas exposed to lower pressure. Also, there is a tendency for the pressure within the blade to balloon the airfoil and there may be gas bending loads and buffeting forces on the blade from the motive gas, and possibly other forces which tend to deflect the walls ofthe blade or other flow-deflecting element.
My invention is directed to improvements in porous walled blades such as to strengthen the wall and to improve the distribution of cooling fluid to the wall. In the preferred embodiments of the invention, the blade is an airfoil having walls formed of a laminated porous metal sheet of the type described in U.S. Pat. No. 3,584,972 of Meginnis and Bratkovich.
The blade walls define a hollow interior which is filled with material which distributes fluid to the blade walls, and strengthens and stiffens the blade. Two forms are disclosed, in one ofwhich honeycomb material extends from face to face of the blade between the inner surfaces of the walls, thus connecting the faces together and providing a reinforcement within the blade. Spanwise extending passages cut through the honeycomb material distribute the cooling fluid spanwise of the blade. and it flows from these passages through the cells of the honeycomb material to the blade wall. In this structure the honeycomb serves to stiffen the blade against bending loads, as well as other deflections or ballooning.
In a further form of the invention, a greater degree of stiffness is obtained by the use ofa hollow strut of relatively heavy section compared to the blade walls. In this case, the strut provides the spanwise extending cooling air passages and delivers the air to a layer of honeycomb between the strut and the blade wall.
Of course, various structures embodying the principles of the invention may be derived from these preferred embodiments, described in detail in this specification.
The principal objects of my invention are to provide transpiration-cooled turbine blades and vanes and other analogous airfoil devices ofimproved strength and rigidity, which may be readily fabricated, and which have superior structure for distribution of the cooling air to various areas of the wall of the airfoil.
The nature of my invention and its advantages will be more clearly apparent to those skilled in the art from the succeeding detailed description of preferred embodiments of the invention and the accompanying drawings thereof.
FIG. I is an elevation view ofa turbine blade.
FIG. 2 is a cross section of the same taken on the plane indicated by the line 2-2 in FIG. 1.
FIG. 3 is a considerably enlarged view ofa fragment of FIG.
FIG. 4 is a fragmentary sectional view taken on a curved surface indicated generally by the line 44 in FIG. 3.
FIG. 5 is a sectional view, taken on a plane similar to that of FIG. 2, of a second form of blade structure.
FIG. 1 illustrates what may be regarded as a typical turbine blade except for structure not shown in FIG. 1. The blade 6 includes a fluid-directing airfoil 7 and a base 8 by which it is mounted on a turbine rotor. The base is an integral cast structure comprising a platform 10, a stalk 11, and a root 12. The airfoil 7 is a formed structure of sheet metal of controlled porosity for diffusion of cooling air through the walls of the blade for transpiration cooling. While various types of porous material may be employed in the blade wall, the preferred material is that described and claimed in the Bratkovich et al., patent referred to above. The airfoil may be bicast or otherwise secured to the base 8. The airfoil 7 may have any suitable shape but, as illustrated more clearly in FIG. 2, is of cambered airfoil cross section having a convex or low-pressure face 14 and a concave or high-pressure face 15, these extending from a rounded leading edge 16 to a sharp-trailing edge 18.
Cooling air may be admitted to the interior of the airfoil 7 through an opening 19 in the blade base and the free end or tip of the blade is closed by a cap 20 or other suitable closure. The air introduced into the blade escapes through numerous small pores 22 distributed over the surface of the airfoil.
The blade structure illustrated in FIGS. 1, 2, and 3 includes a hollow strut 23, which may be a cast structure, and which may be cast integral with the blade base 8 or be otherwise secured to it. Strut 23 may be the means to fix the blade wall to the blade base, or part of such means. Strut 23 is of such contour as generally to parallel the interior of the blade wall but be spaced a substantial distance from it. It includes a number of cross walls 24 in the preferred structure, these defining with the outer wall of the strut a number of spanwise extending cooling air passages 26. A layer of honeycomb material 27 defined by walls extending across the gap from the strut 23 to the interior of the airfoil wall 7 is bonded both to the wall and to the strut by any suitable process, preferably diffusion bonding, although some such process as brazing might be employed.
