US3637609A - Preparation of sodium polymaleate - Google Patents

Preparation of sodium polymaleate Download PDF

Info

Publication number
US3637609A
US3637609A US42542A US3637609DA US3637609A US 3637609 A US3637609 A US 3637609A US 42542 A US42542 A US 42542A US 3637609D A US3637609D A US 3637609DA US 3637609 A US3637609 A US 3637609A
Authority
US
United States
Prior art keywords
poly
sodium
acid
solution
slurry
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US42542A
Inventor
John H Blumbergs
Joseph H Finley
John J Rizzo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FMC Corp
Original Assignee
FMC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FMC Corp filed Critical FMC Corp
Application granted granted Critical
Publication of US3637609A publication Critical patent/US3637609A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3761(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in solid compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment

Definitions

  • the sodium salt of poly(maleic acid), useful as a detergent builder is prepared by hydrolyzing poly(maleic anhydride) with water at 60 to 80 C., and simultaneously adding the aqueous solution and a source of sodium oxide into a heel of water at pH 9.2 to 10.6, maintaining this pH throughout the addition, then bleaching the slurry, and recovering the salt.
  • the commonly used detergent compositions include soaps and synthetic detergents, mixed with compounds known as builders, which act both to improve the detergent power of the primary detergents, and to reduce the cost of the over-all compositions.
  • the inorganic polyphosphates such as sodium and potassium tripolyphosphate, have been almost universally used as the bulk of the builder constituents in such compositions.
  • polyphosphates such as sodium and potassium tripolyphosphate
  • Any such detergent builder must, of course, have optimum economics, and should not produce different environmental hazards than do the phosphates.
  • Nitrilotriacetic acid which is currently being used commercially as a substitute for phosphates, is both more expensive and potentially dangerous, in that it can keep quantities of heavy metals in solution in water.
  • Other available builders are either much more costly, or have other serious drawbacks.
  • a potentially interesting group of possible detergent builders comprises the alkali metal salts of poly(carboxylic acid)s as described in Diehl U.S. Pat. 3,308,067, issued Mar. 7, 1967.
  • This patent describes the use, as builders, of the Water-soluble salts of poly(c-arboxylic acid)s, the simplest and least expensive of which are the sodium salts of various poly(maleic acid)s.
  • the salts of poly(maleic acid) are made by homopolymerizing maleic anhydride, hydrolyzing the poly(maleic anhydride) to poly(maleic acid) in an aqueous medium and neutralizing the acid to form the salt, as described, for example, in Berry U.S. Pat. 3,359,246 of Dec. 19', 1967.
  • the neutralization is apparently a simple step, but difficulties are encountered in attempting to prepare a white sodium polymaleate which is acceptable for use in household detergents. -If alkali is added to water solutions of the acid, as described in U.S. Pat. 3,359,246, there is a marked tendency for salt to precipitate in lumps which occlude acid, unless the salt is kept in solution during the addition of alkali by using sufficient water. Since the solubility of sodium polymaleate is of the order of under 1%, the cost of recovery of salt makes such a dilution uneconomic. If the reverse procedure is used, adding the poly(maleic acid) solution to the alkali solution, the salt precipitates nicely as fine yellow particles; but the produc- 3,637,609 Patented Jan. 25, 1972 tion of white material therefrom with bleach is extremely diflicult and expensive.
  • the object can be attained by (1) preparing an aqueous solution of poly(maleic acid) at a temperature not in excess of about C.; (2) preparing an aqueous solution of a source of sodium oxide to react with the acid; (3) feeding the two solutions into a heel of water at pH about 9.2 to 10.6 and maintaining the reaction mixture within that pH range and at a temperature not above about 80 C. throughout the addition, to obtain a slurry of salt in a solution thereof; (4) bleaching the slurry while maintaining the pH range; and (5 recovering bleached salt from the reaction mixture.
  • maleic anhydride the basic raw material for the process of this invention, is prepared in known manner, as described in Berry U.S. Pat. 3,359,246, or more preferably by the methods described in the Blumbergs et a1.
  • the poly(maleic anhydride)s produced will have an average of from at least 3 units per molecule to about 500, with typical molecular weights of the order of about 5,500 to 25,000.
  • the first step in the process involves hydrolysis of the poly(maleic anhydride) to poly(maleic acid). This can be done by using water at temperatures near the boiling point for a short period of time, for example 30 minutes at C., as described in U.S. Pat. 3,359,246. We prefer to operate at about 60 to 80 C. for 1 to 2 hours, in order to reduce decarboxylation which we have found occurs at temperatures near the boiling point. Maleic anhydride can be kept at C.
  • the solutions of poly(maleic acid) prepared should be sufliciently concentrated to permit economic operation.
