US3633654A - Pouring nozzle for continuous-casting machine - Google Patents

Pouring nozzle for continuous-casting machine Download PDF

Info

Publication number
US3633654A
US3633654A US51132A US3633654DA US3633654A US 3633654 A US3633654 A US 3633654A US 51132 A US51132 A US 51132A US 3633654D A US3633654D A US 3633654DA US 3633654 A US3633654 A US 3633654A
Authority
US
United States
Prior art keywords
mold
nozzle
width
tundish
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US51132A
Inventor
Paul M Auman
James B Wagstaff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
United States Steel Corp
Original Assignee
United States Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by United States Steel Corp filed Critical United States Steel Corp
Application granted granted Critical
Publication of US3633654A publication Critical patent/US3633654A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0637Accessories therefor
    • B22D11/064Accessories therefor for supplying molten metal
    • B22D11/0642Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/10Supplying or treating molten metal

Definitions

  • Wood ABSTRACT A method and nozzle construction for pouring liquid metal into a receiver, the width of which is several times greater than the thickness, for example, a continuous slabcasting mold.
  • the metal discharges from a vessel supported above the receiver as a fan-shaped stream broadened in the direction of the width of the receiver.
  • the invention avoids localized high-temperature areas in the skin of a partially solidified casting as it emerges from the mold.
  • the method and nozzle may also be used to advantage for pouring metal between the belts of a belt-type continuouscasting machine,
  • PAUL M. AUMA/V and JAMES B. WAGSTAFF Attorney This invention relates to an improved method and nozzle construction for pouring liquid metal into a receiver.
  • our method and nozzle construction are particularly useful for pouring liquid steel from a tundish either into a continuous slab-casting mold or between the belts of a belt-type continuous-casting machine, such as that shown in I-Iazelett US. Pat. No. 2,904,860 and other patents to the same patentee.
  • a typical continuously cast slab or strip has a width several times its thickness.
  • Conventional practice in continuously casting slabs is to pour one or more relatively coherent streams or jets of steel generally of a circular cross section from a tundish into an open-ended mold of appropriate cross section. If there is only one stream, it is directed along the vertical centerline of the mold.
  • An object of our invention is to provide an improved pouring method and nozzle construction which distribute liquid metal more effectively across the width of a receiver, such as a mold or other casting machine, than previous methods or nozzle constructions.
  • a further object is to provide an improved pouring method and nozzle construction which produce a fan-shaped stream distributed across the major portion of the width of a mold or belt-type casting machine.
  • FIG. 1 is a partially diagrammatic side elevational view, partly in section, of a tundish and continuous slab-casting mold illustrating our pouring method
  • FIG. 2 is a horizontal section on line Il-II of FIG. 1;
  • FIG. 3 is a top plan view ofour nozzle
  • FIG. 4 is a vertical section on plane IVIV of FIG. 3;
  • FIG. 5 is a vertical section on plane V-V of FIG. 3;
  • FIG. 6 is a diagrammatic horizontal sectional view of a tundish and belt-type continuous-casting machine illustrating our pouring method applied thereto;
  • FIG. 7 is a diagrammatic vertical section on line VII-VII of FIG. 6.
  • FIGS. 1 and 2 show diagrammatically a conventional openended mold 10 for continuously casting steel slabs S.
  • the mold has a width w several times its thickness 2.
  • a conventional tundish 12 is supported over the mold and is equipped with a nozzle 13 constructed in accordance with our invention and preferably with a slidable gate 14 for controlling flow of metal through the nozzle.
