US3631500A - Energy density antenna apparatus for mobile radio receiver - Google Patents

Energy density antenna apparatus for mobile radio receiver Download PDF

Info

Publication number
US3631500A
US3631500A US18876A US3631500DA US3631500A US 3631500 A US3631500 A US 3631500A US 18876 A US18876 A US 18876A US 3631500D A US3631500D A US 3631500DA US 3631500 A US3631500 A US 3631500A
Authority
US
United States
Prior art keywords
antenna
slot
set forth
electric current
energy density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US18876A
Inventor
Kiyohiko Itoh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokkaido University NUC
Original Assignee
Hokkaido University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokkaido University NUC filed Critical Hokkaido University NUC
Application granted granted Critical
Publication of US3631500A publication Critical patent/US3631500A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic

Definitions

  • An energy density antenna has a magnetic current antenna in the form of a slot in a conducting plate and an electric current antenna in the form of a unipole normal to the plate with the signals from each antenna independently coupled to separate square law detectors and combined to provide an output signal which is relatively immune to fading due to motion of the antenna through a standing wave pattern.
  • the present invention isrelated to an energy density antenna apparatus for mobile radio receiver, and more particularly to energy density antenna apparatus of electric current and magnetic current coupling type.
  • fd 2V/
  • V(M) the maximum fading frequency
  • Another object of the present invention is to provide an energy density antenna apparatus for mobile radio receivers wherein it is easy to match the antenna apparatus with the feeder system in impedance to be connected thereto.
  • Still another object of the present invention is to provide an antenna apparatus in which the coupling between electric current antenna and magnetic current antenna is minimized.
  • Another object of the present invention is to provide an antenna apparatus suitable for loading in a space where there is a limit in thickness.
  • the, aforementioned fading caused by said standing wave can be eliminated by combining an electric current antenna and a magnetic current antenna which receive respectively and independently of each other electric field energy and magnetic field energy of the space where such electromagnetic field is and conducting a suitable gain adjustment thereon.
  • This embodiment provides an antenna system in which the magnetic current antenna is used to match the slot antenna with the feeder line easily by the offset feeder method.
  • the coupling between the electric current antenna and magnetic current antenna is minimized because the former is placed within the latter.
  • a cavity having a larger cross section than the area of the slot forming the aforementioned magnetic antenna is utilized. This will enable the effective loading of the apparatus because of its thinness of the body.
  • FIG. I shows a simplified perspective view of one embodiment of the present invention
  • FIGS. 2 and 3 show perspective views of the cavity of a magnetic current antenna to be utilized by the embodiment shown in FIG. 1 and; I 1
  • FIGS. 4 and 5 show simplified perspective views of antenna according to another embodiment of the present invention.
  • FIG. 1 shows an energy density antenna apparatus of electric current and magnetic current coupling type in which an incoming wave receives along the direction of the Y-axis a plane wave having only Ez-Hx component and which is a linear polarized wave determined by three-dimensional Cartesian coordinates.
  • antenna apparatus 10 is provided with conductive plate 11 on which are formed magnetic current antenna which is a slot antenna 12, and unipole antenna 13 adjacent to said slot antenna.
  • the E: component Ez-Hx component forming said plane wave is received by said unipole antenna 13 and fed to a square law rectifier 15 by way of coaxial cable 14.