  • the rather concentrated acid solution is then run into a heel of water at pH about 9.2 to 10.6, at the selected temperature; the pH is maintained through the reaction, and the temperature is kept below 80 C. Simultaneously, an aqueous alkali is added, to maintain the pH within the above limits.
  • the amounts of water in the heel and in the alkali are kept minimal for cost reasons; we prefer that the final concentration of salt is at least 10%. At this concentration and at these temperatures, almost all of the salt precipitates, to form an aqueous slurry, in the form of finely divided pale yellow particles.
  • sodium hydroxide, sodium carbonate and sodium sesquicarbonate as sodium oxide sources in our work.
  • the slurry is then treated with a bleach, such as hydrogen peroxide, peracetic acid, sodium hypochlorite, perbenzoic acid or ozone, and bleached to a whiteness of at least 90% as measured by photoelectric tristimulus colorimetry with a magnesium oxide standard, with a Zeiss Elrepho colorimeter.
  • a bleach such as hydrogen peroxide, peracetic acid, sodium hypochlorite, perbenzoic acid or ozone
  • the bleach is conducted within the same pH limits as the precipitation, i.e. 9.2 to 10.6. Since the solid salt does not decarboxylate readily, any convenient bleaching temperature may be used.
  • the slurry is evaporated to dryness to obtain the desired end product.
  • the slurry may be evaporated to dryness at room temperature, or under vacuum, or it can be spray dried if desired.
  • the salt must be bleached and not the poly- (maleic acid).
  • bleaches 70% hydrogen peroxide, sodium hypochlorite with 5.5% of available chlorine, 40% assay peracetic acid, 33% assay perbenzoic acid in tertbutanol, and ozone
  • salts were obtained with the very poor reflectance rtaing of 49 to 62%.
  • EXAMPLE 1 One hundred grams of poly(maleic anhydride) obtained by homopolymerization of maleic anhydride in the presence of maleyl-acetyl peroxide and boric acid as described in Blumbergs et al. patent application S.N. 862,059, filed Sept. 29, 1969 were dissolved in 400 ml. of distilled water at 60 to 70 C. and kept at this temperature for 2 hours.
  • Sodium hydroxide solution was prepared in another beaker by dissolving 77 g. of NaOH pellets in 180 ml. of distilled water. Both solutions were simultaneously charged into a beaker, equipped with a laboratory stirrer and containing 100 ml. of distilled water, maintaining the pH in the range of 9.2 to 10.6. This was easily achieved by measuring the pH while regulating the flow rates of sodium hydroxide solution and poly(maleic acid) solution.
  • the whiteness of this product was measured by the method of photoelectric tristimulus colorimetry, employing the Elrepho instrument, manufactured by Carl Zeiss in Germany. About 5 to g. of the product were made in a tablet, 45 mm. in diameter and 5 mm. thick, with the Elrepho powder press 45. After the tablet was made, it was placed on the measuring aperture and the reflectance value was read, using magnesium oxide tablet as the primary standard. The reflectance value of this sample was 94.2.
  • Run A (for comparison) The same as Example 1, only the mode of addition of the solutions was different.
  • the poly(maleic acid) solution was charged into the caustic solution with good stirring.
  • the pH of the mixture changed from 14 to 11 during the addition time.
  • 5 g. of 70% hydrogen peroxide were added and the stirring continued for an additional hour.
  • the color of the slurry changed from yellow to pale yellow.
  • 158 g. of cream-color solids were obtained.
  • the whiteness of the product was 82.
  • Run B (for comparison) The same as Example 1, only the mode of addition of the solutions was changed.
  • the caustic solution was charged into the poly(maleic acid) solution with good stirring while measuring the pH.
  • the product precipitated out as large, gummy and sticky lumps. These lumps did not break down even by increased stirring speed. Up to this point, the pH showed a change from 2.3 to 7.0.
  • EXAMPLE 2 The same as Example 1, only the 5 g. of hydrogen peroxide were replaced with 10 g. of sodium hypochlorite solution having 5.5% of available chlorine. The whiteness of the product obtained was 92.8.
  • EXAMPLE 3 The same as Example 1, except that the 5 g. of hydrogen peroxide were replaced with 10 g. of 40% commercial peracetic acid. In this case, a small amount of sodium hydroxide solution was required to adjust the pH to 10.0. The whiteness of the product obtained was 93.9.
  • Run C (for comparison) The same as Example 1, only the addition of the hydrogen peroxide bleaching agent was omitted and the slurry was evaporated on a Rinco under reduced pressure without bleaching. The whitness of the product obtained was 56. The product was too dark to be used as a detergent builder.
  • the method of making white finely divided sodium polymaleate which comprises (a) preparing an aqueous solution of poly(maleic acid) at a temperature not in excess of C.; (b) preparing an aqueous solution of a source of sodium oxide capable of reacting with the poly(maleic acid) to form sodium polymaleate; (c) feeding the two solutions into an aqueous liquor at a pH of 9.2 to 10.6 and maintaining the reaction mixture within that pH range and at a temperature not above 80 C.; (d) precipitating sodium polymaleate in said aqueous liquor to form a slurry; (e) bleaching the precipitated sodium polymaleate in said slurry while maintaining said pH range and (f) recovering bleached sodium polymaleate from the slurry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Detergent Compositions (AREA)

