US3635641A - Spinnerette for producing hollow filaments - Google Patents

Spinnerette for producing hollow filaments Download PDF

Info

Publication number
US3635641A
US3635641A US881806A US3635641DA US3635641A US 3635641 A US3635641 A US 3635641A US 881806 A US881806 A US 881806A US 3635641D A US3635641D A US 3635641DA US 3635641 A US3635641 A US 3635641A
Authority
US
United States
Prior art keywords
slots
spinnerette
dots
slot
dot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US881806A
Inventor
Garland L Turner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allied Corp
Original Assignee
Allied Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Allied Chemical Corp filed Critical Allied Chemical Corp
Application granted granted Critical
Publication of US3635641A publication Critical patent/US3635641A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/24Formation of filaments, threads, or the like with a hollow structure; Spinnerette packs therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/05Filamentary, e.g. strands
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/345Extrusion nozzles comprising two or more adjacently arranged ports, for simultaneously extruding multiple strands, e.g. for pelletising
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/04Particle-shaped
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/12Articles with an irregular circumference when viewed in cross-section, e.g. window profiles

Definitions

  • ABSTRACT A spinnerette for spinning hollow filaments having a maximum amount of hollow space in relation to the outer dimensions of said filaments.
  • the filaments are extruded from a group of preferably three slots and corresponding three round openings or dots.
  • the polymer occluding area defined by the arrangement of the slots forms substantially an equilateral triangle.
  • the round openings are arranged near or at the ends of the slots, but not in communication with the slots. Filaments melt spun from the nested embodiment of this spinnerette consistently have above 35 percent hollow space.
  • the spinnerette is much less subject to breakage than similar designs. Specific parameters for spinning with such an orifice configuration are set forth.
  • This invention is related to a spinnerette hole configuration for producing shaped hollow filaments from synthetic fiberforming compositions.
  • hollow filaments have certain advantages over solid filaments having the same outer diameters. Some of the advantages which hollow filaments have over solid filaments include: improved insulation properties, increased bouyancy, reduced pilling, special optical effects, and greater covering power per unit weight. Hollow filaments also have less tendency to fibrillate under flexing conditions than corresponding solid filaments.
  • spinnerette commonly used to produce hollow filaments employs orifices containing an internal obstructing member which causes the orifice to function as an annulus.
  • the obstructive members are usually joined to the spinnerette body by internal support members upstream from the extrusion face of the spinnerette. This type of spinnerette is difficult to make and presents a major problem in repair and cleanliness.
  • spinnerettes available that employ a multitude of unobstructed orifices grouped in a perimeter. For example see British Pat. No. 1,009,625. See also copending US. application Ser. No. 687,710, filed Dec. l, 1967.
  • the orifices exist in various cross-sectional shapes such as trislot modified triangular, circular, rectangular crescent shape or other curvilinear or polygonal shapes spaced in close proximity to essentially circumscribe an area of the spinnerette plate. The circumscribed area blocks the flow of extrudate as the molten polymer streams emerging from the closely spaced orifices coalesce to form hollow filaments.
  • spinnerettes require very close spacing between adjacent orifices to permit proper coalescence of the extrudate streams with the result that the thickness of the web of intervening metal between orifices is so small as to cause structural weakness and difficulties with fabrication.
  • the weakened nature of these spinnerettes is particularly significant in the melt-spinning of synthetic fibers because the extrusion pressures required will often cause distortion or actual rupture of spinnerettes which are not properly designed.
  • Another serious problem encountered with orifices spaced too closely is that polymer coalescence may occur too close to the spinnerette face thus preventing the entrance of air into the hollow cavity of the filament. Therefore, the resultant vacuum within the filament causes internal coalescence of the molten polymer which minimizes or completely eliminates the central cavity.
  • the principal objective of the present invention is to provide a spinnerette for producing hollow filaments having the maximum internal cavity obtainable within a given filament. It has been found that these objects among others can be achieved through the use of a spinnerette having at least one group of at least three slots, and a corresponding equal number of round openings or dots arranged so that a substantially equilateral polygonal area is circumscribed by the slots which produce an orifice.
  • the round openings or dots are spaced from the slots at or near the apex of each angle.
  • the preferred configuration is three slots and three dots used to form a triangle. Because the orifice configuration of this invention permits entry of air from at least six points, this invention also overcomes the problem of vacuum within cavity of the filament.
  • the round opening or dot portion serves several functions. Because the round openings or dots relieve pressure at corner stress points, the spin head holes of this invention very seldom explode, implode or sink at one corner portion. Another important function is the fact that the proper amount of air enters the cavity of the hollow filament while maintaining superior fusing or coalescing of filament sides and proper polymer fiow. Also using the preferred embodiment as an example, a substantially equilateral triangular polymer occluding area is formed which contributes to the maximum amount of open or hollow space within the filament cross section. Another important result achieved by this particular arrangement and configuration of slots and openings is the fact that the walls of the hollow filaments are quite uniform. Because of the round openings at or near the apex of each angle there are no large areas formed at the apices or points where coalescence occurs.
  • the product obtained from the practice of this invention is a synthetic filament consisting of a polygonal-shaped sheath and an internal, longitudinally extending, polygonal cavity centrally disposed with respect to the filament axis and the peripheral contour of the cross section of the cavity being the shape of the area occluded at the die face.
  • the shapes of both the cavity and sheath will be essentially constant along the length of the filament.
  • the cavity may occupy up to about 60 percent of the entire cross-sectional area of the filament de pending upon the width and length of the slots. Even with lowviscosity polymers a high percent hollow filament can be formed.
  • the slot-dot configuration of this invention can provide a filament having a cross-sectional variance in polymer crystal orientation due to the different attenuations through the slots as compared to the dots. This makes an easily crimpable fiber by merely stretching the filament.
  • the filaments produced by the slot-dot configuration have potentially desirable optical properties for uses in apparel and carpeting.
  • Thermoplastic polymers suitable for use in the present invention include most of the fiber-forming melt-spinnable compositions. These compositions which are preferred include polyesters, such as polyethylene terephthalate and polyhexahydro p-xylylene terephthalate; polyamides such as a polyhexamethylene adipamide and polycaproamides; polyolefins, such as polyethylene and polypropylene, polyurethanes; polyesteramides; polyethers; and other synthetic polymers and mixtures thereof.
  • polyesters such as polyethylene terephthalate and polyhexahydro p-xylylene terephthalate
