US3642610A - Two-stage hydrocracking-hydrotreating process to make lube oil - Google Patents

Two-stage hydrocracking-hydrotreating process to make lube oil Download PDF

Info

Publication number
US3642610A
US3642610A US855737A US3642610DA US3642610A US 3642610 A US3642610 A US 3642610A US 855737 A US855737 A US 855737A US 3642610D A US3642610D A US 3642610DA US 3642610 A US3642610 A US 3642610A
Authority
US
United States
Prior art keywords
catalyst
percent
nickel
oil
hydrocracking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US855737A
Inventor
Joseph M Divijak Jr
Maurice K Rausch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlantic Richfield Co
Original Assignee
Atlantic Richfield Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atlantic Richfield Co filed Critical Atlantic Richfield Co
Application granted granted Critical
Publication of US3642610A publication Critical patent/US3642610A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • C10G47/10Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used with catalysts deposited on a carrier
    • C10G47/12Inorganic carriers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/10Lubricating oil

Definitions

  • the catalyst composition used in the hydrocracking stage of the present invention can be prepared by adding the nickel, tungsten, molybdenum and boria components to the alumina by the various methods known to the art, for example by impregnation or precipitation and coprecipitation using suitable compounds of the metals and boron.
  • alumina particles containing boria or a material which upon heating yields boria can be mixed with aqueous ammonia solutions containing nickel and tungsten, and/or molybdenum, or other aqueous solutions of water-soluble compounds of nickel and tungsten and/or molybdenum, so that the metal components are absorbed on the base.
  • the solid catalyst employed in the hydrogenation operation is preferably a sulfur-resistant, nonprecious metal hydrogenation catalyst, such as those conventionally employed in the hydrogenation of heavy petroleum oils.
  • suitable catalytic ingredients are tin, vanadium, members of Group VIB in the periodic table, i.e., chromium, molybdenum and tungsten and metals of the iron group, i.e., iron, cobalt and nickel. These metals are present in minor, catalytically effective amounts, for instances, about 2 to 30 weight percent of the catalyst, and may be present in the elemental form or in combined form such as the oxides or sulfides, the sulfide form being preferred.
  • the hydrogenation operation provides additional aromatic saturation, color improvement and stability towards oxidation and corrosion. Additional color improvement can be provided by subjecting the effluent from the hydrogenation operation to treatment with ultraviolet light. The treatment was found to lighten considerably the color of the darker oils, a surprising result since such treatment usually produces the opposite effect.
  • the reactor effluent from the hydrogenation stage may be flashed to recover hydrogen for possible recycle and fed to a steam stripper to remove excess light hydrogenated components.
  • the oil can then be fractionated and the lube fractions dewaxed. This dewaxing step can be carried out, for example, by pressing or by solvent dewaxing using methyl ethyl ketone and toluene as the solvent system.
  • Dewaxing may be carried out prior to the initial hydrocracking step but it is preferred to conduct dewaxing after hydrogenation has been completed. No additional finishing is required. Yields of about 60 to volume percent, based on the raw stock, of V1 oils are not uncommon and finished base oils having viscosity indexes of and higher are obtained in economical yields, e. g., in the range of about 40 volume percent and higher.
  • Deasphalted petroleum residuum was fed to an isothermal reactor unit having a nickel-tungstate on boria-aluminia catalyst in the first or hydrocracking stage and nickel-molybdate on alumina catalyst in the second or hydrogenation stage.
  • the catalysts were macrosize and presulfided.
  • the feedstock employed had the following specifications:
  • Viscosity SUS/210F. 154.4 Pour, F. 1 20+ ASTM color Dark Carbon residue (Con.), wt.% 1.58 10% boiling point 1,000F.
  • Table I lists operating conditions and dewaxed oil inspections for nominal 100 and V1 operations.
  • a process of preparing a mineral hydrocarbon lubricating oil having a viscosity index of at least about 90 on a dewaxed basis which comprises:
  • step (b) Contacting hydrocarbon oil of lubricating viscosity from step (a) with molecular hydrogen under hydrogenation conditions including a temperature of about 550 to 825 F. in the presence of a solid hydrogenation catalyst at a hydrotreating severity such that not more than about 5 volume percent of the feed to step (b) boiling above 600 F. is cracked to material boiling below about 600 F. to produce oil of lubricating viscosity having a viscosity index of at least about 90 and at least about 20 viscosity index number greater than the hydrocarbon oil feedstock passing to step (a).
  • hydrocracking conditions include a hydrogen partial pressure of about 1,000 to 5,000 p.s.i.g., a weight hourly space velocity of about 0.3 to 3 WHSV and a molecular hydrogen to hydrocarbon feed ratio of about 1 ,000 to 5,000 standard cubic feet per barrel of feed.
  • hydrocracking catalyst contains about 2 to 10 weight percent nickel, about 10 to 20 percent of the member selected from the group consisting of tungsten and molybdenum on an oxide basis, and about 2 to 10 percent boria.
  • a process of preparing a mineral hydrocarbon lubricating oil having a viscosity index of at least about on a dewaxed basis which comprises:
  • a Contacting a mineral hydrocarbon oil feedstock of lubricating viscosity at 210 F., at least 90 weight percent of which boils above about l,000 F. and having a viscosity index of about 50 to 80, with molecular hydrogen under hydrocracking conditions including a temperature of about 750 to 850 F., a hydrogen partial pressureof about 1,500 to 3,000 p.s.i.g., a weight hourly space velocity of about 0.5 to 2 WHSV and a molecular hydrogen to hydrocarbon feed ratio of about 1,500 to 3,000 standard cubic feet per barrel of feed, in the presence of a catalyst containing about 2 to 10 weight percent nickel, about 10 to 20 percent tungsten on an oxide basis and about 2 to 10 percent boria on an active alumina support, the metals of the catalyst being present in the sulfide form; and Contacting hydrocarbon oil of lubricating viscosity from step (a) with molecular hydrogen under hydrogenation conditions, including a temperature of about 600 to 800 F.,
  • step (b) is fractionated to separate oil of lubricating viscosity and the lubricating oil fraction is dewaxed.
  • step (b) is fractionated to separate oil of lubricating viscosity and the lubricating oil fraction is dewaxed.