  • l-Ix component is taken out as the voltage induced by electric current .Iy as it crosses slot 16 of said slot antenna 12 on the conductive plate 11. This is then fed to a square law rectifier 18 by way of coaxial cable 17.
  • Reference numeral 19 indicates a summing amplifier which is fed with rectified signals obtained by said respective square law rectifiers I5, 18.
  • the summing amplifier I9 adjust gains of these rectified signals suitably, and supplies a signal proportionate to %(e,,
  • FIGS. 2 and 3 of the attached drawings show perspective view of a cavity of magnetic current antenna utilized in one embodiment of present invention as shown in FIG. 1.
  • FIG. 2 shows a slot shaped cavity 21 having an opening in a planeshaped conductive plate 11 at one end thereof which is approximately one-half wavelength (M2 in length and onefourth wavelength (M4) is width.
  • FIG. 3 shows a cylindrical conductor 31 of an approximately one-sixteenth wavelength diameter having a slot 32 which is about one-half wavelength in its length alone the axis thereof.
  • FIG. 4 shows another embodiment of the present invention wherein the essential part of antenna apparatus to receive an incoming wave is composed of Ez-Hx-Hy components.
  • Said antenna apparatus 10 is provided with a unipole antenna 43 at a cross point of slot antennas 41 and 42 located perpendicular to each other on the conductive plate 11.
  • Each of the slots 44. 45 for slot antennas 41 and 42 are formed by locating them perpendicular to cavities 46, 47 having the same length and width, or having the same shape as those cavities shown in FIG. 2 or 3.
  • the unipole antenna 43 is placed at the cross point of slot antennas 41 and 42, the coupling of the two are maintained at minimum.
  • this construction with a considerable depth in the air cavities 46 and 47 presents a problem in loading the apparatus onto vehicles.
  • FIG. 5 shows an embodiment of the present invention which tries to solve the foregoing problem by providing a box-type cavity 48 which would be open to each of slots 44, 45 and also be wide enough to embrace them in whole at the back of the plate 11. This will, thus, shorten the depth of the cavity 48.
  • signals are to be fed from the unipole antenna and slot antenna by way of coaxial cable.
  • Lecher wires and the like in place of cable may be utilized.
  • the slot antenna utilized in the said embodiments will have the same characteristics as that of one-half wavelength dipole antenna having the diameter of FD/Z, wherein D is the width of the slot. Accordingly, when unipole antenna and dipole antenna are designed in such a way as to have the width of each in the manner as described heretofore, unipole antenna and slot antenna having the same frequency bandwidth, same shrinkage rate and same impedance can be obtained.
  • An energy density antenna apparatus for mobile radio comprising an electric current antenna and a magnetic current antenna, said magnetic current antenna comprising a conductive surface having slot means therein resonant at the frequency of said energy and said electric current antenna being a linear conductor substantially normal to said surface; and separate coupling means for said magnetic and electric current antennas substantially matching the impedance of said antennas wherein electromagnetic energy may be obtained in proportion to energy density of the space in which standing wave is induced by multireflection of radio waves.
  • the energy density antenna apparatus for mobile radio as set forth in claim 1 comprising of square law rectifiers to which are fed signals received by said electric current antenna and magnetic current antenna respectively, and a summing amplifier to which are fed outputs of said square law rectifiers.
  • said magnetic current antenna comprises a pair of orthogonally intersecting slots in a conducting plate and said electric current antenna comprises a unipole antenna normal to the plane of said slots and positioned at the intersection thereof.
  • Apparatus according to claim 8 and including a rectangular box-shaped cavity having a bigger cross section than the extended dimensions of said intersecting slots connected to said plate and facing said intersecting slots K