As shown more clearly in FIG. 4, the honeycomb material defines a number of polyhedral cells 28, preferably hexagonal, terminating at the airfoil wall and at the strut. Numerous apertures 30 are provided in the wall of strut 23 to distribute the cooling air from the passages 26 into the cells of the honeycomb. The size and spacing of these apertures should be such as to meter the cooling fluid to the respective areas of the blade as needed for proper cooling, providing sufficient differential pressure between the interior and the exterior of the blade for this purpose. The apertures 30 may communicate with various ones of the cells 28 but need not connect directly to all of the cells, since they are interconnected as seems desirable through pores 31 in the walls of the honeycomb. Thus air may flow through apertures 30 and pores 31 to the intcrior of wall 7. The nature of this distribution of air is indicated by the flow arrows on FIGS. 3 and 4. In FIG. 3, the airfoil or wall 7 is indicated as a porous structure by numerous pores 32 through the wall. These are, in a sense, schematic IOI024 (I606 since the wall 7 may not have pores specifically as illustrated in the FIG. 3. In many cases it is desirable to obtain a preferred wall thickness by laminating layers of metal. However, for the present purpose, the wall 7 as illustrated may be considered as a representation of a porous wall of whatever structure is suitable for the purpose. Several types of porous sheet material are presently available commercially.
Because ofthe narrowness of the trailing edge portion of the blade, the strut terminates considerably ahead of the trailing edge but the strut may be provided with air discharge apertures 34 at the trailing edge communicating with the honeycomb adjacent the trailing edge which may have openings through the honeycomb wall, generally as illustrated in FIG. 4, to conduct the fluid toward the trailing edge of the blade. AS will be seen, with the blade wall rigidly fixed to the struts through the honeycomb material, the overall blade is extremely stiff and resistant to ballooning or tinpanning, as well as rigid to resist bending because of the beam loads due to the pressure of motive fluid on the blade. Also, the honeycomb material provides a very suitable path for conduction of cooling air from the strut to the porous surface ofthe blade with a minimum of obstruction of the interior of the blade wall. Only the narrow edges of the metal strips which define the honeycomb are in abutting relation to the wall.
FIG. 5 illustrates a different structure, which is in some respects simpler, and in which the strut such as 23 of FIG. 2 is omitted. in the structure of FIG. 5, the blade base and airfoil may be as previously described and are given the same reference numerals. In this case, however, the blade wall 7 is reinforced by honeycomb material extending from face to face of the blade and bonded to the interior of the wall at both faces of the blade by diffusion bonding or otherwise. In this structure, a number of cells 37 are defined by walls indicated at 38, these walls defining a honeycomb structure generally as indicated in FIG. 4, although the cells may be of larger cross section. A number of spanwise extending passages 40 are machined in the honeycomb material, cutting through the walls of the cells to distribute fluid from the blade base throughout the length of the airfoil. These passages communicate directly with many of the cells 37, which in turn direct the fluid to the interior of the wall 7 through which it flows for transpiration cooling. Moreover, apertures 42, as indicated at various points. may be provided through the walls of the cells to distribute fluid into various cells which do not otherwise communicate with the spanwise extending passages 40. Since each spanwise extending passage distributes fluid to a particular portion of the chordwise extent of the blade, the cooling fluid may be metered either by the size of the passage, by the entrance to the passage. or otherwise so that the quantity of fluid is appropriate to the requirements of the particular chordwise portion ofthe blade. in this case, however, the pressure will be the same on both faces of the blade. This may be a disadvantage, as it will require that the porosity of the lowpressure surface be less than that of the high-pressure surface of the blade wall. On the other hand, the structure of FIG. 5 is lighter and simpler than that of FIG. 2, and may have ample strength for many applications.