Abstract

A high-viscosity-index mineral lubricating oil is produced by treating, for instance, a deasphalted residuum or a raw, heavy lubricating distillate oil in a two-stage process. The feedstock is first catalytically hydrocracked, then catalytically hydrogenated and can be fractionated and dewaxed to produce a finished product. Catalysts such as nickel-tungstate on boriaalumina and nickel-molybdate on alumina are employed in the two stages, respectively. The catalysts are preferably used in sulfided form.

Description

United States Patent Divijak, Jr. et al.
[ Feb. 15,1972
[22] Filed:
[54] TWO-STAGE HYDROCRACKING- HYDROTREATING PROCESS TO MAKE LUBE OIL [72] inventors: Joseph M. Diviiak, Jr., Grifiith, lnd.; Maurice K. Rausch, South Holland, [11.
Atlantic Richfield Company, New York, N.Y.
Sept. 5, 1969 [21] Appl.No.: 855,737
[73] Assignee:
52] U.S.Cl ..260/s8,208/57,2o8/s8, 208/87, 208/144, 252/432 511 Int. Cl. ..Cl0g23/02,Cl0g13/06,Cl0g 37/00 [58] FieldoiSearch ..208/l8,58,59,111,143,144, 208/87 [56] References Cited UNITED STATES PATENTS 2,779,713 1/1957 Coleetal ..208/57 2,917,448 12/1959 Bewther etal ..208/57 3,506,565 4/1970 White eta]. ....208/58 3,444,071 5/1969 Van ZijllLanghout ..208/59 Primary Examiner -Delbert E. Gantz Assistant Examiner-G. E. Schmitkons AttorneyMcLean, Morton & Boustead [57] ABSTRACT 12-Claims, No Drawings tion of high quality mineral lubricating oils from feedstocks that are not normally used in present commercial processes to make such products. In addition to mineral lube oil distillates and deasphalted residuums of relatively high quality, stocks containing high percentages of sulfur, nitrogen and carbon residue, such as sour oils and more highly contaminated deasphalted oils, may be employed as feeds. Moreover, a wide range of products is possible. Lubricating oils with viscosity indexes up to about 150 or more (ASTM Designation: D-2270) with partial or even complete aromatic saturation are possible. The present process is also more economical than present methods for the production of high viscosity index oils involv- ,ing solvent treatment, dewaxing and finishing. The invention produces such oils by hydrocracking the mineral oil feed while in contact with a catalyst containing nickel, and tungsten or molybdenum along with boria on an alumina support, followed by hydrogenation of resulting hydrocracked materials of lubricating viscosity over a hydrogenation catalyst whereby a high viscosity index oil is produced.
Many of the present day refining techniques employed to produce high quality mineral lubricating oils having high viscosity indexes possess certain undesirable features. For example, the production of finished oils having a viscosity index of 95 by known methods of fractionation and solvent extraction of vacuum distillates or deasphalted residuums followed by dewaxing and finishing with acid, clay or hydrogen, normally results in yields of about 50 to 65 volume percent. The present invention, however, can produce 95 VI oils in yields of about 60 to 80 volume percent on a dewaxed basis and yields of about 40 volume percent or more on a dewaxed basis of oils having viscosity indexes of about 120 and higher.
The mineral lubricating oils treated by the process of the present invention are of lubricating viscosity at 210 F. and are principally stocks having at least about 90 weight percent boiling above about 600 F.; preferably the feed is a residuum at least about 90 weight percent of which boils above about 1,000 F. The feeds are usually oils of at least about 50 V1, e.g., about 50 to 80, or even about 70 to 80 V1, and can be derived from paraffinic or mixed base crude oils. The total or full range oil of lubricating viscosity obtained by the method of thepresent invention has a viscosity index in the range of at least about 90, say up to about 150 or more, with the increase in the viscosity index of the product being at least about 20, preferably at least about 30, over that of the feed. Both the initial hydrocarbonfeedstock and the product of lubricating viscosity from the hydrogenation reaction boil over a considerable temperature range, e.g., overa range of at least about 100 F., often at least about 200 F. The hydrocarbon feedstock preferably has a specific dispersion (ASTM Designation: D-l218) in the range of about 105-165 while the specific dispersion of the product of lubricating viscosity is preferably in the range of about 100-1 10. The method of the present invention is particularly suitable for treating feedstocks having a specific dispersion in the range of about 135-165, such stocks being the highly contaminated stocks,
containing larger amounts of aromatics and frequently having been subjected only to fractionation and deasphalting. Thus the present method can utilize these economically cheaper feedstocks to produce high quality lubricating oils in high yields.