  • polyamides such as a polyhexamethylene adipamide and polycaproamides
  • polyolefins such as polyethylene and polypropylene, polyurethanes
  • polyesteramides such as polyethylene and polypropylene, polyurethanes
  • polyesteramides such as polyethylene and polypropylene, polyurethanes
  • Filaments produced by the spinnerette of the present invention have been found to be extremely useful for flotation materials because of their low-density cross section. They may be used in the form of monofilament and multifilament yarn, tow, cords, and staple spun yarns. 'Fhe filaments may be blended with other fibrous materials, and may be employed in crimped or uncrimped conditions.
  • the filaments of this invention are further useful in textile applications such as sewing thread, tire cord, fiber-reinforced laminates, upholstery, carpeting, drapery, curtains, ducks, parachutes, reinforced belts and hoses, marine lines, ropes and netting, and other applications.
  • the filaments may be admixed with solid core filamentary structures of various modified cross section of the same or different denier and the same or different chemical composition to produce various special effects.
  • FIG. 1 is a fragmentary section of a spinnerette plate illustrating the preferred arrangement and configurations of a group of slots and nested round openings or dots forming an orifice in accordance with this invention.
  • FIG. 2 is another fragmentary section of a spinnerette plate illustrating another embodiment with the dots in an end-on configuration with the slots.
  • Hole-An opening or set of openings which are common to a single counterbore and produce a monofil.
  • WebA narrowed solid portion of a spinnerette hole area which lies between adjacent openings For example, the narrowest dimension between a slot and a dot shown as t in FIG. 1 and FIG. 2.
  • Configuration-Spinnerette holes of this invention are formed by combinations of slots and capillaries or dots, and preferably take the form of an equilateral triangle. See FIGS. 1 and 2.
  • the capillaries (dots) may be end-on to the slots (FIG. 2) or nested between slots (FIG. I).
  • the slots are labeled 1, and dots 2 in both figures. The dimensions are shown as:
  • the nested dots-type hole (FIG. I) has consistently produced filaments of greater than 35 percent void area. Ease of fabrication of these holes has been very good.
  • Q slot/Q dot should be between 1 and 3 V dot/ V slot must not exceed 3.
  • SPINNERE'ITE HOLE PARAMETERS FOR POLYCAPROAMIDE Webs Widtli-It has been found that the web width (1) i.e., narrowest dimension between slots and dots, must be between l and 10 mils. and preferably between 2 and 4 mils.
  • the low end has two determining factors: (I) enough spinnerette web material has to remain to provide support for the center section against the extrusion pressure, and (2) enough space has to be provided for the passage of sufficient air to prevent collapse of the center cavity. As the upper limit is approached problems of closure become more acute. About 3 mils. thickness has been found to be the optimum.
  • Width-Limits for width (h) fall between 3 mils. and 10 mils. Slots which are less than 3 mils. wide are very difficult to fabricate and also present spinning problems due to potential blockage by contaminants or other particulate matter which is often present in an extrudate. Slot widths of between 4 and 7 mils. are preferred.
  • Dots-It has been determined empirically that the radius (0/2) of the dots is preferred to be substantially equal to the slot width (h); but can vary between 2 and 12 mils., preferably 2 and 8 mils.
  • the centers of the dots 2 are aligned directly with the inside edge of the slot 1.
  • the dots 2 could be arranged in any end-on configuration, such as aligned with the slot 1 centerline, or the outside edge or beyond.
  • the preferred configuration is the nested arrangement shown in FIG. 1. Typical dimensions would be:
  • the dots are preferably arranged with each circumference within the sides of the angle described by the inside edges of adjacent slots. Particularly preferred is the configuration shown in FIG. 1, i.e., the circumference of each dot is tangent to an imaginary line between the nearest adjacent corners of the slots, and equidistant therefrom.
  • the arrangement of slots in relation to dots is essential to proper operation. For example, by extending the slots beyond the nested dots it was found that good closure (coalescence or fusing sides to each filament deformation increases. This is not a really serious problem at void areas less than -35 percent.
  • process conditions must be set on the basis of their rheological effect on the filament. ln subsequent treatments such as drawing and texturizing possible mechanical effects must be considered.
  • Process conditions determined are applicable to polycaproamides.
  • the conditions can be determined according to melt characteristics during spinning.
  • nylon 6,6 polyhexamethlylene adipamide
  • spinnerette temperature would range from about 280 to 3 l0C.
  • Table shows examples of this invention. Conditions were conventional for melt-spinning nylon, at conventional extrusion rates, 250-290 C. head temperature, 70 F., 65 percent RH cocurrent quench air.
  • the parameters determined are applicable to all polyamides. However, for other polymers the ratios and dimensions can be determined according to the melt characteristics during spinning. For example, polypropylene is known to have a very pronounced bulge at the spinnerette hole, requiring larger width.
  • melt temperature can be varied to produce closure and exhibit some control over the targeted void area.
  • a low-melt temperature may help in closure, in increasing void area, and to produce a better defined cross section; but one must not go so low as to affect the drawability of the product.
  • the melt temperature As the melt temperature is increased the melt becomes more mobile producing some smoothing of the cross section and reduction in void area, which in many cases is desirable.
  • a temperature of from about 240 to about 290 C., preferably 255 to 275 C. is used.
  • Quench-The quenching medium can be utilized in conjunction with the melt temperature effect as a process control of apparent melt viscosity to control void area. In order to be effective in this respect for polyamide the quench medium must be introduced near the spinnerette face. Quench medium temperatures of 0 to C. are used.
  • Throughput The major effect of throughput is that an increased flow has the same effect as a temperature increase. This is evidenced by a rounding of the cross section and a decrease in void area. Therefore quench becomes more difficult, but more necessary if the desired hollow area is to be obtained. With certain designs of spinnerettes the increased jet velocity may lead to doglegging of the melt stream as the throughput is increased. Thus at high throughput rates it is mandatory that spinnerette quality be rigidly maintained. For polyamide a throughput of 0.1 lb./hr./hole to 0.75 lb./hr./hole and preferably 0.4 to 0.6 lb./hr./hole is used. Additives-Additives cause efi'ects that tend to affect the melt viscosity and surface tension of the melt.
  • a spinnerette for extruding molten synthetic thermoplastic polymers to provide triangular-shaped hollow filaments comprising a plate containing at least one group of three slots and three dots said slots being spaced in close proximity to form a triangle, each of said dots aligned on the ends of the ends of said slots with the center of each dot directly aligned with the inside edge of said slot said slots and dots being spaced so that air is admitted to the inside of said triangle during extrusion and coalescence occurs between the streams of polymer exiting said slots and dots to form triangular-shaped hollow filaments.
  • the spinnerette of claim 5 wherein the ratio of the length of the slot to the width of the slot is between about 10 to about 20, the radius of the dot is substantially equal to the slot width, and the thickness of the narrowest dimension between the slots and the dots is about one-half the slot width.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