It will be apparent to those skilled in the art that the structures described provide for reinforcement of the blade as a beam and also for reinforcement of the sheet metal faces of the blade and for efficient metering and distribution ofcooling air to the blade wall.
The detailed description of preferred embodiments of the invention for the purpose of explaining the principles thereof is not to be considered as limiting or restricting the invention, as many modifications may be made by the exercise of skill in the art.
[claims l. A fluid-directing airfoil member for use in hot environ ments comprising, in combination, an outer skin defining the airfoil contour, the-outer skin being of a porous material adapted for transpiration cooling by flow of coolant outwardly through the skin; an open-cell honeycomb structural material lining the outer skin and bonded to the outer skin. with the cells of the honeycomb open to the skin and extending inwardly from the skin to define cooling fluid passages from the interior of the airfoil element to the inner surface of the skin and providing a structural reinforcement for the skin resisting displacement of the skin; and means for conducting a cooling fluid through the interior of the airfoil member into the honeycomb material for flow through the said passages and skin.
2. A member as defined in claim 1 in which the last-recited means includes a rigid hollow strut extending spanwise of the blade bonded to the honeycomb material.
3. A member as defined in claim 1 in which the last-recited means is formed by passages extending spanwise of the blade cutting through the cell walls ofthe honeycomb material.
4. A member as defined in claim 1 in which the lastrecited means includes means defining at least one passage extending spanwise of the blade and includes apertures through the cell walls ofthe honeycomb material for distribution ofthe cooling fluid from cell to cell.
5. A member as defined in claim 1 in which the last-recited means includes metering restrictions adapted to proportion the flow of cooling fluid to various areas of the outer skin in accordance with external pressure and cooling requirements at such various areas.
6. A hollow flow-directing airfoil member comprising, in combination, a wall of controlled porosity adapted for transpiration cooling effected by fluid flowing outward through the wall, the member being of airfoil cross section with a high pressure face and a low-pressure face, a fluid distributing and metering layer bonded to the inner surface of the wall at both faces, and an internal strut adapted to support the wall against deflection and to supply a cooling fluid to the wall, the internal strut being a hollow structureextending spanwise of the airfoil and defining at least one cooling fluid passage extending spanwise of the airfoil, the said layer being bonded to the strut and being composed of a honeycomb material with cells extending from the strut to the interior surface of the wall, and fluid distributing apertures in the strut connecting the said duct to the said layer.
7. A member as defined in claim 6 including also apertures between some of the honeycomb material cells for further distribution of the fluid.
8. A fluid-directing airfoil member for use in hot environments comprising, in combination, an outer skin defining the airfoil contour, the outer skin being of a porous material adapted for transpiration cooling; the skin defining an airfoil with a leading edge, a trailing edge, and highand low-pressure faces extending from the leading edge to the trailing edge and enclosing the interior ofthe blade; a reinforcing and fluiddistributing structure within the airfoil comprising a structural honeycomb extending between, and bonded to the interior of, the inside of the skin of the faces, the honeycomb having open cells extending from face to face of the blade; passages within the honeycomb material extending spanwise of the airfoil being defined by voids in the honeycomb material, the passages communicating with the cells of the honeycomb material, so that a cooling fluid may be supplied through the passages and thence through the cells ofthe honeycomb to the interior of the outer skin.
9. A member as defined in claim 8 including also apertures between some of the honeycomb material cells for further distribution of the fluid.