Hydrocracking of the feedstock which includes ring opening and usually desulfurization and denitrogenation, is carried out in contact with a catalyst containing nickel and one or both of molybdenum or tungsten supported, along with boria, on a catalytically active alumina base. The metals of the catalyst may be present in the form of free metals or in combined form such as the oxides and sulfides, the sulfides being the preferred form. Examples of such mixtures or compounds are nickel molybdate or tungstate (or thiomolybdate or thiotungstate). These catalytic ingredients, along with boria, are employed while disposed on a catalytically-active alumina.
The catalyst is composed of minor, catalytically effective amounts of nickel, tungsten and/or molybdenum and boria on the alumina base. Nickel may often comprise about l-40 weight percent of the catalyst, preferably about 2-10 percent, with the total amount of tungsten and molybdenum being about 5-30 weight percent, preferably about 10-20 percent, of the catalyst on a metal oxide basis. Preferably the boria is present in an amount of about 2 to 10 weight percent, based on the total weight of the catalyst while the alumina is the major component of the catalyst, e.g., the essential balance of the composition.
The catalyst composition used in the hydrocracking stage of the present invention can be prepared by adding the nickel, tungsten, molybdenum and boria components to the alumina by the various methods known to the art, for example by impregnation or precipitation and coprecipitation using suitable compounds of the metals and boron. For example, alumina particles containing boria or a material which upon heating yields boria, can be mixed with aqueous ammonia solutions containing nickel and tungsten, and/or molybdenum, or other aqueous solutions of water-soluble compounds of nickel and tungsten and/or molybdenum, so that the metal components are absorbed on the base. Alternatively, the promoting materials can be precipitated on the boria-containing alumina base through suitable reaction of an aqueous slurry of the support containing water-insoluble salts of the promoting metals. The boria-containing particles can be formed into macrosize either before or after being mixed with the nickel and tungsten and/or molybdenum components. The catalyst can be dried and calcined, e.g., at temperatures of about 800 to 1,200 F. or somewhat more. Prior to use the catalyst is preferably sulfided at elevated temperature.
The hydrocracking step is carried out under conditions designed to selectively crack the feed so that opening of aromatic and naphthenic rings is favored, rather than the splitting of chains into lower molecular weight compounds. Such conditions include a temperature of about 725to 875 F., preferably about 750to 850 F. The other reaction conditions often include a hydrogen partial pressure of about 1,000 to 5,000 p.s.i.g., preferably about 1,500 to 3,000 p.s.i.g. In the production of VI oils by the method of this invention, cracking may take place to the extent that from about 5 to 10 percent by volume of the product of the hydrocracking stage is material boiling below about 600 F. In the production of VI oils, about 30 to 40 percent by volume of the product of the hydrocracking stage may be comprised of such materials. The amount of free hydrogen employed during hydrocracking can be generally about 1,000 to 5,000 standard cubic feet per barrel of hydrocarbon feed,,preferably about 1,500 to 3,000 standard cubic feet per barrel. The weight hourly space velocity (WHSV), weight units of feed in'-. troduced into the reaction zone per weight unit of catalyst per hour, will often be in the range of about 0.3 to 3, preferably about 0.5 to 2. The reactor effluent from the first or hydrocracking stage can be flashed to prevent hydrogen sul tide and ammonia from going to the hydrogenation stage, but this is not necessary, especially if nonprecious metal hydrogenation catalysts are used in the hydrogenation stage. Also, if desired any light hydrocarbons can be removed from the feed to the hydrogenation stage.
Lubricating oil from the hydrocracking stage is subjected to a hydrogenation operation which involves contacting lubricating oil, preferably the essentially full range lube oil, from the hydrocracking stage in the presence of hydrogen with a solid hydrogenation catalyst at a temperature of about 550to 825 F., preferably about 600 to 800 F. It is preferred that the temperature employed in the second stage he at least about 50 F. less than the temperature of the first stage for optimum decolorization and saturation. The other reactionconditions often include pressures of about 1,000 to 5,000 p.s.i.g., preferably about 1,500 to 3,000 p.s.i.g.; space velocities (WHSV) of about 0.3 to 5, preferably about 0.5 to 3; and
molecular hydrogen to feed ratios of about500 to 3,500 standard cubic feet of hydrogen per barrel of hydrocarbon feed, preferably about 1,500 to 2,500 standard cubic feet of hydrogen per barrel of hydrocarbon feed.