A spinnerette for spinning hollow filaments having a maximum amount of hollow space in relation to the outer dimensions of said filaments. The filaments are extruded from a group of preferably three slots and corresponding three round openings or dots. The polymer occluding area defined by the arrangement of the slots forms substantially an equilateral triangle. The round openings are arranged near or at the ends of the slots, but not in communication with the slots. Filaments melt spun from the nested embodiment of this spinnerette consistently have above 35 percent hollow space. The spinnerette is much less subject to breakage than similar designs. Specific parameters for spinning with such an orifice configuration are set forth.

Description

nie States Patent Turner [54] SPINNERETTE FOR PRODUCING HOLLOW FILAMENTS [72] Inventor: Garland L. Turner, Chesterfield County,
[73] Assignee: Allied Chemical Corporation, New York,
[22] Filed: Dec. 3, 1969 [21] Appl.No.: 881,806
FOREIGN PATENTS OR APPLICATlONS 1,009,625 1 H1965 Great Britain "264/1771 Primary Examiner-Jay H. Woo Attorney-Richard A. Anderson and Roy H. Massengill [5 7] ABSTRACT A spinnerette for spinning hollow filaments having a maximum amount of hollow space in relation to the outer dimensions of said filaments. The filaments are extruded from a group of preferably three slots and corresponding three round openings or dots. The polymer occluding area defined by the arrangement of the slots forms substantially an equilateral triangle. The round openings are arranged near or at the ends of the slots, but not in communication with the slots. Filaments melt spun from the nested embodiment of this spinnerette consistently have above 35 percent hollow space. The spinnerette is much less subject to breakage than similar designs. Specific parameters for spinning with such an orifice configuration are set forth.
8 Claims, 2 Drawing Figures PATENTED JAN 1 1972 FIG.|
Gar/0nd L. Turner ATTORNEY SPINNERETTE FOR PRODUCING HOLLOW I' ILAMENTS BACKGROUND OF THE INVENTION This invention is related to a spinnerette hole configuration for producing shaped hollow filaments from synthetic fiberforming compositions.
The textile industry has long been interested in hollow filaments because of the special attributes of such fibers and the several novel effects which may be obtained with them. It is well recognized that hollow filaments have certain advantages over solid filaments having the same outer diameters. Some of the advantages which hollow filaments have over solid filaments include: improved insulation properties, increased bouyancy, reduced pilling, special optical effects, and greater covering power per unit weight. Hollow filaments also have less tendency to fibrillate under flexing conditions than corresponding solid filaments.
While hollow filaments are highly desirable by the textile industry, it has proved to be extremely difficult to manufacture these filaments in a commercially feasible manner by meltspinning. Considerable time and effort have been spent on at tempts to adapt existing methods to the production of hollow filaments on a commercial scale. Processes which have been devised for this purpose have necessitated the use of special and often expensive processing conditions and equipment.
Most of the problems involved with the spinning of hollow filaments are related to the spinnerette. Unfortunately, the spinnerettes that have been designed thus far are difficult to construct and are subject to frequent breakdowns which may be attributed at least in part to their complex construction.
One type of spinnerette commonly used to produce hollow filaments employs orifices containing an internal obstructing member which causes the orifice to function as an annulus. The obstructive members are usually joined to the spinnerette body by internal support members upstream from the extrusion face of the spinnerette. This type of spinnerette is difficult to make and presents a major problem in repair and cleanliness.
There are other spinnerettes available that employ a multitude of unobstructed orifices grouped in a perimeter. For example see British Pat. No. 1,009,625. See also copending US. application Ser. No. 687,710, filed Dec. l, 1967. The orifices exist in various cross-sectional shapes such as trislot modified triangular, circular, rectangular crescent shape or other curvilinear or polygonal shapes spaced in close proximity to essentially circumscribe an area of the spinnerette plate. The circumscribed area blocks the flow of extrudate as the molten polymer streams emerging from the closely spaced orifices coalesce to form hollow filaments. These spinnerettes require very close spacing between adjacent orifices to permit proper coalescence of the extrudate streams with the result that the thickness of the web of intervening metal between orifices is so small as to cause structural weakness and difficulties with fabrication. Thus, the weakened nature of these spinnerettes is particularly significant in the melt-spinning of synthetic fibers because the extrusion pressures required will often cause distortion or actual rupture of spinnerettes which are not properly designed. Another serious problem encountered with orifices spaced too closely is that polymer coalescence may occur too close to the spinnerette face thus preventing the entrance of air into the hollow cavity of the filament. Therefore, the resultant vacuum within the filament causes internal coalescence of the molten polymer which minimizes or completely eliminates the central cavity.