Claims (9)

1. A fluid-directing airfoil member for use in hot environments comprising, in combination, an outer skin defining the airfoil contour, the outer skin being of a porous material adapted for transpiration cooling by flow of coolant outwardly through the skin; an open-cell honeycomb structural material lining the outer skin and bonded to the outer skin, with the cells of the honeycomb open to the skin and extending inwardly from the skin to define cooling fluid passages from the interior of the airfoil element to the inner surface of the skin and providing a structural reinforcement for the skin resisting displacement of the skin; and means for conducting a cooling fluid through the interior of the airfoil member into the honeycomb material for flow through the said passages and skin.
2. A member as defined in claim 1 in which the last-recited means includes a rigid hollow strut extending spanwise of the blade bonded to the honeycomb material.
3. A member as defined in claim 1 in which the last-recited means is formed by passages extending spanwise of the blade cutting through the cell walls of the honeycomb material.
4. A member as defined in claim 1 in which the last-recited means includes means defining at least one passage extending spanwise of the blade and includes apertures through the cell walls of the honeycomb material for distribution of the cooling fluid from cell to cell.
5. A member as defined in claim 1 in which the last-recited means includes metering restrictions adapted to proportion the flow of cooling fluid to various areas of the outer skin in accordance with external pressure and cooling requirements at such various areas.
6. A hollow flow-directing airfoil member comprising, in combination, a wall of controlled porosity adapted for transpiration cooling effected by fluid flowing outward through the wall, the member being of airfoil cross section with a high-pressure face and a low-pressure face, a fluid distributing and metering layer bonded to the inner surface of the wall at both faces, and an internal strut adapted to support the wall against deflection and to supply a cooling fluid to the wall, the internal strut being a hollow structure extending spanwise of the airfoil and defining at least one cooling fluid passage extending spanwise of the airfoil, the said layer being bonded to the strut and being composed of a honeycomb material with cells extending from the strut to the interior surface of the wall, and fluid distributing apertures in the strut connecting the said duct to the said layer.
7. A member as definEd in claim 6 including also apertures between some of the honeycomb material cells for further distribution of the fluid.
8. A fluid-directing airfoil member for use in hot environments comprising, in combination, an outer skin defining the airfoil contour, the outer skin being of a porous material adapted for transpiration cooling; the skin defining an airfoil with a leading edge, a trailing edge, and high- and low-pressure faces extending from the leading edge to the trailing edge and enclosing the interior of the blade; a reinforcing and fluid-distributing structure within the airfoil comprising a structural honeycomb extending between, and bonded to the interior of, the inside of the skin of the faces, the honeycomb having open cells extending from face to face of the blade; passages within the honeycomb material extending spanwise of the airfoil being defined by voids in the honeycomb material, the passages communicating with the cells of the honeycomb material, so that a cooling fluid may be supplied through the passages and thence through the cells of the honeycomb to the interior of the outer skin.
9. A member as defined in claim 8 including also apertures between some of the honeycomb material cells for further distribution of the fluid.
US43838A 1970-06-05 1970-06-05 Cooled airfoil Expired - Lifetime US3644059A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US4383870A 1970-06-05 1970-06-05