The solid catalyst employed in the hydrogenation operation is preferably a sulfur-resistant, nonprecious metal hydrogenation catalyst, such as those conventionally employed in the hydrogenation of heavy petroleum oils. Examples of suitable catalytic ingredients are tin, vanadium, members of Group VIB in the periodic table, i.e., chromium, molybdenum and tungsten and metals of the iron group, i.e., iron, cobalt and nickel. These metals are present in minor, catalytically effective amounts, for instances, about 2 to 30 weight percent of the catalyst, and may be present in the elemental form or in combined form such as the oxides or sulfides, the sulfide form being preferred. Mixtures of these materials or compounds of two or more of the oxides or sulfides can be employed, for example, mixtures or compounds of the iron group metal oxides or sulfides with the oxides or sulfides of Group VIB constitute very satisfactory catalysts. Examples of such mixtures or compounds are nickel molybdate, tungstate or chromate (or thiomolybdate, thio-tungstate or thiochromate) or mixtures of nickel or cobalt oxides with molybdenum, tungsten or chromium oxides. As the art is aware and as the specific examples below illustrate, these catalytic ingredients are generally employed while disposed upon a suitable carrier of the solid oxide refractory type, e.g., a predominantly calcined or activated alumina. To avoid undue cracking the catalyst base and other components have little, if any, hydrocarbon cracking activity. Usually not more than about 5 volume percent, preferably not more than about 2 volume percent, of the feed is cracked in the second or hydrogenation stage to produce materials boiling below about 600 F. Commonly employed catalysts have about 1 to weight percent of an iron group metal and about 5 to 25 percent ofa Group VIB metal (calculated as the oxide). Advantageously, the catalyst is nickel molybdate or cobalt molybdate, supported on alumina. Such preferred catalysts can be prepared by the method described in US. Pat. No. 2,938,002.
Other suitable hydrogenation catalysts which can be employed in the method of this invention include the platinum group metal types. Such catalysts often have a minor catalytically effective amount, say about 0.05 to 2 weight percent, preferably about 0.1 to 1 weight percent of one or more platinum group metals carried on a solid support, especially an active alumina. Suitable platinum group metals include platinum, rhodium and ruthenium with platinum being preferred.
The catalysts employed in both the hydrocracking and hydrogenation stages of the method of this invention are preferably disposed in the reaction zones as fixed beds. Such fixed bed catalysts are usually particles of macrosize, e.g., about one sixty-fourth to one-fourth inch, preferably about one-sixteenth to one-eighth inch, in diameter, and, about one sixty-fourth to 1 inch or more, preferably about one-eighth to one-half inch in length. These catalysts can be made by extrusion, tableting or other suitable procedures.
The hydrogenation operation provides additional aromatic saturation, color improvement and stability towards oxidation and corrosion. Additional color improvement can be provided by subjecting the effluent from the hydrogenation operation to treatment with ultraviolet light. The treatment was found to lighten considerably the color of the darker oils, a surprising result since such treatment usually produces the opposite effect. The reactor effluent from the hydrogenation stage may be flashed to recover hydrogen for possible recycle and fed to a steam stripper to remove excess light hydrogenated components. The oil can then be fractionated and the lube fractions dewaxed. This dewaxing step can be carried out, for example, by pressing or by solvent dewaxing using methyl ethyl ketone and toluene as the solvent system. Dewaxing may be carried out prior to the initial hydrocracking step but it is preferred to conduct dewaxing after hydrogenation has been completed. No additional finishing is required. Yields of about 60 to volume percent, based on the raw stock, of V1 oils are not uncommon and finished base oils having viscosity indexes of and higher are obtained in economical yields, e. g., in the range of about 40 volume percent and higher.
The following example is illustrative of the method of this invention:
Deasphalted petroleum residuum was fed to an isothermal reactor unit having a nickel-tungstate on boria-aluminia catalyst in the first or hydrocracking stage and nickel-molybdate on alumina catalyst in the second or hydrogenation stage. The catalysts were macrosize and presulfided. The feedstock employed had the following specifications:
Vl (D-2270) (dewaxed basis) 76 Gravity, AP1 23.1
' Flash, F. 555
Viscosity, SUS/210F. 154.4 Pour, F. 1 20+ ASTM color Dark Carbon residue (Con.), wt.% 1.58 10% boiling point 1,000F.
Table I lists operating conditions and dewaxed oil inspections for nominal 100 and V1 operations.
The catalysts employed in the successive stages analyzed as follows:
TABLE 11 NiW on NiMo on Boria-Alumina Alumina Nickel, wt.% 5.35 2.30 Tungsten Oxide, wt.% 12.15 Molybdenum Oxide, wt.% 15.60 Silicon Dioxide, wt.% 0.29 Boria, wt.% 5.06 Volatile matter at 1,200 F. 3.95 (at 1,000 F.) 0.86 Apparent Density, g./rn1. 0.75 0.765