SUMMARY OF THE INVENTION The principal objective of the present invention is to provide a spinnerette for producing hollow filaments having the maximum internal cavity obtainable within a given filament. It has been found that these objects among others can be achieved through the use of a spinnerette having at least one group of at least three slots, and a corresponding equal number of round openings or dots arranged so that a substantially equilateral polygonal area is circumscribed by the slots which produce an orifice. The round openings or dots are spaced from the slots at or near the apex of each angle. The preferred configuration is three slots and three dots used to form a triangle. Because the orifice configuration of this invention permits entry of air from at least six points, this invention also overcomes the problem of vacuum within cavity of the filament. Spinnerette capillaries made from combinations of slots and round holes offer a more simple geometrical form which are easier to manufacture than intricate designs which are now used. This combination can be fitted to any design to give better flow and fusing of the individual parts than the trislot type due to the minimizing of the end effects" which are present in long, narrow slots.
The round opening or dot portion serves several functions. Because the round openings or dots relieve pressure at corner stress points, the spin head holes of this invention very seldom explode, implode or sink at one corner portion. Another important function is the fact that the proper amount of air enters the cavity of the hollow filament while maintaining superior fusing or coalescing of filament sides and proper polymer fiow. Also using the preferred embodiment as an example, a substantially equilateral triangular polymer occluding area is formed which contributes to the maximum amount of open or hollow space within the filament cross section. Another important result achieved by this particular arrangement and configuration of slots and openings is the fact that the walls of the hollow filaments are quite uniform. Because of the round openings at or near the apex of each angle there are no large areas formed at the apices or points where coalescence occurs.
The product obtained from the practice of this invention is a synthetic filament consisting of a polygonal-shaped sheath and an internal, longitudinally extending, polygonal cavity centrally disposed with respect to the filament axis and the peripheral contour of the cross section of the cavity being the shape of the area occluded at the die face. The shapes of both the cavity and sheath will be essentially constant along the length of the filament. The cavity may occupy up to about 60 percent of the entire cross-sectional area of the filament de pending upon the width and length of the slots. Even with lowviscosity polymers a high percent hollow filament can be formed.
The slot-dot configuration of this invention can provide a filament having a cross-sectional variance in polymer crystal orientation due to the different attenuations through the slots as compared to the dots. This makes an easily crimpable fiber by merely stretching the filament.
The filaments produced by the slot-dot configuration have potentially desirable optical properties for uses in apparel and carpeting.
Thermoplastic polymers suitable for use in the present invention include most of the fiber-forming melt-spinnable compositions. These compositions which are preferred include polyesters, such as polyethylene terephthalate and polyhexahydro p-xylylene terephthalate; polyamides such as a polyhexamethylene adipamide and polycaproamides; polyolefins, such as polyethylene and polypropylene, polyurethanes; polyesteramides; polyethers; and other synthetic polymers and mixtures thereof.
Filaments produced by the spinnerette of the present invention have been found to be extremely useful for flotation materials because of their low-density cross section. They may be used in the form of monofilament and multifilament yarn, tow, cords, and staple spun yarns. 'Fhe filaments may be blended with other fibrous materials, and may be employed in crimped or uncrimped conditions.
Other typical textile applications include apparel products such as woven suitings, shirtings, sheeting and lingerie, tricot, circular knitted fabrics, broadcloths, satins, and the like. In view of their relatively high stiffness, strength, and low weight,
the filaments of this invention are further useful in textile applications such as sewing thread, tire cord, fiber-reinforced laminates, upholstery, carpeting, drapery, curtains, ducks, parachutes, reinforced belts and hoses, marine lines, ropes and netting, and other applications. The filaments may be admixed with solid core filamentary structures of various modified cross section of the same or different denier and the same or different chemical composition to produce various special effects.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a fragmentary section of a spinnerette plate illustrating the preferred arrangement and configurations of a group of slots and nested round openings or dots forming an orifice in accordance with this invention.
FIG. 2 is another fragmentary section of a spinnerette plate illustrating another embodiment with the dots in an end-on configuration with the slots.
TERMINOLOGY Following are some terms which will be used here in slightly different form than in common usage.
Hole-An opening or set of openings which are common to a single counterbore and produce a monofil.
WebA narrowed solid portion of a spinnerette hole area which lies between adjacent openings. For example, the narrowest dimension between a slot and a dot shown as t in FIG. 1 and FIG. 2.
SlotA part of a spinnerette hole which has a greater length than width.
Capillary or DotA part of a spinnerette hole which is round.
Configuration-Spinnerette holes of this invention are formed by combinations of slots and capillaries or dots, and preferably take the form of an equilateral triangle. See FIGS. 1 and 2. The capillaries (dots) may be end-on to the slots (FIG. 2) or nested between slots (FIG. I). The slots are labeled 1, and dots 2 in both figures. The dimensions are shown as:
h width of slot 1: width of web at narrowest portion D diameter of dot C distance between centers of dots W= length of slot The nested dots-type hole (FIG. I) has consistently produced filaments of greater than 35 percent void area. Ease of fabrication of these holes has been very good.
Flow and velocity ratios of hole components have been found to be fairly critical. The following equations have been used in defining these ratios.
1. Q dot (1rR /8L)-(P/u) Q slot (Wh" l2L)'(P/u) When determining the ratios of dot/slot it is assumed that P/u is a constant.
2. V slot (h P/l2Lu) V dot R P/8Lu Q mass flow W= Length V= Velocity h width of slot K constant L depth of slot: dot
P= pressure drop a viscosity of melt R radius of dot D/2 It has been found that Q slot/Q dot should be between 1 and 3 V dot/ V slot must not exceed 3. The preferred ratios are: Q slot/Q dot about 2 and Vdot/Vslot= about 2. =about 2.
SPINNERE'ITE HOLE PARAMETERS FOR POLYCAPROAMIDE Webs Widtli-It has been found that the web width (1) i.e., narrowest dimension between slots and dots, must be between l and 10 mils. and preferably between 2 and 4 mils. The low end has two determining factors: (I) enough spinnerette web material has to remain to provide support for the center section against the extrusion pressure, and (2) enough space has to be provided for the passage of sufficient air to prevent collapse of the center cavity. As the upper limit is approached problems of closure become more acute. About 3 mils. thickness has been found to be the optimum.
Number-While it has been seen that the more webs there are, the larger hollow area one may obtain; it can be said that probably not more than six are desirable or needed. First of all in the slot-dot" spinnerette where there are six webs, there was a gain of 7 to 10 percent in hollow area when the sides are in a similar position (dots end-on as in FIG. I) to a spinnerette which has only three webs. Then if the dots are placed in a nested" position relative to the dots, an additional 10 percent hollow is obtained (consistently 35-37 percent). A hollow area of more than 35 percent may not be very useful; since the walls of the filament become very thin, and the filaments are subject to deformation in subsequent operations of drawing and texturizing. An additional reason for not exceeding six webs is that manufacturing costs would increase and uniformity decrease due to the increasing complexity of the spinnerette hole. In determining web thickness (t), it is necessary to balance (I amount of air passing to the hollow cavity of the filament across the web, (2) ability of the sides of the filament to close by coalescence or continuous fusing to each other, and (3) strength of the die face. It has been found that the web thickness (I) should be about one-half of the slot width (h).
Slots Length-The limits of length (W) in practice have been between 30 and mils. At the low end of this range a very rounded filament with a very low amount of void area resulted. Above 100 mils. the possibility of collapse increases and the stack draw down to standard filament dimensions would become prohibitive due to increased orientation with a resultant loss of drawability.
Width-Limits for width (h) fall between 3 mils. and 10 mils. Slots which are less than 3 mils. wide are very difficult to fabricate and also present spinning problems due to potential blockage by contaminants or other particulate matter which is often present in an extrudate. Slot widths of between 4 and 7 mils. are preferred.
Length-Width Ratio-Within the limits of slot length and width discussed, it has been found that probable operating ranges of the ratio of slot length to width are between l0 to 20 for a slot-dot configuration (six webs). For ratios below l0 the resulting filament becomes rounded with a reduced hollow area. Above the upper limit mentioned, an inward collapse of the walls may occur, again resulting in a reduced hollow area and loss of cross section identity.
Dots-It has been determined empirically that the radius (0/2) of the dots is preferred to be substantially equal to the slot width (h); but can vary between 2 and 12 mils., preferably 2 and 8 mils.
Summary of Spinnerette Hole Parameters Certain spinnerette hole parameters have been detennined empirically. When designing spinnerette holes it is necessary to consider the uniformity of fabrication for large numbers of holes as well as whether the spinnerette will produce the proper cross section on a smaller scale project. Typical dimensions for an end-on configuration as shown in FIG. 2 would be:
t=0.003 in.
h=0.005 in.
D=().013 in.
W=0.070 in.
In the configuration of FIG. 2 the centers of the dots 2 are aligned directly with the inside edge of the slot 1. The dots 2 could be arranged in any end-on configuration, such as aligned with the slot 1 centerline, or the outside edge or beyond.
The preferred configuration is the nested arrangement shown in FIG. 1. Typical dimensions would be:
t=0.0028 in.
h=0.006 in.
W==0.095 in.
C=0.090 in. In FIG. 1 the dots are preferably arranged with each circumference within the sides of the angle described by the inside edges of adjacent slots. Particularly preferred is the configuration shown in FIG. 1, i.e., the circumference of each dot is tangent to an imaginary line between the nearest adjacent corners of the slots, and equidistant therefrom. The arrangement of slots in relation to dots is essential to proper operation. For example, by extending the slots beyond the nested dots it was found that good closure (coalescence or fusing sides to each filament deformation increases. This is not a really serious problem at void areas less than -35 percent.