Publications (1)

Publication Number Publication Date
US3644059A true US3644059A (en) 1972-02-22

Family

ID=21929152

Family Applications (1)

Application Number Title Priority Date Filing Date
US43838A Expired - Lifetime US3644059A (en) 1970-06-05 1970-06-05 Cooled airfoil

Country Status (1)

Country Link
US (1) US3644059A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3801218A (en) * 1971-08-26 1974-04-02 Rolls Royce Fluid flow blades
US3810711A (en) * 1972-09-22 1974-05-14 Gen Motors Corp Cooled turbine blade and its manufacture
US4022542A (en) * 1974-10-23 1977-05-10 Teledyne Industries, Inc. Turbine blade
US4040767A (en) * 1975-06-02 1977-08-09 United Technologies Corporation Coolable nozzle guide vane
US4118146A (en) * 1976-08-11 1978-10-03 United Technologies Corporation Coolable wall
US4257737A (en) * 1978-07-10 1981-03-24 United Technologies Corporation Cooled rotor blade
US4270883A (en) * 1977-04-20 1981-06-02 The Garrett Corporation Laminated airfoil
US4770608A (en) * 1985-12-23 1988-09-13 United Technologies Corporation Film cooled vanes and turbines
US5102299A (en) * 1986-11-10 1992-04-07 The United States Of America As Represented By The Secretary Of The Air Force Airfoil trailing edge cooling configuration
DE4041104C1 (en) * 1990-12-21 1992-06-04 Mtu Muenchen Gmbh
US5326224A (en) * 1991-03-01 1994-07-05 General Electric Company Cooling hole arrangements in jet engine components exposed to hot gas flow
US5545003A (en) * 1992-02-18 1996-08-13 Allison Engine Company, Inc Single-cast, high-temperature thin wall gas turbine component
US5810552A (en) * 1992-02-18 1998-09-22 Allison Engine Company, Inc. Single-cast, high-temperature, thin wall structures having a high thermal conductivity member connecting the walls and methods of making the same
US6554572B2 (en) 2001-05-17 2003-04-29 General Electric Company Gas turbine engine blade
EP1707745A2 (en) * 2000-09-05 2006-10-04 Siemens Aktiengesellschaft Rotor blade for a turbomachine and turbomachine
US20080226461A1 (en) * 2007-03-13 2008-09-18 Siemens Power Generation, Inc. Intensively cooled trailing edge of thin airfoils for turbine engines
US20100104446A1 (en) * 2008-10-28 2010-04-29 General Electric Company Fabricated hybrid turbine blade
US7866948B1 (en) * 2006-08-16 2011-01-11 Florida Turbine Technologies, Inc. Turbine airfoil with near-wall impingement and vortex cooling
US20110146075A1 (en) * 2009-12-18 2011-06-23 Brian Thomas Hazel Methods for making a turbine blade
US8047789B1 (en) * 2007-10-19 2011-11-01 Florida Turbine Technologies, Inc. Turbine airfoil
US20120063906A1 (en) * 2009-05-20 2012-03-15 Henrik Witt Fan Blade
WO2012092279A1 (en) * 2010-12-30 2012-07-05 Rolls-Royce North American Technologies Inc. Gas turbine engine and cooled flowpath component therefor
US20130108446A1 (en) * 2011-10-28 2013-05-02 General Electric Company Thermal plug for turbine bucket shank cavity and related method
CN112780355A (en) * 2021-02-25 2021-05-11 哈尔滨工业大学 Supersonic turbine blade's cooling film hole distribution structure that diverges
US11230928B1 (en) * 2020-07-22 2022-01-25 Raytheon Technologies Corporation Guide vane with truss structure and honeycomb
US20220162963A1 (en) * 2017-05-01 2022-05-26 General Electric Company Additively Manufactured Component Including an Impingement Structure
US20220170375A1 (en) * 2020-01-06 2022-06-02 Dalian University Of Technology Honeycomb-like helically cavity cooling structure of turbine blade
RU2810858C1 (en) * 2023-03-16 2023-12-28 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Method for cooling turbine guide blade and device implementing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2828106A (en) * 1955-05-31 1958-03-25 Wilson B Schramm Laminated internal finned air-cooled strut-supported turbine blade
US2851216A (en) * 1954-01-13 1958-09-09 Schwarzkopf Dev Co Device adapted for respiration cooling and process of making same
US3114961A (en) * 1959-03-20 1963-12-24 Power Jets Res & Dev Ltd Treatment of porous bodies
US3172621A (en) * 1963-07-10 1965-03-09 Gen Electric Airfoil
US3224194A (en) * 1963-06-26 1965-12-21 Curtiss Wright Corp Gas turbine engine
US3240468A (en) * 1964-12-28 1966-03-15 Curtiss Wright Corp Transpiration cooled blades for turbines, compressors, and the like