Abstract

THE SODIUM SALT OF POLY(MALEIC ACID), USEFUL AS A DETERGENT BUILDER, IS PREPARED BY HYDROLYZING POLY(MALEIC ANHYDRIDE) WITH WATER AT 60 TO 80*C., AND SIMULTANEOUSLY ADDING THE AQUEOUS SOLUTION AND A SOURCE OF SODIUM OXIDE INTO A HEEL OF WATER AT PH 9.2 TO 10.6, MAITAINING THIS PH THROUGHOUT THE ADDITION THEN BLEACHING THE SLURRY, AND RECOVERING THE SALT.

Description

United States Patent Office 3,637,609 PREPARATION OF SODIUM POLYMALEATE John H. Blumbergs, Highland Park, Joseph H. Finley, Metuchen, and John J. Rizzo, Trenton, N.J., assignors to FMC Corporation, New York, N.Y. No Drawing. Filed June 1, 1970, Ser. No. 42,542 Int. Cl. C08f 27/04 U.S. Cl. 26078.4 R Claims ABSTRACT OF THE DISCLOSURE The sodium salt of poly(maleic acid), useful as a detergent builder, is prepared by hydrolyzing poly(maleic anhydride) with water at 60 to 80 C., and simultaneously adding the aqueous solution and a source of sodium oxide into a heel of water at pH 9.2 to 10.6, maintaining this pH throughout the addition, then bleaching the slurry, and recovering the salt.
BACKGROUND OF THE INVENTION The commonly used detergent compositions include soaps and synthetic detergents, mixed with compounds known as builders, which act both to improve the detergent power of the primary detergents, and to reduce the cost of the over-all compositions. The inorganic polyphosphates, such as sodium and potassium tripolyphosphate, have been almost universally used as the bulk of the builder constituents in such compositions. However, there has beena growing resistance to the use of polyphosphates, on the ground that they induce the build-up of undesirable vegetation in waters into which the detergents wastes are eventually discharged, and there 'has been a growing demand for detergent builders which would not cause this difficulty. Any such detergent builder must, of course, have optimum economics, and should not produce different environmental hazards than do the phosphates.
Many such builders have been suggested, but all have substantial disadvantages. Nitrilotriacetic acid, which is currently being used commercially as a substitute for phosphates, is both more expensive and potentially dangerous, in that it can keep quantities of heavy metals in solution in water. Other available builders are either much more costly, or have other serious drawbacks.
A potentially interesting group of possible detergent builders comprises the alkali metal salts of poly(carboxylic acid)s as described in Diehl U.S. Pat. 3,308,067, issued Mar. 7, 1967. This patent describes the use, as builders, of the Water-soluble salts of poly(c-arboxylic acid)s, the simplest and least expensive of which are the sodium salts of various poly(maleic acid)s. The salts of poly(maleic acid) are made by homopolymerizing maleic anhydride, hydrolyzing the poly(maleic anhydride) to poly(maleic acid) in an aqueous medium and neutralizing the acid to form the salt, as described, for example, in Berry U.S. Pat. 3,359,246 of Dec. 19', 1967.
The neutralization is apparently a simple step, but difficulties are encountered in attempting to prepare a white sodium polymaleate which is acceptable for use in household detergents. -If alkali is added to water solutions of the acid, as described in U.S. Pat. 3,359,246, there is a marked tendency for salt to precipitate in lumps which occlude acid, unless the salt is kept in solution during the addition of alkali by using sufficient water. Since the solubility of sodium polymaleate is of the order of under 1%, the cost of recovery of salt makes such a dilution uneconomic. If the reverse procedure is used, adding the poly(maleic acid) solution to the alkali solution, the salt precipitates nicely as fine yellow particles; but the produc- 3,637,609 Patented Jan. 25, 1972 tion of white material therefrom with bleach is extremely diflicult and expensive.