Summary of Process Conditions-During the spinning of hollow cross section filaments, process conditions must be set on the basis of their rheological effect on the filament. ln subsequent treatments such as drawing and texturizing possible mechanical effects must be considered.
Process conditions determined are applicable to polycaproamides. For other polymers, the conditions can be determined according to melt characteristics during spinning. For example, nylon 6,6 (polyhexamethlylene adipamide) spinnerette temperature would range from about 280 to 3 l0C. ExamplesThe following table shows examples of this invention. Conditions were conventional for melt-spinning nylon, at conventional extrusion rates, 250-290 C. head temperature, 70 F., 65 percent RH cocurrent quench air.
EXAMPLES Slot Dot Q slot V dot diam- Web 2 Hollow Design Number Length 1 Width 1 cter Q dot V slot width 1 Remarks percent 0 (End on) 71 5 8 7.6 1 3 Not: operable I (End on) 70 5 13 1 2. 54 3 Very inter 25 mittcnt. II (End on) 70 5 13 1 2.54 3 do .25 III (Nested). 90 5 13 1.33 2. 54 3 Operable IV (Nested).. 100 5.5 13 1.97 2.10 2.5 do 35 l\'(a) (Nested) 100 6.0 13 2.54 1.77 2.5 ...do. 35 IV(b) (Nested) 100 6. 5 13 3. 25 1. 50 2. 5 Not operable I\'(c) (Nested) 95 5. 5 13 1. 77 2. 10 2. 5 Operable 35 V (Nested) 63 4 E] 2.08 1.91 2.5 do 35 \'I (Nested) 93 6 13 2. 29 1.77 3 do 35 I Mils. 1 Narrowest dimension of web area.
other) 18 assured but that the cavity collapses because lnsuffi- Iclaim:
cient air is drawn into the hollow portion of the filament and a resultant vacuum is formed.
The parameters determined are applicable to all polyamides. However, for other polymers the ratios and dimensions can be determined according to the melt characteristics during spinning. For example, polypropylene is known to have a very pronounced bulge at the spinnerette hole, requiring larger width.
PROCESS CONDITION EFFECTS Melt Temperature/Melt Viscosity-Within the practical process boundaries of a given polymer/spinnerette system, melt temperature can be varied to produce closure and exhibit some control over the targeted void area. A low-melt temperature may help in closure, in increasing void area, and to produce a better defined cross section; but one must not go so low as to affect the drawability of the product. As the melt temperature is increased the melt becomes more mobile producing some smoothing of the cross section and reduction in void area, which in many cases is desirable. For polycaproamide, a temperature of from about 240 to about 290 C., preferably 255 to 275 C. is used.
Quench-The quenching medium can be utilized in conjunction with the melt temperature effect as a process control of apparent melt viscosity to control void area. In order to be effective in this respect for polyamide the quench medium must be introduced near the spinnerette face. Quench medium temperatures of 0 to C. are used.
Throughput-The major effect of throughput is that an increased flow has the same effect as a temperature increase. This is evidenced by a rounding of the cross section and a decrease in void area. Therefore quench becomes more difficult, but more necessary if the desired hollow area is to be obtained. With certain designs of spinnerettes the increased jet velocity may lead to doglegging of the melt stream as the throughput is increased. Thus at high throughput rates it is mandatory that spinnerette quality be rigidly maintained. For polyamide a throughput of 0.1 lb./hr./hole to 0.75 lb./hr./hole and preferably 0.4 to 0.6 lb./hr./hole is used. Additives-Additives cause efi'ects that tend to affect the melt viscosity and surface tension of the melt.
Drawing As the amount of void area increases the amount of 1. A spinnerette for extruding molten synthetic thermoplastic polymers to provide triangular-shaped hollow filaments comprising a plate containing at least one group of three slots and three dots said slots being spaced in close proximity to form a triangle, each of said dots aligned on the ends of the ends of said slots with the center of each dot directly aligned with the inside edge of said slot said slots and dots being spaced so that air is admitted to the inside of said triangle during extrusion and coalescence occurs between the streams of polymer exiting said slots and dots to form triangular-shaped hollow filaments.
2. The spinnerette of claim 1 wherein the triangle is equilateral.
3. The spinnerette of claim 2 wherein said dots are arranged with each dot circumference within the sides of the angle described by the inside edges of the adjacent slots.
41. The spinnerette of claim 3 wherein the circumference of each dot is tangent to an imaginary line between the nearest adjacent corners of said slot, and equidistant therefrom.
5. The spinnerette of claim 2 wherein the narrowest dimension between said slots and dots is between about I and about 10 mils., the length of said slot is between about 30 and about mils., the radius of the dot is between about 2 and about 12 mils., and the width of said slots is between about 3 and about l0 mils.
6. The spinnerette of claim 5 wherein the ratio of the length of the slot to the width of the slot is between about 10 to about 20, the radius of the dot is substantially equal to the slot width, and the thickness of the narrowest dimension between the slots and the dots is about one-half the slot width.
7. The spinnerette of claim 6 wherein said slot width is between about 4 and about 7 mils., the narrowest dimension between said slots is between about 2 and about 4 mils., and the radius of the dot is between about 2 and about 8 mils.
8. The spinnerette of claim 5 wherein the length of the slot is 0.095 inches, the width of the slot is 0.006 inches, the diameter of the dot is 0.01 3 inches, the narrowest dimension between the slots and the dots is 0.0028 inches, and the distance between the centers of the dots is 0.090 inches.