It is claimed:
1. A process of preparing a mineral hydrocarbon lubricating oil having a viscosity index of at least about 90 on a dewaxed basis which comprises:
a. Contacting a mineral hydrocarbon oil feedstock of lubricating viscosity at 210 F., at least about 90 weight percent of which boils above about 600 F. and having a viscosity index of about 50 to 80, with molecular hydrogen under hydrocracking conditions including a temperature of about 725 to 875 F., in the presence of a catalyst having minor, catalytically effective amounts of each of nickel, a member selected from the group consisting of tungsten and molybdenum, and boria on an active alumina support; and
b. Contacting hydrocarbon oil of lubricating viscosity from step (a) with molecular hydrogen under hydrogenation conditions including a temperature of about 550 to 825 F. in the presence of a solid hydrogenation catalyst at a hydrotreating severity such that not more than about 5 volume percent of the feed to step (b) boiling above 600 F. is cracked to material boiling below about 600 F. to produce oil of lubricating viscosity having a viscosity index of at least about 90 and at least about 20 viscosity index number greater than the hydrocarbon oil feedstock passing to step (a).
2. The process of claim 1 wherein said hydrocracking conditions include a hydrogen partial pressure of about 1,000 to 5,000 p.s.i.g., a weight hourly space velocity of about 0.3 to 3 WHSV and a molecular hydrogen to hydrocarbon feed ratio of about 1 ,000 to 5,000 standard cubic feet per barrel of feed.
3. The process of claim 2 wherein the catalysts are in sulfide form.
4. The process of claim 3 wherein the hydrocracking catalyst contains about 2 to 10 weight percent nickel, about 10 to 20 percent of the member selected from the group consisting of tungsten and molybdenum on an oxide basis, and about 2 to 10 percent boria.
5. The process of claim 4 wherein the selected member of the catalyst employed in the hydrocracking stage is tungsten.
6. The process of claim 2 wherein said hydrogenation conditions include a temperature of about 550to 825 F., a hydrogen partial pressure of about 1,000 to 5,000 p.s.i.g., a weight hourly space velocity of about 0.3 to 5 WHSV and a molecular hydrogen to hydrocarbon feed ratio of about 500 to 3,500 standard cubic feet per barrel of feed.
7. The process of claim 6 wherein the catalyst employed in the hydrogenation stage contains minor, catalytically-effective amounts of a member selected from the group consisting of nickel and cobalt, and molybdenum on alumina.
8. The process of claim 7 wherein the catalyst is in sulfide form.
9. The process of claim 8 wherein the hydrocracking catalyst contains about 2 to l weight percent nickel, about 10 to 20 percent of the member selected from the group consisting of tungsten and molybdenum on an oxide basis, and about 2 to 10 percent boria.
10. A process of preparing a mineral hydrocarbon lubricating oil having a viscosity index of at least about on a dewaxed basis which comprises:
a. Contacting a mineral hydrocarbon oil feedstock of lubricating viscosity at 210 F., at least 90 weight percent of which boils above about l,000 F. and having a viscosity index of about 50 to 80, with molecular hydrogen under hydrocracking conditions including a temperature of about 750 to 850 F., a hydrogen partial pressureof about 1,500 to 3,000 p.s.i.g., a weight hourly space velocity of about 0.5 to 2 WHSV and a molecular hydrogen to hydrocarbon feed ratio of about 1,500 to 3,000 standard cubic feet per barrel of feed, in the presence of a catalyst containing about 2 to 10 weight percent nickel, about 10 to 20 percent tungsten on an oxide basis and about 2 to 10 percent boria on an active alumina support, the metals of the catalyst being present in the sulfide form; and Contacting hydrocarbon oil of lubricating viscosity from step (a) with molecular hydrogen under hydrogenation conditions, including a temperature of about 600 to 800 F., a hydrogen partial pressure of about 1,500 to 3,000 p.s.i.g., a weight hourly space velocity of about 0.5 to 3 WHSV and a molecular hydrogen to hydrocarbon feed ratio of about 1,500 to 2,500 standard cubic feet per barrel of feed in the presence of a solid hydrogenation catalyst containing minor, catalytically effective amounts of a member selected from the group consisting of nickel and cobalt, and molybdenum on alumina, the metals of the catalyst being present in the sulfide form, to produce oil of lubricating viscosity having a viscosity index of at least about 90 and at least about 30 viscosity index numbers greater than the hydrocarbon oil feedstock passing to step (a).
11. The process of claim 1 wherein the product from step (b) is fractionated to separate oil of lubricating viscosity and the lubricating oil fraction is dewaxed.
12. The process of claim 10 wherein the product from step (b) is fractionated to separate oil of lubricating viscosity and the lubricating oil fraction is dewaxed.