Landscapes

  • Waveguide Aerials (AREA)

Abstract

An energy density antenna has a magnetic current antenna in the form of a slot in a conducting plate and an electric current antenna in the form of a unipole normal to the plate with the signals from each antenna independently coupled to separate square law detectors and combined to provide an output signal which is relatively immune to fading due to motion of the antenna through a standing wave pattern.

Description

UIlllCu DlalCS IalClll lnventor Klyohiko Itoh Sapporo, Japan Appl. No. 18,876 Filed Mar. 12, 1970 Patented Dec. 28, 1971 Assignee Hokkaido University Sapporo, Hokkaido, Japan Priority Mar. 18, 1969 Japan 44/20057 ENERGY DENSITY ANTENNA APPARATUS FOR MOBILE RADIO RECEIVER 10 Claims, 5 Drawing Figs.
U.S. Cl 343/725, 325/305, 325/366, 325/372, 343/703, 343/767 Int. Cl H0lql3/l0, HOlq 21/00, H04b 7/08 Field of Search 343/725, 767, 703; 325/365--367, 373-375, 377, 305
[56] References Cited UNITED STATES PATENTS 3,475,687 10/1969 Pierce 325/372 X 2,996,715 8/1961 Rumsey et al. 343/767 3,522,540 8/1970 Lee 325/366 X OTHER REFERENCES The A.R.R.L. Antenna Book, The American Radio Relay League, West Hartford, Conn. 1956, TK6565A6A6; page 279 Primary Examinerl-ierman Karl Saalbach Assistant Examiner-Marvin Nussbaum AttorneyChittick, Pfund, Birch, Samuels & Gauthier ABSTRACT: An energy density antenna has a magnetic current antenna in the form of a slot in a conducting plate and an electric current antenna in the form of a unipole normal to the plate with the signals from each antenna independently coupled to separate square law detectors and combined to provide an output signal which is relatively immune to fading due to motion of the antenna through a standing wave pattern.
so RECT-1 SUMMING AMPL so RECT l8 OUTPUT ENERGY DENSITY ANTENNA APPARATUS FOR MOBILE RADIO RECEIVER BACKGROUND OF THE INVENTION The present invention isrelated to an energy density antenna apparatus for mobile radio receiver, and more particularly to energy density antenna apparatus of electric current and magnetic current coupling type.
When vehicles such as automobiles equipped with radio receivers run among the mountains or between high buildings in big cities, there are such problems as fading by standing waves caused by the interference of incident waves reflected by buildings and the like, besides the fading due to insensitive areas of the radio waves due to obstacles in the wave paths.
Having examined the fading caused by these standing waves, we found that the maximum fading frequency fd is expressed by the formula: fd=2V/). (Hz.) when the vehicles run at a speed of V(M) per second in the coherent standing waves caused by the radio wave having the wave length of A (M). When the employed frequency is 1,000 (MHz), and the speed of the vehicle V=60(km./hr.), then fd llO (Hz), which in turn will have'a bad consequence to the communications by mobile radio.
Previously, these type of antenna generally used received either one of electric field or magnetic field of the radio wave only. This meant the prior type apparatus could not meet the aforementioned problem. Other apparatus such as energy density antenna apparatus in which dipole antenna and loop antenna are combined have been suggested to obviate this problem. Such a combination creates a difficulty in impedance matching because the rediation resistance of loop antenna at one-tenth wavelength is about 2.50, and the coaxial system ordinarily used has 509 impedance.
SUMMARY OF THE INVENTION One object of the present invention is to provide an improved energy density antenna apparatus for mobile radio receiver while eliminating fading by standing wave.
Another object of the present invention is to provide an energy density antenna apparatus for mobile radio receivers wherein it is easy to match the antenna apparatus with the feeder system in impedance to be connected thereto.
Still another object of the present invention is to provide an antenna apparatus in which the coupling between electric current antenna and magnetic current antenna is minimized.
Further, another object of the present invention is to provide an antenna apparatus suitable for loading in a space where there is a limit in thickness.
According to one embodiment of the present invention the, aforementioned fading caused by said standing wave can be eliminated by combining an electric current antenna and a magnetic current antenna which receive respectively and independently of each other electric field energy and magnetic field energy of the space where such electromagnetic field is and conducting a suitable gain adjustment thereon. This embodiment provides an antenna system in which the magnetic current antenna is used to match the slot antenna with the feeder line easily by the offset feeder method.
According to another embodiment of this invention, the coupling between the electric current antenna and magnetic current antenna is minimized because the former is placed within the latter.
According to still another embodiment of this invention, a cavity having a larger cross section than the area of the slot forming the aforementioned magnetic antenna is utilized. This will enable the effective loading of the apparatus because of its thinness of the body.
BRIEF DESCRIPTION OF THE DRAWINGS Further objects and features of the present invention will now be described references being made to the attached drawings in which:
FIG. I shows a simplified perspective view of one embodiment of the present invention;
FIGS. 2 and 3 show perspective views of the cavity of a magnetic current antenna to be utilized by the embodiment shown in FIG. 1 and; I 1
FIGS. 4 and 5 show simplified perspective views of antenna according to another embodiment of the present invention.