OBJECT OF THIS INVENTION STATEMENT OF THE INVENTION We have found that the object can be attained by (1) preparing an aqueous solution of poly(maleic acid) at a temperature not in excess of about C.; (2) preparing an aqueous solution of a source of sodium oxide to react with the acid; (3) feeding the two solutions into a heel of water at pH about 9.2 to 10.6 and maintaining the reaction mixture within that pH range and at a temperature not above about 80 C. throughout the addition, to obtain a slurry of salt in a solution thereof; (4) bleaching the slurry while maintaining the pH range; and (5 recovering bleached salt from the reaction mixture.
DETAILED DESCRIPTION OF THE INVENTION Poly (maleic anhydride), the basic raw material for the process of this invention, is prepared in known manner, as described in Berry U.S. Pat. 3,359,246, or more preferably by the methods described in the Blumbergs et a1. applications S.N. 758,678, filed Sept. 10, 1968-and S.N. 862,059, filed Sept. 29,1969. The poly(maleic anhydride)s produced will have an average of from at least 3 units per molecule to about 500, with typical molecular weights of the order of about 5,500 to 25,000.
The first step in the process involves hydrolysis of the poly(maleic anhydride) to poly(maleic acid). This can be done by using water at temperatures near the boiling point for a short period of time, for example 30 minutes at C., as described in U.S. Pat. 3,359,246. We prefer to operate at about 60 to 80 C. for 1 to 2 hours, in order to reduce decarboxylation which we have found occurs at temperatures near the boiling point. Maleic anhydride can be kept at C. for an hour in a 21% aqueous solution with a loss of only 0.02 mol percent of CO In contrast, a typical poly(maleic acid) will lose 1.6 mol percent under the same conditions, and a partially neutralized poly(maleic acid) (pH 4.75) will lose 4.3 mol percent of CO At 50 C., the losses are one-third of what they are at 100 C.
The solutions of poly(maleic acid) prepared should be sufliciently concentrated to permit economic operation. We prefer to operate as close to the solubility limit of the acid at the temperatures of operation as is technically feasible. Since solubility increases with temperature, we prefer to operate close to 80 C., this upper limit being selected, as indicated above, to minimize decarboxylation of the product. In this temperature range, about 20% solutions of the acid represent a convenient concentration. We can, of course, operate at much lower concentrations, of the order of a few percent, since the salt has a solubility of under 1% in water; but operations at lower concentrations are, of course, more expensive. Operations at temperatures below 60 C. are feasible, and we have operated to below ambient temperatures; but since the solubility of the poly(maleic acid) drops, we prefer to operate between 60 and 80 C.
The rather concentrated acid solution is then run into a heel of water at pH about 9.2 to 10.6, at the selected temperature; the pH is maintained through the reaction, and the temperature is kept below 80 C. Simultaneously, an aqueous alkali is added, to maintain the pH within the above limits. The amounts of water in the heel and in the alkali are kept minimal for cost reasons; we prefer that the final concentration of salt is at least 10%. At this concentration and at these temperatures, almost all of the salt precipitates, to form an aqueous slurry, in the form of finely divided pale yellow particles. We have used sodium hydroxide, sodium carbonate and sodium sesquicarbonate as sodium oxide sources in our work.
The slurry is then treated with a bleach, such as hydrogen peroxide, peracetic acid, sodium hypochlorite, perbenzoic acid or ozone, and bleached to a whiteness of at least 90% as measured by photoelectric tristimulus colorimetry with a magnesium oxide standard, with a Zeiss Elrepho colorimeter. The bleach is conducted within the same pH limits as the precipitation, i.e. 9.2 to 10.6. Since the solid salt does not decarboxylate readily, any convenient bleaching temperature may be used.