Claims (8)

1. A spinnerette for extruding molten synthetic thermoplastic polymers to provide triangular-shaped hollow filaments comprising a plate containing at least one group of three slots and three dots said slots being spaced in close proximity to form a triangle, each of said dots aligned on the ends of the ends of said slots with the center of each dot directly aligned with the inside edge of said slot said slots and dots being spaced so that air is admitted to the inside of said triangle during extrusion and coalescence occurs between the streams of polymer exiting said slots and dots to form triangular-shaped hollow filaments.
2. The spinnerette of claim 1 wherein the triangle is equilateral.
3. The spinnerette of claim 2 wherein said dots are arranged with each dot circumference within the sides of the angle described by the inside edges of the adjacent slots.
4. The spinnerette of claim 3 wherein the circumference of each dot is tangent to an imaginary line between the nearest adjacent corners of said slot, and equidistant therefrom.
5. The spinnerette of claim 2 wherein the narrowest dimension between said slots and dots is between about 1 and about 10 mils., the length of said slot is between about 30 and about 100 mils., the radius of the dot is between about 2 and about 12 mils., and the width of said slots is between about 3 and about 10 mils.
6. The spinnerette of claim 5 wherein the ratio of the length of the slot to the width of the slot is between about 10 to about 20, the radius of the dot is substantially equal to the slot width, and the thickness of the narrowest dimension between the slots and the dots is about one-half the slot width.
7. The spinnerette of claim 6 wherein said slot width is between about 4 and about 7 mils., the narrowest dimension between said slots is between about 2 and about 4 mils., and the radius of the dot is between about 2 and about 8 mils.
8. The spinnerette of claim 5 wherein the length of the slot is 0.095 inches, the width of the slot is 0.006 inches, the diameter of the Dot is 0.013 inches, the narrowest dimension between the slots and the dots is 0.0028 inches, and the distance between the centers of the dots is 0.090 inches.
US881806A 1969-12-03 1969-12-03 Spinnerette for producing hollow filaments Expired - Lifetime US3635641A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US88180669A 1969-12-03 1969-12-03

Publications (1)

Publication Number Publication Date
US3635641A true US3635641A (en) 1972-01-18

Family

ID=25379249

Family Applications (1)

Application Number Title Priority Date Filing Date
US881806A Expired - Lifetime US3635641A (en) 1969-12-03 1969-12-03 Spinnerette for producing hollow filaments

Country Status (1)

Country Link
US (1) US3635641A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376743A (en) * 1981-06-12 1983-03-15 Fiber Industries, Inc. Melt spinning process
US20030118763A1 (en) * 2001-05-08 2003-06-26 Travelute Frederick L. Method and apparatus for high denier hollow spiral fiber
USD745964S1 (en) * 2013-08-15 2015-12-22 Intuitive Surgical Opertions, Inc. Surgical instrument shaft with hole pattern
USD745965S1 (en) * 2013-08-15 2015-12-22 Intuitive Surgical Operations, Inc. Surgical instrument shaft with hole pattern
USD746450S1 (en) * 2013-08-15 2015-12-29 Intuitive Surgical Operations, Inc. Surgical instrument shaft with hole pattern
USD746454S1 (en) * 2013-08-15 2015-12-29 Intuitive Surgical Operations, Inc. Surgical instrument shaft with hole pattern
USD746449S1 (en) * 2013-08-15 2015-12-29 Intuitive Surgical Operations, Inc. Surgical instrument shaft with hole pattern
USD749726S1 (en) 2013-08-15 2016-02-16 Intuitive Surgical Operations, Inc. Surgical instrument shaft with hole pattern