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the accompanying drawings, FIG. 1 shows an energy density antenna apparatus of electric current and magnetic current coupling type in which an incoming wave receives along the direction of the Y-axis a plane wave having only Ez-Hx component and which is a linear polarized wave determined by three-dimensional Cartesian coordinates. In the drawings, antenna apparatus 10 is provided with conductive plate 11 on which are formed magnetic current antenna which is a slot antenna 12, and unipole antenna 13 adjacent to said slot antenna. Thus, the E: component Ez-Hx component forming said plane wave is received by said unipole antenna 13 and fed to a square law rectifier 15 by way of coaxial cable 14. l-Ix component is taken out as the voltage induced by electric current .Iy as it crosses slot 16 of said slot antenna 12 on the conductive plate 11. This is then fed to a square law rectifier 18 by way of coaxial cable 17. Reference numeral 19 indicates a summing amplifier which is fed with rectified signals obtained by said respective square law rectifiers I5, 18. The summing amplifier I9 adjust gains of these rectified signals suitably, and supplies a signal proportionate to %(e,,|lE I i- IHII) as an output, wherein IE and HI designate electric field and magnetic field of incoming wave, respectively, E designates dielectric constant in vacuum and p designates permeability in vacuum.
FIGS. 2 and 3 of the attached drawings show perspective view of a cavity of magnetic current antenna utilized in one embodiment of present invention as shown in FIG. 1. FIG. 2 shows a slot shaped cavity 21 having an opening in a planeshaped conductive plate 11 at one end thereof which is approximately one-half wavelength (M2 in length and onefourth wavelength (M4) is width. FIG. 3 shows a cylindrical conductor 31 of an approximately one-sixteenth wavelength diameter having a slot 32 which is about one-half wavelength in its length alone the axis thereof.
FIG. 4 shows another embodiment of the present invention wherein the essential part of antenna apparatus to receive an incoming wave is composed of Ez-Hx-Hy components. Said antenna apparatus 10 is provided with a unipole antenna 43 at a cross point of slot antennas 41 and 42 located perpendicular to each other on the conductive plate 11. Each of the slots 44. 45 for slot antennas 41 and 42 are formed by locating them perpendicular to cavities 46, 47 having the same length and width, or having the same shape as those cavities shown in FIG. 2 or 3. When the unipole antenna 43 is placed at the cross point of slot antennas 41 and 42, the coupling of the two are maintained at minimum. However, this construction with a considerable depth in the air cavities 46 and 47 presents a problem in loading the apparatus onto vehicles.
FIG. 5 shows an embodiment of the present invention which tries to solve the foregoing problem by providing a box-type cavity 48 which would be open to each of slots 44, 45 and also be wide enough to embrace them in whole at the back of the plate 11. This will, thus, shorten the depth of the cavity 48. In this embodiment, it is also possible to provide the unipole antenna 13 in the slot 16 of the slot antenna 12 when receiving a plane wave. This also enables minimizing of the coupling of the two antennas.
In the embodiment above described, signals are to be fed from the unipole antenna and slot antenna by way of coaxial cable. The use of Lecher wires and the like in place of cable may be utilized.
The slot antenna utilized in the said embodiments will have the same characteristics as that of one-half wavelength dipole antenna having the diameter of FD/Z, wherein D is the width of the slot. Accordingly, when unipole antenna and dipole antenna are designed in such a way as to have the width of each in the manner as described heretofore, unipole antenna and slot antenna having the same frequency bandwidth, same shrinkage rate and same impedance can be obtained.
What is claimed is:
1. An energy density antenna apparatus for mobile radio comprising an electric current antenna and a magnetic current antenna, said magnetic current antenna comprising a conductive surface having slot means therein resonant at the frequency of said energy and said electric current antenna being a linear conductor substantially normal to said surface; and separate coupling means for said magnetic and electric current antennas substantially matching the impedance of said antennas wherein electromagnetic energy may be obtained in proportion to energy density of the space in which standing wave is induced by multireflection of radio waves. i
2. The antenna apparatus as set forth in claim 1 wherein the magnetic current antenna is a slot antenna approximately onehalf wavelength long and one-fourth wavelength wide.
3. The antenna apparatus as set forth in claim 1 wherein said slot antenna is provided with a slot formed on a conductive plate and a box-shaped air cavity connected to and facing said slot.
.4. The antenna apparatus as set forth in claim 1 wherein said slot antenna is provided with a slot formed on a conductive plate and an air cavity comprising of a cylindrical conductor having a slot formed correspondingly to said slot.
5. The antenna apparatus as set forth in claim 1 wherein said slot antenna is provided with a unipole antenna within a slot therefor.
6. The antenna apparatus as set forth in claim 1 wherein said slot antenna is provided with a cavity having a bigger cross section than the area of said slot formed on a conductive plate.
7. The energy density antenna apparatus for mobile radio as set forth in claim 1 comprising of square law rectifiers to which are fed signals received by said electric current antenna and magnetic current antenna respectively, and a summing amplifier to which are fed outputs of said square law rectifiers.
8. The antenna according to claim 1 in which said magnetic current antenna comprises a pair of orthogonally intersecting slots in a conducting plate and said electric current antenna comprises a unipole antenna normal to the plane of said slots and positioned at the intersection thereof.
9. Apparatus according to claim 8 and including a cr uciform box-shaped air cavity connected to said plateand facing said intersecting slots. v I
10. Apparatus according to claim 8 and including a rectangular box-shaped cavity having a bigger cross section than the extended dimensions of said intersecting slots connected to said plate and facing said intersecting slots K