  • the mold usually is of copper and it may be equipped with the usual liquid-cooling system, oscillating mechanism, liquid level control, etc.
  • the tundish may be equipped with any suitable mechanism for supporting and operating its gate 14. We have not shown these parts, since they are not involved in the present invention.
  • the nozzle 13 discharges a relatively thin fan-shaped stream M of liquid metal into the mold 10, where it reaches a level L.
  • This stream is symmetrical with respect to planes which bisect the mold in the direction of its width w and its thickness t. The stream fans out in the direction of the former plane and at its lower end occupies the major portion of this plane.
  • the partially solidified casting S emerges from the bottom of the mold.
  • FIGS. 3, 4 and 5 show nozzle 13 in detail.
  • nozzle 13 When the tundish 12 is positioned for pouring, nozzle 13 is oriented with plane lV-IV of FIG. 3 parallel with the width w of mold 10 and plane V-V parallel with the thickness 1.
  • the nozzle is a cupshaped refractory body which has a relatively small circular pouring opening 15 in its bottom wall.
  • the upper surface of the bottom wall has a pair of relatively high areas 16 at diametrically opposite sides of opening 15, which areas are bisected by plane lV-IV.
  • the upper surface of the bottom wall also has a pair of relatively low areas 17 at diametrically opposite sides of opening 15 between the high areas, which 7 low areas are bisected by plane V-V.
  • the under surface of the bottom wall has a recess 18 elongated beneath the high areas 15 and also bisected by plane IV-IV.
  • FIGS. 6 and 7 show our method and nozzle construction applied to pouring liquid metal between the belts 21 and 22 of a belt-type continuous-casting machine.
  • the nozzle 13:: is mounted in the lower transverse edge of a tiltable tundish 23 located to pour into the space between belts, the opposed faces of which travel continuously in a downward direction.
  • the nozzle is of similar construction to that already described, and its action in producing a fan-shaped stream is similar. Such stream is distributed uniformly across the width of the belts. Tilting of the tundish controls the volume and direction of flow through the nozzle.
  • a nozzle comprising a cup-shaped refractory body having a circular pouring opening in its bottom wall, the upper surface of the bottom wall having a pair of relatively high areas at diametrically opposite sides of said opening and a pair of relatively low areas at diametrically opposite sides of said opening between said high areas, the under surface of the bottom wall having a recess elongated beneath said high areas, whereby liquid discharging through said opening forms a fan-shaped stream broadened in the direction of elongation of said recess.
  • a continuous slab-casting mold having a width substantially greater than its thickness
  • a tundish supported over said mold, said tundish having in its bottom wall a nozzle constructed as defined in claim 1 oriented so that the fan-shaped stream discharging therefrom is symmetrical with respect to planes which bisect the mold in the direction of its width and its thickness and broadened in the direction of the first-named plane to distribute steel across the mold width, whereby localized high-temperature areas are avoided in the skin of a partially solidified casting emerging from said mold.
  • a belt-type continuous-casting machine which includes a pair of spaced-apart belts, opposed faces of which travel in a downward direction, and a tiltable tundish for pouring liquid metal into the space between said belts, said tundish having a nozzle constructed as defined in claim 1 in its lower edge adjacent the space between belts for discharging a fan-shaped stream of metal into said space, said stream being broadened in the direction of the width of the belts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)
  • Casting Support Devices, Ladles, And Melt Control Thereby (AREA)