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2851216A (en) * 1954-01-13 1958-09-09 Schwarzkopf Dev Co Device adapted for respiration cooling and process of making same
US2828106A (en) * 1955-05-31 1958-03-25 Wilson B Schramm Laminated internal finned air-cooled strut-supported turbine blade
US3114961A (en) * 1959-03-20 1963-12-24 Power Jets Res & Dev Ltd Treatment of porous bodies
US3224194A (en) * 1963-06-26 1965-12-21 Curtiss Wright Corp Gas turbine engine
US3172621A (en) * 1963-07-10 1965-03-09 Gen Electric Airfoil
US3240468A (en) * 1964-12-28 1966-03-15 Curtiss Wright Corp Transpiration cooled blades for turbines, compressors, and the like

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3801218A (en) * 1971-08-26 1974-04-02 Rolls Royce Fluid flow blades
US3810711A (en) * 1972-09-22 1974-05-14 Gen Motors Corp Cooled turbine blade and its manufacture
US4022542A (en) * 1974-10-23 1977-05-10 Teledyne Industries, Inc. Turbine blade
US4040767A (en) * 1975-06-02 1977-08-09 United Technologies Corporation Coolable nozzle guide vane
US4118146A (en) * 1976-08-11 1978-10-03 United Technologies Corporation Coolable wall
US4270883A (en) * 1977-04-20 1981-06-02 The Garrett Corporation Laminated airfoil
US4257737A (en) * 1978-07-10 1981-03-24 United Technologies Corporation Cooled rotor blade
US4770608A (en) * 1985-12-23 1988-09-13 United Technologies Corporation Film cooled vanes and turbines
US5102299A (en) * 1986-11-10 1992-04-07 The United States Of America As Represented By The Secretary Of The Air Force Airfoil trailing edge cooling configuration
DE4041104C1 (en) * 1990-12-21 1992-06-04 Mtu Muenchen Gmbh
US5326224A (en) * 1991-03-01 1994-07-05 General Electric Company Cooling hole arrangements in jet engine components exposed to hot gas flow
US5545003A (en) * 1992-02-18 1996-08-13 Allison Engine Company, Inc Single-cast, high-temperature thin wall gas turbine component
US5641014A (en) * 1992-02-18 1997-06-24 Allison Engine Company Method and apparatus for producing cast structures
US5810552A (en) * 1992-02-18 1998-09-22 Allison Engine Company, Inc. Single-cast, high-temperature, thin wall structures having a high thermal conductivity member connecting the walls and methods of making the same
US5924483A (en) * 1992-02-18 1999-07-20 Allison Engine Company, Inc. Single-cast, high-temperature thin wall structures having a high conductivity member connecting the walls and methods of making the same
US6071363A (en) * 1992-02-18 2000-06-06 Allison Engine Company, Inc. Single-cast, high-temperature, thin wall structures and methods of making the same
US6244327B1 (en) 1992-02-18 2001-06-12 Allison Engine Company, Inc. Method of making single-cast, high-temperature thin wall structures having a high thermal conductivity member connecting the walls
US6255000B1 (en) 1992-02-18 2001-07-03 Allison Engine Company, Inc. Single-cast, high-temperature, thin wall structures
EP1707745A3 (en) * 2000-09-05 2006-10-18 Siemens Aktiengesellschaft Rotor blade for a turbomachine and turbomachine
EP1707745A2 (en) * 2000-09-05 2006-10-04 Siemens Aktiengesellschaft Rotor blade for a turbomachine and turbomachine
US6554572B2 (en) 2001-05-17 2003-04-29 General Electric Company Gas turbine engine blade
US7866948B1 (en) * 2006-08-16 2011-01-11 Florida Turbine Technologies, Inc. Turbine airfoil with near-wall impingement and vortex cooling
US20080226461A1 (en) * 2007-03-13 2008-09-18 Siemens Power Generation, Inc. Intensively cooled trailing edge of thin airfoils for turbine engines
US7722326B2 (en) 2007-03-13 2010-05-25 Siemens Energy, Inc. Intensively cooled trailing edge of thin airfoils for turbine engines
US8047789B1 (en) * 2007-10-19 2011-11-01 Florida Turbine Technologies, Inc. Turbine airfoil
US20100104446A1 (en) * 2008-10-28 2010-04-29 General Electric Company Fabricated hybrid turbine blade
US9869325B2 (en) * 2009-05-20 2018-01-16 W & S Management Gmbh & Co. Kg Fan blade
US20120063906A1 (en) * 2009-05-20 2012-03-15 Henrik Witt Fan Blade
US20110146075A1 (en) * 2009-12-18 2011-06-23 Brian Thomas Hazel Methods for making a turbine blade
US10060264B2 (en) 2010-12-30 2018-08-28 Rolls-Royce North American Technologies Inc. Gas turbine engine and cooled flowpath component therefor
WO2012092279A1 (en) * 2010-12-30 2012-07-05 Rolls-Royce North American Technologies Inc. Gas turbine engine and cooled flowpath component therefor
CN103089324A (en) * 2011-10-28 2013-05-08 通用电气公司 Thermal plug for turbine bucket shank cavity and related method
US9366142B2 (en) * 2011-10-28 2016-06-14 General Electric Company Thermal plug for turbine bucket shank cavity and related method
CN103089324B (en) * 2011-10-28 2016-08-31 通用电气公司 Turbomachine rotor disc and cooling means thereof
US20130108446A1 (en) * 2011-10-28 2013-05-02 General Electric Company Thermal plug for turbine bucket shank cavity and related method
US20220162963A1 (en) * 2017-05-01 2022-05-26 General Electric Company Additively Manufactured Component Including an Impingement Structure
US20220170375A1 (en) * 2020-01-06 2022-06-02 Dalian University Of Technology Honeycomb-like helically cavity cooling structure of turbine blade
US11230928B1 (en) * 2020-07-22 2022-01-25 Raytheon Technologies Corporation Guide vane with truss structure and honeycomb
US20220025768A1 (en) * 2020-07-22 2022-01-27 Raytheon Technologies Corporation Guide vane with truss structure and honeycomb
CN112780355A (en) * 2021-02-25 2021-05-11 哈尔滨工业大学 Supersonic turbine blade's cooling film hole distribution structure that diverges
RU2810858C1 (en) * 2023-03-16 2023-12-28 ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" Method for cooling turbine guide blade and device implementing method