Claims (10)

1. An energy density antenna apparatus for mobile radio comprising an electric current antenna and a magnetic current antenna, said magnetic current antenna comprising a conductive surface having slot means therein resonant at the frequency of said energy and said electric current antenna being a linear conductor substantially normal to said surface; and separate coupling means for said magnetic and electric current antennas substantially matching the impedances of said antennas wherein electromagnetic energy may be obtained in proportion to energy density of the space in which standing wave is induced by multireflection of radio waves.
2. The antenna apparatus as set forth in claim 1 wherein the magnetic current antenna is a slot antenna approximately one-half wavelength long and one-fourth wavelength wide.
3. The antenna apparatus as set forth in claim 1 wherein said slot antenna is provided with a slot formed on a conductive plate and a box-shaped air cavity connected to and facing said slot.
4. The antenna apparatus as set forth in claim 1 wherein said slot antenna is provided with a slot formed on a conductive plate and an air cavity comprising of a cylindrical conductor having a slot formed correspondingly to said slot.
5. The antenna apparatus as set forth in claim 1 wherein said slot antenna is provided with a unipole antenna within a slot therefor.
6. The antenna apparatus as set forth in claim 1 wherein said slot antenna is provided with a cavity having a bigger cross section than the area of said slot formed on a conductive plate.
7. The energy density antenna apparatus for mobile radio as set forth in claim 1 comprising of square law rectifiers to which are fed signals received by said electric current antenna and magnetic current antenna respectively, and a summing amplifier to which are fed outputs of said square law rectifiers.
8. The antenna according to claim 1 in which said magnetic current antenna comprises a pair of orthogonally intersecting slots in a conducting plate and said electric current antenna comprises a unipole antenna normal to the plane of said slots and positioned at the intersection thereof.
9. Apparatus according to claim 8 and including a cruciform box-shaped air cavity connected to said plate and facing said intersecting slots.
10. Apparatus according to claim 8 and including a rectangular box-shaped cavity havinG a bigger cross section than the extended dimensions of said intersecting slots connected to said plate and facing said intersecting slots.
US18876A 1969-03-18 1970-03-12 Energy density antenna apparatus for mobile radio receiver Expired - Lifetime US3631500A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005769 1969-03-18