Abstract

A method and nozzle construction for pouring liquid metal into a receiver, the width of which is several times greater than the thickness, for example, a continuous slab-casting mold. The metal discharges from a vessel supported above the receiver as a fanshaped stream broadened in the direction of the width of the receiver. As applied to casting slabs, the invention avoids localized high-temperature areas in the skin of a partially solidified casting as it emerges from the mold. The method and nozzle may also be used to advantage for pouring metal between the belts of a belt-type continuous-casting machine.

Description

United States Patent Paul M. Auman;
James B. Wagstatf, both of Franklin Township, Westmoreland County, Pa. [21] Appl.No. 51,132
[22] Filed June 30, 1970 [45] Patented Jan. 11, 1972 [73] Assignee United States Steel Corporation [72] Inventors [54] POURING NOZZLE FOR CONTINUOUS-CASTING [56] References Cited UNITED STATES PATENTS 1,944,611 1/1934 Reinartz et al 222/Foundry 2,826,793 3/1958 Flickinger,Sr.eta1 ZZZ/Foundry Primary Examiner-Robert B. Reeves Assistant Examiner David A. Scherbel Att0rneyWa1ter P. Wood ABSTRACT: A method and nozzle construction for pouring liquid metal into a receiver, the width of which is several times greater than the thickness, for example, a continuous slabcasting mold. The metal discharges from a vessel supported above the receiver as a fan-shaped stream broadened in the direction of the width of the receiver. As applied to casting slabs, the invention avoids localized high-temperature areas in the skin of a partially solidified casting as it emerges from the mold. The method and nozzle may also be used to advantage for pouring metal between the belts of a belt-type continuouscasting machine,
E JAN] 1 m2 PATENT U SHEET 2 OF 2 3.633.654
INVE/V TORS.
PAUL M. AUMA/V and JAMES B. WAGSTAFF Attorney This invention relates to an improved method and nozzle construction for pouring liquid metal into a receiver.
Although our invention is not thus limited, our method and nozzle construction are particularly useful for pouring liquid steel from a tundish either into a continuous slab-casting mold or between the belts of a belt-type continuous-casting machine, such as that shown in I-Iazelett US. Pat. No. 2,904,860 and other patents to the same patentee. A typical continuously cast slab or strip has a width several times its thickness. Conventional practice in continuously casting slabs is to pour one or more relatively coherent streams or jets of steel generally of a circular cross section from a tundish into an open-ended mold of appropriate cross section. If there is only one stream, it is directed along the vertical centerline of the mold. If there are more than one, they are spaced across a vertical plane which bisects the two shorter sides of the mold. In either event the side faces of the casting have localized areas adjacent each stream where the temperature is greater than elsewhere. As the casting leaves the mold, only a thin skin at its outer surface has solidified; the core remains liquid for a considerable distance below the mold. This skin is easily ruptured, particularly along localized high-temperature areas adjacent the streams. When a breakout of liquid metal occurs, it is usually in one of these areas. When a Strip is cast in a belttype casting machine, there again is a problem in distributing the liquid metal across the width of the belts.
An object of our invention is to provide an improved pouring method and nozzle construction which distribute liquid metal more effectively across the width of a receiver, such as a mold or other casting machine, than previous methods or nozzle constructions.
A further object is to provide an improved pouring method and nozzle construction which produce a fan-shaped stream distributed across the major portion of the width of a mold or belt-type casting machine.
In the drawing FIG. 1 is a partially diagrammatic side elevational view, partly in section, of a tundish and continuous slab-casting mold illustrating our pouring method;
FIG. 2 is a horizontal section on line Il-II of FIG. 1;
FIG. 3 is a top plan view ofour nozzle;
FIG. 4 is a vertical section on plane IVIV of FIG. 3;
FIG. 5 is a vertical section on plane V-V of FIG. 3;
FIG. 6 is a diagrammatic horizontal sectional view of a tundish and belt-type continuous-casting machine illustrating our pouring method applied thereto; and
FIG. 7 is a diagrammatic vertical section on line VII-VII of FIG. 6.
FIGS. 1 and 2 show diagrammatically a conventional openended mold 10 for continuously casting steel slabs S. The mold has a width w several times its thickness 2. A conventional tundish 12 is supported over the mold and is equipped with a nozzle 13 constructed in accordance with our invention and preferably with a slidable gate 14 for controlling flow of metal through the nozzle. The mold usually is of copper and it may be equipped with the usual liquid-cooling system, oscillating mechanism, liquid level control, etc. The tundish may be equipped with any suitable mechanism for supporting and operating its gate 14. We have not shown these parts, since they are not involved in the present invention.