Similar Documents

Publication Publication Date Title
US3644059A (en) Cooled airfoil
US3644060A (en) Cooled airfoil
US3560107A (en) Cooled airfoil
US3527544A (en) Cooled blade shroud
US3732031A (en) Cooled airfoil
US6471480B1 (en) Thin walled cooled hollow tip shroud
US3695778A (en) Turbine blade
US4278400A (en) Coolable rotor blade
JP2668207B2 (en) Aerof oil section of gas turbine engine turbine
US4203706A (en) Radial wafer airfoil construction
US5484258A (en) Turbine airfoil with convectively cooled double shell outer wall
US4775296A (en) Coolable airfoil for a rotary machine
US3240468A (en) Transpiration cooled blades for turbines, compressors, and the like
US7416391B2 (en) Bucket platform cooling circuit and method
US3635587A (en) Blade cooling liner
US3726604A (en) Cooled jet flap vane
US5496151A (en) Cooled turbine blade
US6129515A (en) Turbine airfoil suction aided film cooling means
GB1284538A (en) Blade for a fluid flow machine
US3647316A (en) Variable permeability and oxidation-resistant airfoil
JP3111183B2 (en) Turbine airfoil
US20060275119A1 (en) Vortex cooling for turbine blades
EP0501813A1 (en) Turbine airfoil with arrangement of multi-outlet film cooling holes
US3619082A (en) Turbine blade
GB1433519A (en) Turbomachine blades made of composite fibres