Publications (1)

Publication Number Publication Date
US3631500A true US3631500A (en) 1971-12-28

Family

ID=12016433

Family Applications (1)

Application Number Title Priority Date Filing Date
US18876A Expired - Lifetime US3631500A (en) 1969-03-18 1970-03-12 Energy density antenna apparatus for mobile radio receiver

Country Status (1)

Country Link
US (1) US3631500A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710340A (en) * 1971-10-13 1973-01-09 Jfd Electronics Corp Small, broadband, unidirectional antenna
US4588993A (en) * 1980-11-26 1986-05-13 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Broadband isotropic probe system for simultaneous measurement of complex E- and H-fields
US4682180A (en) * 1985-09-23 1987-07-21 American Telephone And Telegraph Company At&T Bell Laboratories Multidirectional feed and flush-mounted surface wave antenna
EP0339482A1 (en) * 1988-04-26 1989-11-02 Eta SA Fabriques d'Ebauches Time-piece provided with an antenna
US5760745A (en) * 1995-05-29 1998-06-02 Mitsubishi Denki Kabushiki Kaisha Electrostatic capacitively coupled antenna device
US6175334B1 (en) * 1997-05-09 2001-01-16 Motorola, Inc. Difference drive diversity antenna structure and method
DE10025992A1 (en) * 2000-05-25 2002-01-03 Siemens Ag Antenna system e.g. for mobile telephone has respective electrically and magnetically active antennas spaced in near field
US6424309B1 (en) * 2000-02-18 2002-07-23 Telecommunications Research Laboratories Broadband compact slot dipole/monopole and electric dipole/monopole combined antenna
US6703983B2 (en) * 2001-08-29 2004-03-09 Hon Hai Precision Ind. Co., Ltd. Slot antenna having irregular geometric shape
CN101197464A (en) * 2006-12-05 2008-06-11 松下电器产业株式会社 Antenna apparatus and wireless communication device
WO2009019850A1 (en) * 2007-08-03 2009-02-12 Panasonic Corporation Antenna device
DE102005060648B4 (en) * 2004-12-22 2016-07-14 Alps Electric Co., Ltd. Antenna device with radiation characteristics suitable for ultra wide band communication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996715A (en) * 1955-03-10 1961-08-15 Victor H Rumsey Slot antenna with horn
US3475687A (en) * 1965-09-29 1969-10-28 Bell Telephone Labor Inc Radio receiving apparatus responsive to both electric and magnetic field components of the transmitted signal
US3522540A (en) * 1967-05-01 1970-08-04 Bell Telephone Labor Inc Energy density mobile fm receiver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2996715A (en) * 1955-03-10 1961-08-15 Victor H Rumsey Slot antenna with horn
US3475687A (en) * 1965-09-29 1969-10-28 Bell Telephone Labor Inc Radio receiving apparatus responsive to both electric and magnetic field components of the transmitted signal
US3522540A (en) * 1967-05-01 1970-08-04 Bell Telephone Labor Inc Energy density mobile fm receiver