The nozzle 13 discharges a relatively thin fan-shaped stream M of liquid metal into the mold 10, where it reaches a level L. This stream is symmetrical with respect to planes which bisect the mold in the direction of its width w and its thickness t. The stream fans out in the direction of the former plane and at its lower end occupies the major portion of this plane. The partially solidified casting S emerges from the bottom of the mold.
FIGS. 3, 4 and 5 show nozzle 13 in detail. When the tundish 12 is positioned for pouring, nozzle 13 is oriented with plane lV-IV of FIG. 3 parallel with the width w of mold 10 and plane V-V parallel with the thickness 1. The nozzle is a cupshaped refractory body which has a relatively small circular pouring opening 15 in its bottom wall. The upper surface of the bottom wall has a pair of relatively high areas 16 at diametrically opposite sides of opening 15, which areas are bisected by plane lV-IV. The upper surface of the bottom wall also has a pair of relatively low areas 17 at diametrically opposite sides of opening 15 between the high areas, which 7 low areas are bisected by plane V-V. The under surface of the bottom wall has a recess 18 elongated beneath the high areas 15 and also bisected by plane IV-IV.
According to our pouring method, we support the tundish 12 over the mold 10 with the nozzle 13 oriented as already described. We open the gate 14 to pour liquid steel from the tundish into the mold. The configuration of the nozzle causes the stream issuing through its opening 15 to assume a fan shape broadened in the direction of the mold width w. The liquid metal is distributed across almost the full width of the mold, and there are are no localized high-temperature areas in the skin of the partially solidified casting S as it emerges from the mold. Thus the likelihood of breakouts or surface cracks is much diminished.
FIGS. 6 and 7 show our method and nozzle construction applied to pouring liquid metal between the belts 21 and 22 of a belt-type continuous-casting machine. The nozzle 13:: is mounted in the lower transverse edge of a tiltable tundish 23 located to pour into the space between belts, the opposed faces of which travel continuously in a downward direction. The nozzle is of similar construction to that already described, and its action in producing a fan-shaped stream is similar. Such stream is distributed uniformly across the width of the belts. Tilting of the tundish controls the volume and direction of flow through the nozzle.
Although we have described our invention as applied to pouring metal from a tundish into a continuous slab-casting mold, or a belt-type continuous-casting machine, it may have other application for pouring liquid from any bottom pour vessel into any receiver which has a width substantially greater than its thickness.
We claim:
1. A nozzle comprising a cup-shaped refractory body having a circular pouring opening in its bottom wall, the upper surface of the bottom wall having a pair of relatively high areas at diametrically opposite sides of said opening and a pair of relatively low areas at diametrically opposite sides of said opening between said high areas, the under surface of the bottom wall having a recess elongated beneath said high areas, whereby liquid discharging through said opening forms a fan-shaped stream broadened in the direction of elongation of said recess.
2. A bottom pour vessel equipped with a nozzle constructed as defined in claim 1.
3. A vessel equipped with a nozzle constructed as defined in claim 1 located in a lower transverse edge thereof.
4. In combination, a continuous slab-casting mold having a width substantially greater than its thickness, a tundish supported over said mold, said tundish having in its bottom wall a nozzle constructed as defined in claim 1 oriented so that the fan-shaped stream discharging therefrom is symmetrical with respect to planes which bisect the mold in the direction of its width and its thickness and broadened in the direction of the first-named plane to distribute steel across the mold width, whereby localized high-temperature areas are avoided in the skin of a partially solidified casting emerging from said mold.
5. In combination, a belt-type continuous-casting machine which includes a pair of spaced-apart belts, opposed faces of which travel in a downward direction, and a tiltable tundish for pouring liquid metal into the space between said belts, said tundish having a nozzle constructed as defined in claim 1 in its lower edge adjacent the space between belts for discharging a fan-shaped stream of metal into said space, said stream being broadened in the direction of the width of the belts.