Finally, the slurry is evaporated to dryness to obtain the desired end product. The slurry may be evaporated to dryness at room temperature, or under vacuum, or it can be spray dried if desired.
It should be noted that the sequence of reaction is most important. If the alkali solution is added to the acid solution, gummy, sticky lumps begin to precipitate when the pH reaches about 7.0, when about half the alkali has been added, If the acid is added to the alkali, a fine yellowish precipitate is obtained, which is very difiicult to bleach. Direct comparison on a number of trials gave creamy products with a whiteness of the order of 75 to 85, as against 92 to 95 for products produced from the identical raw materials, concentrations and temperatures using the simultaneous controlled addition technique of this invention.
Moreover, the salt must be bleached and not the poly- (maleic acid). Using a variety of bleaches (70% hydrogen peroxide, sodium hypochlorite with 5.5% of available chlorine, 40% assay peracetic acid, 33% assay perbenzoic acid in tertbutanol, and ozone) on the acid, salts were obtained with the very poor reflectance rtaing of 49 to 62%.
SPECIFIC EXAMPLES OF THE INVENTION The following examples of the invention are given by way of illustration and not by way of limitation.
EXAMPLE 1 One hundred grams of poly(maleic anhydride) obtained by homopolymerization of maleic anhydride in the presence of maleyl-acetyl peroxide and boric acid as described in Blumbergs et al. patent application S.N. 862,059, filed Sept. 29, 1969 were dissolved in 400 ml. of distilled water at 60 to 70 C. and kept at this temperature for 2 hours. Sodium hydroxide solution was prepared in another beaker by dissolving 77 g. of NaOH pellets in 180 ml. of distilled water. Both solutions were simultaneously charged into a beaker, equipped with a laboratory stirrer and containing 100 ml. of distilled water, maintaining the pH in the range of 9.2 to 10.6. This was easily achieved by measuring the pH while regulating the flow rates of sodium hydroxide solution and poly(maleic acid) solution.
After all the solutions were charged into the beaker, 5 g. of 70% hydrogen peroxide were added and the stirring continued for an additional hour at 60 to 80 C. The slurry changed from pale yellow to white during this time. Then the slurry was evaporated and the solids were dried under reduced pressure. There were obtained 160 g. of white sodium polymaleate product.
The whiteness of this product was measured by the method of photoelectric tristimulus colorimetry, employing the Elrepho instrument, manufactured by Carl Zeiss in Germany. About 5 to g. of the product were made in a tablet, 45 mm. in diameter and 5 mm. thick, with the Elrepho powder press 45. After the tablet was made, it was placed on the measuring aperture and the reflectance value was read, using magnesium oxide tablet as the primary standard. The reflectance value of this sample was 94.2.
Run A (for comparison) The same as Example 1, only the mode of addition of the solutions was different. In this case, the poly(maleic acid) solution was charged into the caustic solution with good stirring. The pH of the mixture changed from 14 to 11 during the addition time. After all of the poly(maleic acid) solution was added, 5 g. of 70% hydrogen peroxide were added and the stirring continued for an additional hour. The color of the slurry changed from yellow to pale yellow. After evaporation under reduced pressure, 158 g. of cream-color solids were obtained. The whiteness of the product was 82.