Claims (11)

  1. 2. The process of claim 1 wherein said hydrocracking conditions include a hydrogen partial pressure of about 1,000 to 5,000 p.s.i.g., a weight hOurly space velocity of about 0.3 to 3 WHSV and a molecular hydrogen to hydrocarbon feed ratio of about 1,000 to 5,000 standard cubic feet per barrel of feed.
  2. 3. The process of claim 2 wherein the catalysts are in sulfide form.
  3. 4. The process of claim 3 wherein the hydrocracking catalyst contains about 2 to 10 weight percent nickel, about 10 to 20 percent of the member selected from the group consisting of tungsten and molybdenum on an oxide basis, and about 2 to 10 percent boria.
  4. 5. The process of claim 4 wherein the selected member of the catalyst employed in the hydrocracking stage is tungsten.
  5. 6. The process of claim 2 wherein said hydrogenation conditions include a temperature of about 550*to 825* F., a hydrogen partial pressure of about 1,000 to 5,000 p.s.i.g., a weight hourly space velocity of about 0.3 to 5 WHSV and a molecular hydrogen to hydrocarbon feed ratio of about 500 to 3,500 standard cubic feet per barrel of feed.
  6. 7. The process of claim 6 wherein the catalyst employed in the hydrogenation stage contains minor, catalytically-effective amounts of a member selected from the group consisting of nickel and cobalt, and molybdenum on alumina.
  7. 8. The process of claim 7 wherein the catalyst is in sulfide form.
  8. 9. The process of claim 8 wherein the hydrocracking catalyst contains about 2 to 10 weight percent nickel, about 10 to 20 percent of the member selected from the group consisting of tungsten and molybdenum on an oxide basis, and about 2 to 10 percent boria.
  9. 10. A process of preparing a mineral hydrocarbon lubricating oil having a viscosity index of at least about 90 on a dewaxed basis which comprises: a. Contacting a mineral hydrocarbon oil feedstock of lubricating viscosity at 210* F., at least 90 weight percent of which boils above about 1,000* F. and having a viscosity index of about 50 to 80, with molecular hydrogen under hydrocracking conditions including a temperature of about 750* to 850* F., a hydrogen partial pressure of about 1,500 to 3,000 p.s.i.g., a weight hourly space velocity of about 0.5 to 2 WHSV and a molecular hydrogen to hydrocarbon feed ratio of about 1,500 to 3,000 standard cubic feet per barrel of feed, in the presence of a catalyst containing about 2 to 10 weight percent nickel, about 10 to 20 percent tungsten on an oxide basis and about 2 to 10 percent boria on an active alumina support, the metals of the catalyst being present in the sulfide form; and b. Contacting hydrocarbon oil of lubricating viscosity from step (a) with molecular hydrogen under hydrogenation conditions, including a temperature of about 600* to 800* F., a hydrogen partial pressure of about 1,500 to 3,000 p.s.i.g., a weight hourly space velocity of about 0.5 to 3 WHSV and a molecular hydrogen to hydrocarbon feed ratio of about 1,500 to 2,500 standard cubic feet per barrel of feed in the presence of a solid hydrogenation catalyst containing minor, catalytically effective amounts of a member selected from the group consisting of nickel and cobalt, and molybdenum on alumina, the metals of the catalyst being present in the sulfide form, to produce oil of lubricating viscosity having a viscosity index of at least about 90 and at least about 30 viscosity index numbers greater than the hydrocarbon oil feedstock passing to step (a).
  10. 11. The process of claim 1 wherein the product from step (b) is fractionated to separate oil of lubricating viscosity and the lubricating oil fraction is dewaxed.
  11. 12. The process of claim 10 wherein the product from step (b) is fractionated to separate oil of lubricating viscosity and the lubricating oil fraction is dewaxed.
US855737A 1969-09-05 1969-09-05 Two-stage hydrocracking-hydrotreating process to make lube oil Expired - Lifetime US3642610A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US85573769A 1969-09-05 1969-09-05

Publications (1)

Publication Number Publication Date
US3642610A true US3642610A (en) 1972-02-15

Family

ID=25321960

Family Applications (1)

Application Number Title Priority Date Filing Date
US855737A Expired - Lifetime US3642610A (en) 1969-09-05 1969-09-05 Two-stage hydrocracking-hydrotreating process to make lube oil

Country Status (9)