Claims (5)

1. A nozzle comprising a cup-shaped refractory body having a circular pouring opening in its bottom wall, the upper surface of the bottom wall having a pair of relatively high areas at diametrically opposite sides of said opening and a pair of relatively low areas at diametrically opposite sides of said opening between said high areas, the under surface of the Bottom wall having a recess elongated beneath said high areas, whereby liquid discharging through said opening forms a fan-shaped stream broadened in the direction of elongation of said recess.
2. A bottom pour vessel equipped with a nozzle constructed as defined in claim 1.
3. A vessel equipped with a nozzle constructed as defined in claim 1 located in a lower transverse edge thereof.
4. In combination, a continuous slab-casting mold having a width substantially greater than its thickness, a tundish supported over said mold, said tundish having in its bottom wall a nozzle constructed as defined in claim 1 oriented so that the fan-shaped stream discharging therefrom is symmetrical with respect to planes which bisect the mold in the direction of its width and its thickness and broadened in the direction of the first-named plane to distribute steel across the mold width, whereby localized high-temperature areas are avoided in the skin of a partially solidified casting emerging from said mold.
5. In combination, a belt-type continuous-casting machine which includes a pair of spaced-apart belts, opposed faces of which travel in a downward direction, and a tiltable tundish for pouring liquid metal into the space between said belts, said tundish having a nozzle constructed as defined in claim 1 in its lower edge adjacent the space between belts for discharging a fan-shaped stream of metal into said space, said stream being broadened in the direction of the width of the belts.
US51132A 1970-06-30 1970-06-30 Pouring nozzle for continuous-casting machine Expired - Lifetime US3633654A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US5113270A 1970-06-30 1970-06-30

Publications (1)

Publication Number Publication Date
US3633654A true US3633654A (en) 1972-01-11

Family

ID=21969541

Family Applications (1)

Application Number Title Priority Date Filing Date
US51132A Expired - Lifetime US3633654A (en) 1970-06-30 1970-06-30 Pouring nozzle for continuous-casting machine

Country Status (6)

Country Link
US (1) US3633654A (en)
CA (1) CA944533A (en)
DE (1) DE2132294A1 (en)
ES (1) ES392588A1 (en)
FR (1) FR2096615B1 (en)
GB (1) GB1355087A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779431A (en) * 1969-06-09 1973-12-18 Metacon Ag Slide closure mechanism for casting vessels for liquid metallic melts
US3799410A (en) * 1972-05-25 1974-03-26 Nat Steel Corp Feed tip for continuous casting machine
US3834629A (en) * 1971-08-24 1974-09-10 Stora Kopparbergs Bergslags Ab Method and means for shaping a stream of melt flowing from a tapping hole
US4471831A (en) * 1980-12-29 1984-09-18 Allied Corporation Apparatus for rapid solidification casting of high temperature and reactive metallic alloys
US4735254A (en) * 1985-06-27 1988-04-05 Kawasaki Steel Corporation Method and apparatus for casting endless strip
US4843692A (en) * 1983-01-17 1989-07-04 Electric Power Research Institute Casting nozzle with discharge slot defined by refractory inserts
US4960245A (en) * 1983-01-17 1990-10-02 Electric Power Research Institute Casting nozzle with discharge slot defined by refractory inserts
US5622489A (en) * 1995-04-13 1997-04-22 Monro; Richard J. Fuel atomizer and apparatus and method for reducing NOx
CN103398704A (en) * 2013-07-29 2013-11-20 天津二十冶建设有限公司 Method for measuring foundation frame at continuous-casting sector-shaped section
WO2017003657A1 (en) * 2015-07-02 2017-01-05 Vesuvius Crucible Company Tundish outlet modifier

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1944611A (en) * 1930-01-13 1934-01-23 American Rolling Mill Co Nozzle for pouring molten metal
US2826793A (en) * 1956-06-21 1958-03-18 Sr William E Flickinger Well brick with stopper rod guide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1944611A (en) * 1930-01-13 1934-01-23 American Rolling Mill Co Nozzle for pouring molten metal
US2826793A (en) * 1956-06-21 1958-03-18 Sr William E Flickinger Well brick with stopper rod guide