Run B (for comparison) The same as Example 1, only the mode of addition of the solutions was changed. In this case, the caustic solution was charged into the poly(maleic acid) solution with good stirring while measuring the pH. After about a half of the caustic solution was consumed, the product precipitated out as large, gummy and sticky lumps. These lumps did not break down even by increased stirring speed. Up to this point, the pH showed a change from 2.3 to 7.0.
Also by adding additional sodium hydroxide solution, the lumps did not break down, but, on the contrary, increased in size. The product lumps were collected and analyzed and were found to be a mixture of sodium polymaleate and poly(maleic acid). No pure sodium polymaleate product was obtained by this procedure.
EXAMPLE 2 The same as Example 1, only the 5 g. of hydrogen peroxide were replaced with 10 g. of sodium hypochlorite solution having 5.5% of available chlorine. The whiteness of the product obtained was 92.8.
EXAMPLE 3 The same as Example 1, except that the 5 g. of hydrogen peroxide were replaced with 10 g. of 40% commercial peracetic acid. In this case, a small amount of sodium hydroxide solution was required to adjust the pH to 10.0. The whiteness of the product obtained was 93.9.
Run C (for comparison) The same as Example 1, only the addition of the hydrogen peroxide bleaching agent was omitted and the slurry was evaporated on a Rinco under reduced pressure without bleaching. The whitness of the product obtained was 56. The product was too dark to be used as a detergent builder.
Obviously, the examples can be multiplied indefinitely without departing from the spirit of the invention as defined in the claims.
Pursuant to the requirements of the patent statutes, the principle of this invention has been explained and exemplified in a manner so that it can be readily practiced by those skilled in the art, such exemplification including what is considered to represent the best embodiment of the invention. However, it should be clearly understood that, within the scope of the appended claims, the invention may be practiced by those skilled in the art, and having the benefit of this disclosure, otherwise than as specifically described and exemplified herein.
What is claimed is:
1. The method of making white finely divided sodium polymaleate which comprises (a) preparing an aqueous solution of poly(maleic acid) at a temperature not in excess of C.; (b) preparing an aqueous solution of a source of sodium oxide capable of reacting with the poly(maleic acid) to form sodium polymaleate; (c) feeding the two solutions into an aqueous liquor at a pH of 9.2 to 10.6 and maintaining the reaction mixture within that pH range and at a temperature not above 80 C.; (d) precipitating sodium polymaleate in said aqueous liquor to form a slurry; (e) bleaching the precipitated sodium polymaleate in said slurry while maintaining said pH range and (f) recovering bleached sodium polymaleate from the slurry.
2. The method of claim 1 in which the acid solution is near saturation at the temperature employed.
3. The method of claim 1 in which the temperature during acid solution and precipitation is kept between 60 and 80 C.
4. Process of claim 1 wherein said aqueous solution of poly(maleic acid) and the sodium oxide solutions are added continuously to said aqueous liquor, a portion of said slurry is continuously removed and bleached while maintaining its pH range of 9.2 to 10.6, and bleached sodium polymaleate is continuously recovered from its aqueous mother liquor.
5. Process of claim 1 wherein said aqueous liquor is a heel of water.
References Cited UNITED STATES PATENTS JOSEPH L. SCHOFER, Primary Examiner I. KIGHT, Assistant Examiner US. Cl. X.R. 252152
US42542A 1970-06-01 1970-06-01 Preparation of sodium polymaleate Expired - Lifetime US3637609A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US4254270A 1970-06-01 1970-06-01