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE23616C (en) * S.bloch & SOHN in Wen Window washers, for cleaning the outside of the panes from the room, as well as for cleaning the inside of the panes
CA690619A (en) * 1964-07-14 Crepon Emmanuel Artificial and synthetic filamentary materials of novel cross-section and process for their production
US3187607A (en) * 1962-07-24 1965-06-08 Du Pont Spinneret production
GB1009625A (en) * 1962-10-02 1965-11-10 Schwarza Chemiefaser Improvements in and relating to the production of synthetic threads, ribbons or the like having a lobed cross-section
US3323168A (en) * 1962-05-24 1967-06-06 American Enka Corp Spinneret for spinning hollow filaments

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE23616C (en) * S.bloch & SOHN in Wen Window washers, for cleaning the outside of the panes from the room, as well as for cleaning the inside of the panes
CA690619A (en) * 1964-07-14 Crepon Emmanuel Artificial and synthetic filamentary materials of novel cross-section and process for their production
US3323168A (en) * 1962-05-24 1967-06-06 American Enka Corp Spinneret for spinning hollow filaments
US3187607A (en) * 1962-07-24 1965-06-08 Du Pont Spinneret production
GB1009625A (en) * 1962-10-02 1965-11-10 Schwarza Chemiefaser Improvements in and relating to the production of synthetic threads, ribbons or the like having a lobed cross-section

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4376743A (en) * 1981-06-12 1983-03-15 Fiber Industries, Inc. Melt spinning process
US20030118763A1 (en) * 2001-05-08 2003-06-26 Travelute Frederick L. Method and apparatus for high denier hollow spiral fiber
US6746230B2 (en) 2001-05-08 2004-06-08 Wellman, Inc. Apparatus for high denier hollow spiral fiber
US6797209B2 (en) 2001-05-08 2004-09-28 Wellman, Inc. Method and apparatus for high denier hollow spiral fiber
US20050037196A1 (en) * 2001-05-08 2005-02-17 Travelute Frederick L. Method and apparatus for high denier hollow spiral fiber
US20060014015A1 (en) * 2001-05-08 2006-01-19 Travelute Frederick L Method and apparatus for high denier hollow spiral fiber
US7001664B2 (en) 2001-05-08 2006-02-21 Wellman, Inc. Method and apparatus for high denier hollow spiral fiber
US7229688B2 (en) 2001-05-08 2007-06-12 Wellman, Inc. Method and apparatus for high denier hollow spiral fiber
US20070231519A1 (en) * 2001-05-08 2007-10-04 Wellman, Inc. Method and Apparatus for High Denier Hollow Spiral Fiber
USD745964S1 (en) * 2013-08-15 2015-12-22 Intuitive Surgical Opertions, Inc. Surgical instrument shaft with hole pattern
USD745965S1 (en) * 2013-08-15 2015-12-22 Intuitive Surgical Operations, Inc. Surgical instrument shaft with hole pattern
USD746450S1 (en) * 2013-08-15 2015-12-29 Intuitive Surgical Operations, Inc. Surgical instrument shaft with hole pattern
USD746454S1 (en) * 2013-08-15 2015-12-29 Intuitive Surgical Operations, Inc. Surgical instrument shaft with hole pattern
USD746449S1 (en) * 2013-08-15 2015-12-29 Intuitive Surgical Operations, Inc. Surgical instrument shaft with hole pattern
USD749726S1 (en) 2013-08-15 2016-02-16 Intuitive Surgical Operations, Inc. Surgical instrument shaft with hole pattern

Similar Documents

Publication Publication Date Title
US5277976A (en) Oriented profile fibers
US3531368A (en) Synthetic filaments and the like
US3117362A (en) Composite filament
US3558420A (en) Hollow filaments
US2945739A (en) Process of melt spinning
US3470685A (en) Synthetic textile yarn
US6048615A (en) Filament having a trilobal cross-section and a trilobal void
US3387327A (en) Filament spinning apparatus
US3635641A (en) Spinnerette for producing hollow filaments
US3728428A (en) Process for producing hollow filaments
US20030034585A1 (en) Stretching device and method of manufacturing stretched synthetic filaments
US5591525A (en) Polymeric cable
US3555600A (en) Spinneret for producing hollow filaments
US3640670A (en) Spinnerette for extruding t-shaped filaments
US5733656A (en) Polyester filament yarn and process for producing same, and fabric thereof and process for producing same
US20020094741A1 (en) Method of making continuous filament web with statistical filament distribution
US3579625A (en) Process for forming trilobal yarns
JPS61119704A (en) Cooling of collected filaments
US3413683A (en) Annular bi-component spinerette assembly
JP2711169B2 (en) Production method of ultrafine fiber
US3266087A (en) Spinneret plate for melt-spinning
JPS63159511A (en) Modified cross-section yarn and spinneret thereof
US3734993A (en) Method for extruding t-shaped filaments
GB1207408A (en) A process for melt spinning hollow filaments and spinnerets for use therewith
JPH02446B2 (en)