Country Link
US (1) US3642610A (en)
JP (1) JPS5035925B1 (en)
BE (1) BE754805A (en)
BR (1) BR7018882D0 (en)
CA (1) CA1016485A (en)
DE (1) DE2043849A1 (en)
FR (1) FR2060411B1 (en)
GB (1) GB1280923A (en)
NL (1) NL7011761A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870622A (en) * 1971-09-09 1975-03-11 Texaco Inc Hydrogenation of a hydrocracked lubricating oil
US3993557A (en) * 1974-03-27 1976-11-23 Pine Lloyd A Hydrocarbon conversion process employing boria-alumina compositions
US4082866A (en) * 1975-07-28 1978-04-04 Rte Corporation Method of use and electrical equipment utilizing insulating oil consisting of a saturated hydrocarbon oil
US4196408A (en) * 1974-01-14 1980-04-01 Rte Corporation High temperature transformer assembly
US4234434A (en) * 1979-02-14 1980-11-18 Atlantic Richfield Company Stabilization of hydrocracked oils with certain nitrogen-containing aromatic components
US4238316A (en) * 1978-07-06 1980-12-09 Atlantic Richfield Company Two-stage catalytic process to produce lubricating oils
US4263127A (en) * 1980-01-07 1981-04-21 Atlantic Richfield Company White oil process
US4264461A (en) * 1978-11-24 1981-04-28 Atlantic Richfield Company Stabilization of hydrocracked oils with aliphatic amine components
US4294687A (en) * 1979-12-26 1981-10-13 Atlantic Richfield Company Lubricating oil process
US4306985A (en) * 1979-02-14 1981-12-22 Atlantic Richfield Company Stabilization of hydrocracked oils with certain nitrogen containing aromatic components and phenolic components
US4325804A (en) * 1980-11-17 1982-04-20 Atlantic Richfield Company Process for producing lubricating oils and white oils
US4627908A (en) * 1985-10-24 1986-12-09 Chevron Research Company Process for stabilizing lube base stocks derived from bright stock
US4699707A (en) * 1985-09-25 1987-10-13 Union Oil Company Of California Process for producing lubrication oil of high viscosity index from shale oils
US4744884A (en) * 1985-09-25 1988-05-17 Union Oil Company Of California Process for producing lubrication oil of high viscosity index
US5026472A (en) * 1989-12-29 1991-06-25 Uop Hydrocracking process with integrated distillate product hydrogenation reactor
US5122257A (en) * 1986-12-10 1992-06-16 Shell Internationale Research Maatschappij B.V. Process for the manufacture of kerosene and/or gas oils
US20140073826A1 (en) * 2012-09-13 2014-03-13 Chevron U.S.A. Inc. Base oil upgrading by co-feeding a ketone or beta-keto-ester feedstock
US9803148B2 (en) 2011-07-29 2017-10-31 Saudi Arabian Oil Company Hydrocracking process with interstage steam stripping
US10882030B2 (en) * 2017-08-25 2021-01-05 Uop Llc Crystalline transition metal tungstate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788972A (en) * 1971-11-22 1974-01-29 Exxon Research Engineering Co Process for the manufacture of lubricating oils by hydrocracking
FR2487220A1 (en) * 1980-07-23 1982-01-29 Shell France Catalysts for lubricating oil prodn. from heavy oils - contg. boria, ferrierite and catalytic metals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2779713A (en) * 1955-10-10 1957-01-29 Texas Co Process for improving lubricating oils by hydro-refining in a first stage and then hydrofinishing under milder conditions
US2917448A (en) * 1956-11-15 1959-12-15 Gulf Research Development Co Hydrogenation and distillation of lubricating oils
US3444071A (en) * 1965-03-31 1969-05-13 Shell Oil Co Process for the hydrogenative cracking of a hydrocarbon oil to produce lubricating oil
US3506565A (en) * 1968-07-31 1970-04-14 Chevron Res Process for the production of high viscosity index lubricating oils

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2779713A (en) * 1955-10-10 1957-01-29 Texas Co Process for improving lubricating oils by hydro-refining in a first stage and then hydrofinishing under milder conditions
US2917448A (en) * 1956-11-15 1959-12-15 Gulf Research Development Co Hydrogenation and distillation of lubricating oils
US3444071A (en) * 1965-03-31 1969-05-13 Shell Oil Co Process for the hydrogenative cracking of a hydrocarbon oil to produce lubricating oil
US3506565A (en) * 1968-07-31 1970-04-14 Chevron Res Process for the production of high viscosity index lubricating oils