Publications (1)

Publication Number Publication Date
US3637609A true US3637609A (en) 1972-01-25

Family

ID=21922501

Family Applications (1)

Application Number Title Priority Date Filing Date
US42542A Expired - Lifetime US3637609A (en) 1970-06-01 1970-06-01 Preparation of sodium polymaleate

Country Status (1)

Country Link
US (1) US3637609A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182807A (en) * 1977-04-25 1980-01-08 Solvay & Cie. Process for the manufacture of salts of hydroxycarboxylated polymers of reduced molecular weight
US4182806A (en) * 1977-04-25 1980-01-08 Solvay & Cie. Process for the manufacture of salts of poly-alpha-hydroxyacrylic acids
US4668735A (en) * 1982-10-06 1987-05-26 Kao Corporation Process for producing polymaleate
US4797223A (en) * 1988-01-11 1989-01-10 Rohm And Haas Company Water soluble polymers for detergent compositions
US4818794A (en) * 1986-09-19 1989-04-04 Basf Aktiengesellschaft Slightly crosslinked, water-soluble polymaleic acid, its preparation and its use
EP0404377A1 (en) * 1989-06-06 1990-12-27 Ausidet S.R.L. Water soluble copolymers of maleic anhydride
US5126069A (en) * 1989-10-13 1992-06-30 Basf Aktiengesellschaft Water-soluble or -dispersible, oxidized polymer detergent additives

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4182807A (en) * 1977-04-25 1980-01-08 Solvay & Cie. Process for the manufacture of salts of hydroxycarboxylated polymers of reduced molecular weight
US4182806A (en) * 1977-04-25 1980-01-08 Solvay & Cie. Process for the manufacture of salts of poly-alpha-hydroxyacrylic acids
US4668735A (en) * 1982-10-06 1987-05-26 Kao Corporation Process for producing polymaleate
US4818794A (en) * 1986-09-19 1989-04-04 Basf Aktiengesellschaft Slightly crosslinked, water-soluble polymaleic acid, its preparation and its use
US4886859A (en) * 1986-09-19 1989-12-12 Basf Aktiengesellschaft Slightly crosslinked, water-soluble polymaleic acid, its preparation and its use
US4797223A (en) * 1988-01-11 1989-01-10 Rohm And Haas Company Water soluble polymers for detergent compositions
EP0404377A1 (en) * 1989-06-06 1990-12-27 Ausidet S.R.L. Water soluble copolymers of maleic anhydride
US5126069A (en) * 1989-10-13 1992-06-30 Basf Aktiengesellschaft Water-soluble or -dispersible, oxidized polymer detergent additives

Similar Documents

Publication Publication Date Title
US5194238A (en) Process for the production of highly pure concentrated slurries of sodium hypochlorite
AU637466B2 (en) Process for producing highly pure solution of potassium hypochlorite
US3637609A (en) Preparation of sodium polymaleate
US3035057A (en) Dichloroisocyanurate process and products
US3956261A (en) Lignin adducts
JPH0729113B2 (en) Method for producing antiscaling agent aqueous solution and aqueous solution obtained by the method
US3072654A (en) Dichloroisocyanurate process
US4380533A (en) Process for the production of dibasic magnesium hypochlorite
US3890291A (en) Alpha-hydroxyacrylic acid/acrylic acid-copolymers and a process for making them
US3108969A (en) Process of mixing sodium tripolyphosphate and dichloroisocyanuric acid
US5030751A (en) Process for the preparation of mixed 2,2'-oxydisuccinate/carboxymethyloxysuccinate
US3178429A (en) Method of producing chlorocyanuric
US4031022A (en) Builders for detergent and cleaning compositions
US3890288A (en) Process for making poly-alpha-oxyacrylic acid and its alkali metal salts
US3679659A (en) Process for the preparation of sodium glucoheptonate
CA1315292C (en) Process for preparing alkali metal salts of 1-hydroxy-3-oxa-1,2,4,5-pentane tetracarboxylate and 2,6-dioxa-1,2,4,5,7,8-octane hexacarboxylate
US3272813A (en) Table iii
US3624048A (en) Poly(maleic acid) sulfonates and their production
US3501468A (en) Process for preparing chlorocyanurate compounds
US3397203A (en) Methods of producing chlorocyanuric acids
CA1036792A (en) Process for producing alkali percarbonates
DE4342930A1 (en) Process for the preparation of maleimide polymers and their use
US706075A (en) Process of clarifying liquids.
US5696288A (en) Process for the preparation of 2,2'-oxydisuccinate
US2918351A (en) Method of producing purified stabilized sodium hypochlorite