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3779431A (en) * 1969-06-09 1973-12-18 Metacon Ag Slide closure mechanism for casting vessels for liquid metallic melts
US3834629A (en) * 1971-08-24 1974-09-10 Stora Kopparbergs Bergslags Ab Method and means for shaping a stream of melt flowing from a tapping hole
US3799410A (en) * 1972-05-25 1974-03-26 Nat Steel Corp Feed tip for continuous casting machine
US4471831A (en) * 1980-12-29 1984-09-18 Allied Corporation Apparatus for rapid solidification casting of high temperature and reactive metallic alloys
US4843692A (en) * 1983-01-17 1989-07-04 Electric Power Research Institute Casting nozzle with discharge slot defined by refractory inserts
US4960245A (en) * 1983-01-17 1990-10-02 Electric Power Research Institute Casting nozzle with discharge slot defined by refractory inserts
US4817702A (en) * 1985-06-27 1989-04-04 Kawasaki Steel Corporation Apparatus for casting endless strip
US4735254A (en) * 1985-06-27 1988-04-05 Kawasaki Steel Corporation Method and apparatus for casting endless strip
US5622489A (en) * 1995-04-13 1997-04-22 Monro; Richard J. Fuel atomizer and apparatus and method for reducing NOx
CN103398704A (en) * 2013-07-29 2013-11-20 天津二十冶建设有限公司 Method for measuring foundation frame at continuous-casting sector-shaped section
CN103398704B (en) * 2013-07-29 2015-07-15 天津二十冶建设有限公司 Method for measuring foundation frame at continuous-casting sector-shaped section
WO2017003657A1 (en) * 2015-07-02 2017-01-05 Vesuvius Crucible Company Tundish outlet modifier
KR20180026468A (en) * 2015-07-02 2018-03-12 베수비우스 유에스에이 코포레이션 Tundish Exit Changer
US10456832B2 (en) * 2015-07-02 2019-10-29 Vesuvius Usa Corporation Tundish outlet modifier

Also Published As

Publication number Publication date
ES392588A1 (en) 1973-11-16
GB1355087A (en) 1974-06-05
DE2132294A1 (en) 1972-01-05
FR2096615A1 (en) 1972-02-18
CA944533A (en) 1974-04-02
FR2096615B1 (en) 1975-09-26

Similar Documents

Publication Publication Date Title
US5169591A (en) Impact pad for a continuous caster tundish
US3633654A (en) Pouring nozzle for continuous-casting machine
US4715586A (en) Continuous caster tundish having wall dams
GB1250120A (en)
US5603860A (en) Immersed casting tube
US3371704A (en) Device for supplying molten metal into a mould of a continuous casting machine
US3521698A (en) Apparatus for the continuous casting of flat blooms
US4834167A (en) Mold for continuously casting steel strip
CA1082421A (en) Single piece annular nozzle to prevent alumina buildup during continuous casting of al-killed steel
US4117959A (en) Method and single piece annular nozzle to prevent alumina buildup during continuous casting of al-killed steel
CA2266085A1 (en) Continuous casting machine
US3705672A (en) Splash arrester having pact member supported in housing
US3931850A (en) Apparatus for feeding and distributing steel melts
USRE30343E (en) Method and single piece annular nozzle to prevent alumina buildup during continuous casting of Al-killed steel
KR100530102B1 (en) Molten steel flow distributing pad for the continuous casting tundish
JPS60180646A (en) Continuous casting device for thin sheet
US5591371A (en) Method and device for pouring molten metal
AU663568C (en) Method and device for pouring molten metal
RU2148469C1 (en) Metal continuous casting plant
JPS5835050A (en) Tundish for continuous casting having heating function for molten metal
JP2845706B2 (en) Molding equipment for continuous casting equipment
SU372876A1 (en) Method of manufacturing multilayer ingots
JPH08117938A (en) Method for pouring molten steel in continuous casting of thin slab
KR20010063509A (en) continuously casting method for preventing the clogging between upper nozzle and submerged entry nozzle
JPH057104B2 (en)