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3870622A (en) * 1971-09-09 1975-03-11 Texaco Inc Hydrogenation of a hydrocracked lubricating oil
US4196408A (en) * 1974-01-14 1980-04-01 Rte Corporation High temperature transformer assembly
US3993557A (en) * 1974-03-27 1976-11-23 Pine Lloyd A Hydrocarbon conversion process employing boria-alumina compositions
US4082866A (en) * 1975-07-28 1978-04-04 Rte Corporation Method of use and electrical equipment utilizing insulating oil consisting of a saturated hydrocarbon oil
US4238316A (en) * 1978-07-06 1980-12-09 Atlantic Richfield Company Two-stage catalytic process to produce lubricating oils
US4264461A (en) * 1978-11-24 1981-04-28 Atlantic Richfield Company Stabilization of hydrocracked oils with aliphatic amine components
US4234434A (en) * 1979-02-14 1980-11-18 Atlantic Richfield Company Stabilization of hydrocracked oils with certain nitrogen-containing aromatic components
US4306985A (en) * 1979-02-14 1981-12-22 Atlantic Richfield Company Stabilization of hydrocracked oils with certain nitrogen containing aromatic components and phenolic components
US4294687A (en) * 1979-12-26 1981-10-13 Atlantic Richfield Company Lubricating oil process
US4263127A (en) * 1980-01-07 1981-04-21 Atlantic Richfield Company White oil process
US4325804A (en) * 1980-11-17 1982-04-20 Atlantic Richfield Company Process for producing lubricating oils and white oils
US4699707A (en) * 1985-09-25 1987-10-13 Union Oil Company Of California Process for producing lubrication oil of high viscosity index from shale oils
US4744884A (en) * 1985-09-25 1988-05-17 Union Oil Company Of California Process for producing lubrication oil of high viscosity index
US4627908A (en) * 1985-10-24 1986-12-09 Chevron Research Company Process for stabilizing lube base stocks derived from bright stock
US5122257A (en) * 1986-12-10 1992-06-16 Shell Internationale Research Maatschappij B.V. Process for the manufacture of kerosene and/or gas oils
US5026472A (en) * 1989-12-29 1991-06-25 Uop Hydrocracking process with integrated distillate product hydrogenation reactor
US9803148B2 (en) 2011-07-29 2017-10-31 Saudi Arabian Oil Company Hydrocracking process with interstage steam stripping
US20140073826A1 (en) * 2012-09-13 2014-03-13 Chevron U.S.A. Inc. Base oil upgrading by co-feeding a ketone or beta-keto-ester feedstock
US8927796B2 (en) * 2012-09-13 2015-01-06 Chevron U.S.A. Inc. Base oil upgrading by co-feeding a ketone or beta-keto-ester feedstock
US20150087872A1 (en) * 2012-09-13 2015-03-26 Chevron U.S.A. Inc. Base Oil Upgrading by Co-Feeding a Ketone or Beta-Keto-Ester Feedstock
US9115327B2 (en) * 2012-09-13 2015-08-25 Chevron U.S.A. Inc. Base oil upgrading by co-feeding a ketone or beta-keto-ester feedstock
US10882030B2 (en) * 2017-08-25 2021-01-05 Uop Llc Crystalline transition metal tungstate

Also Published As

Publication number Publication date
CA1016485A (en) 1977-08-30
FR2060411A1 (en) 1971-06-18
BR7018882D0 (en) 1973-02-27
DE2043849A1 (en) 1971-03-11
BE754805A (en) 1971-02-15
NL7011761A (en) 1971-03-09
FR2060411B1 (en) 1973-11-23
JPS5035925B1 (en) 1975-11-20
GB1280923A (en) 1972-07-12

Similar Documents

Publication Publication Date Title
US3642610A (en) Two-stage hydrocracking-hydrotreating process to make lube oil
US3459656A (en) Making a white oil by two stages of catalytic hydrogenation
US3852207A (en) Production of stable lubricating oils by sequential hydrocracking and hydrogenation
US2917448A (en) Hydrogenation and distillation of lubricating oils
US4622129A (en) Process for the manufacture of lubricating base oils
US4306964A (en) Multi-stage process for demetalation and desulfurization of petroleum oils
US3732154A (en) Catalytic hydrofinishing of lube oil product of solvent extraction of petroleum distillate
CA1196879A (en) Hydrocracking process
US3392112A (en) Two stage process for sulfur and aromatic removal
US3732155A (en) Two-stage hydrodesulfurization process with hydrogen addition in the first stage
US4294687A (en) Lubricating oil process
US3962071A (en) Process for producing lubricating oils
US3494854A (en) Two-stage catalytic hydrogen processing of a lube oil
EP0215496B1 (en) Process for the manufacture of lubricating base oils
US3666657A (en) Oil stabilizing sequential hydrocracking and hydrogenation treatment
US3053760A (en) Preparing bright stocks by hydrogenation
US3308055A (en) Hydrocracking process producing lubricating oil
US3915841A (en) Process for hydrodesulfurizing and hydrotreating lubricating oils from sulfur-containing stock
US3340181A (en) Two-stage hydrotreatment for white oil manufacture
US3594307A (en) Production of high quality jet fuels by two-stage hydrogenation
EP0400742B1 (en) Process for the manufacture of lubricating base oils
US3941680A (en) Lube oil hydrotreating process
CA1334194C (en) Hydrotreating catalyst and process
US3012963A (en) Hydrogenation of lubricating oils to remove sulfur and saturate aromatics
US3763033A (en) Lube oil hydrotreating process