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The A.R.R.L. Antenna Book, The American Radio Relay League, West Hartford, Conn. 1956, TK6565A6A6; page 279 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3710340A (en) * 1971-10-13 1973-01-09 Jfd Electronics Corp Small, broadband, unidirectional antenna
US4588993A (en) * 1980-11-26 1986-05-13 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Broadband isotropic probe system for simultaneous measurement of complex E- and H-fields
US4682180A (en) * 1985-09-23 1987-07-21 American Telephone And Telegraph Company At&T Bell Laboratories Multidirectional feed and flush-mounted surface wave antenna
EP0339482A1 (en) * 1988-04-26 1989-11-02 Eta SA Fabriques d'Ebauches Time-piece provided with an antenna
US4884252A (en) * 1988-04-26 1989-11-28 Eta Sa Fabriques D'ebauches Timepiece including an antenna
CH672870GA3 (en) * 1988-04-26 1990-01-15
US5760745A (en) * 1995-05-29 1998-06-02 Mitsubishi Denki Kabushiki Kaisha Electrostatic capacitively coupled antenna device
US6175334B1 (en) * 1997-05-09 2001-01-16 Motorola, Inc. Difference drive diversity antenna structure and method
US6424309B1 (en) * 2000-02-18 2002-07-23 Telecommunications Research Laboratories Broadband compact slot dipole/monopole and electric dipole/monopole combined antenna
DE10025992B4 (en) * 2000-05-25 2006-10-05 Siemens Ag Wireless transmitter / receiver system
DE10025992A1 (en) * 2000-05-25 2002-01-03 Siemens Ag Antenna system e.g. for mobile telephone has respective electrically and magnetically active antennas spaced in near field
US6703983B2 (en) * 2001-08-29 2004-03-09 Hon Hai Precision Ind. Co., Ltd. Slot antenna having irregular geometric shape
DE102005060648B4 (en) * 2004-12-22 2016-07-14 Alps Electric Co., Ltd. Antenna device with radiation characteristics suitable for ultra wide band communication
CN101197464A (en) * 2006-12-05 2008-06-11 松下电器产业株式会社 Antenna apparatus and wireless communication device
US20080143612A1 (en) * 2006-12-05 2008-06-19 Hiroshi Iwai Antenna apparatus provided with antenna element excited through multiple feeding points
US7589687B2 (en) * 2006-12-05 2009-09-15 Panasonic Corporation Antenna apparatus provided with antenna element excited through multiple feeding points
WO2009019850A1 (en) * 2007-08-03 2009-02-12 Panasonic Corporation Antenna device
JP4510123B2 (en) * 2007-08-03 2010-07-21 パナソニック株式会社 Antenna device
JPWO2009019850A1 (en) * 2007-08-03 2010-10-28 パナソニック株式会社 Antenna device
US20110195661A1 (en) * 2007-08-03 2011-08-11 Norihiro Miyashita Antenna device
US8242963B2 (en) 2007-08-03 2012-08-14 Panasonic Corporation Antenna device

Similar Documents

Publication Publication Date Title
US7392029B2 (en) Method and apparatus for true diversity reception with single antenna
US5264862A (en) High-isolation collocated antenna systems
US5006859A (en) Patch antenna with polarization uniformity control
US4538153A (en) Directivity diversity communication system with microstrip antenna
US3725943A (en) Turnstile antenna
KR100695330B1 (en) Isolation Antenna for Repeater
US4041499A (en) Coaxial waveguide antenna
US3631500A (en) Energy density antenna apparatus for mobile radio receiver
US3641578A (en) Discone antenna
US2454766A (en) Broad band antenna
US3599220A (en) Conical spiral loop antenna
US2885542A (en) Diversity communication receiving system
WO2021169926A1 (en) Antenna and radar system
US2190816A (en) Antenna
KR100695328B1 (en) Ultra Isolation Antennas
US5124711A (en) Device for auto-adaptive direction and polarization filtering of radio waves received on a network of aerials coupled to a receiver
CN106207424B (en) A kind of passive circular polarisation is from recalling antenna array
US4584582A (en) Multi-mode direction finding antenna
US20180090844A1 (en) Highly isolated monopole antenna system
US3916414A (en) Antenna system for primary and secondary radar
US4611212A (en) Field component diversity antenna and receiver arrangement
US3582950A (en) Tracking antenna system
Itoh et al. Slot-monopole antenna system for energy-density reception at UHF
CN105337041A (en) Full-band television transmitting antenna based on rhombic oscillators
EP0386255A1 (en) Active antenna