US3629426A - Therapeutical compositions containing piperidine derivatives - Google Patents

Therapeutical compositions containing piperidine derivatives Download PDF

Info

Publication number
US3629426A
US3629426A US778844A US77884468A US3629426A US 3629426 A US3629426 A US 3629426A US 778844 A US778844 A US 778844A US 77884468 A US77884468 A US 77884468A US 3629426 A US3629426 A US 3629426A
Authority
US
United States
Prior art keywords
allyl
acid
ethyl ester
isonipecotinic
acid ethyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US778844A
Inventor
Hans Herbert Kuhnis
Rolf Denss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novartis Corp
Original Assignee
Ciba Geigy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ciba Geigy Corp filed Critical Ciba Geigy Corp
Application granted granted Critical
Publication of US3629426A publication Critical patent/US3629426A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D211/00Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings
    • C07D211/04Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D211/06Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members
    • C07D211/36Heterocyclic compounds containing hydrogenated pyridine rings, not condensed with other rings with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having no double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D211/60Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D211/62Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals attached in position 4

Definitions

  • Illustrative embodiments are therapeutical compositions containing l-(3- phenylpropyl)-4-allyl-isonipecotinic acid ethyl ester and l-n-octyl-4allyl-isonipecotinic acid ethyl ester.
  • This invention relates to therapeutical compositions consisting essentially of (l) a l-substituted 4-allyl-isonipecotinic acid lower alkyl ester or a pharmaceutically acceptable acid addition salt thereof and (2) a pharmaceutical carrier. Furthermore, the invention pertains to a method of treating pain as well as to a method of producing an antitussive effect, in mammals.
  • compositions of the present invention are characterised by a content of a compound of the formula wherein R represents alkyl having 7 to 9 carbon atoms, phenylalkyl having at most 4 carbon atoms in the alkyl moiety, Z-(N-alkanoyl-anilino)-ethyl having at most 4 carbon atoms in the alkanoyl moiety, 2-anilinoethyl, Z-(N-allylanilino)-ethyl, 2-phenoxyethyl, Z-benzoylethyl or cinnamyl, and
  • R represents lower alkyl
  • lower alkyl as used herein per se means saturated monovalent aliphatic groups of the general formula 'C H wherein m designates an integer of less than S and is inclusive for both straight and branched chain groups.
  • alkyl groups are e.g. methyl, ethyl, n-propyl, isopropyl, nbutyl, isobutyl or tert. butyl.
  • the analgesic activity is particularly marked in those of the inventive compounds wherein in the above Formula R represents phenylalkyl having at most 4 carbon atoms in the alkyl moiety or Z-anilinoethyl, and R represents lower alkyl, especially in those compounds wherein R represents phenylethyl, phenylpropyl or 2-anilinoethyl, and R represents ethyl, whereas the antitussive activity, although possessed by all of the inventive compounds, is especially pronounced in those compounds of the invention wherein in the above formula R represents alkyl having 7 to 9 carbon atoms, and R represents lower alkyl as well as the specific compounds 1-(3-phenylpropyl)-4- allyl-isonipecotinic acid n-butyl ester, l-(4-phenylibutyl)- 4-allyl-isonipecotinic acid ethyl ester, 1-[2-(N-allylanilino)-eth
  • R represents alkyl having 7 to 9' carbon atoms, phenylalkyl having at most 4 carbon atoms in the alkyl moiety, 2-(N-allyl-anilino)-ethyl or 2-anilinoethyl, and R represents lower alkyl, as Well as their pharmaceutically acceptable acid addition salts, are especially preferred, for use in the therapeutical compositions of the present invention.
  • compositions forming the preferred embodiment of the invention and which show analgesic activity to a favorable degree are those which contain 1-(Z-phenylethyl)-4-allyl-isonipecotinic acid ethyl ester, 1-(3-phenylpropyl)-4-allyl-isonipecotinic acid ethyl ester, and 1-(Z-anilinoethyl)-4-allyl-isonipecotinic acid ethyl ester, While examples of compositions which are distinguished by pronounced antitussive activity are particularly those which contain 1-n-octyl-4-allyl-isonipecotinic acid ethyl ester, as well as 1-(3-phenylpropyl)-4 allyl-isonipecotinic acid n-butyl ester, 1-(4-phenylbutyl)- 4-allyl-isonipecotinic acid ether ester, I-[Z-N-allyl-an
  • the analgesics activity of the compounds used is determined e.g. according to the method of F. Gross, Helvet. Physiol. Acta 5, C 31 (1947) with the apparatus of Friebel and may illustratively be demonstrated, for instance, for 1-(3-phenylpropyl)-4-allyl-isonipecotinic acid ethyl ester and 1-(2-anilinoethyl)-4-allyl-isonipecotinic acid ester as follows:
  • the apparatus comprises an electrically heated lamp which is placed in the focus of a semi-elliptical metal, concave mirror. Under the mirror, on a turn-table, there are located 10 small Plexiglas cages each holding a white mouse in such a position that the mouse-tail rests stretched out in a small groove on a Plexiglas plate.
  • the turn-table can be turned so that the mouse-tails one after the other come to be placed into the second focus of the elliptical mirror. Pain is induced by the convergent heat radiation from the mirror and the time is measured from the moment when the heat reaches the mouse-tail till the moment at which the mouse twitches its tail. 7
  • test compound Two series of 10 mice each are tested prior to the administration of the test compound, and the normal reaction time for each mouse is recorded. Then the test compound is administered either by intraperitoneal injection or orally and the reaction times after the injection are 3 recorded, thus enabling determination of the intensity and the duration of the analgesic effect of the test compound administered.
  • 1-(3 phenylpropyl) 4 allyl-isonipecotinic acid ethyl ester used in form of its fumarate, exhibits in this test during 60 minutes an average increase of 50% in the threshold of irritation (prolongation of reaction time) at doses of about 6 mg./kg. i.p. or 65 mg./kg. p.o., while having at the same time a favorable therapeutical index: the toxicity value LD of this compound in mice is 530 mg./kg. p.o.
  • the antitussive activity of the compound used is determined e.g. according to R. Domenjoz, Archiv fur experimentelle Pathologie und Pharmakologie 215, 19-24 (1952) and may illustratively be demonstrated, for instance, for 1-(3-phenylpropyl)-4-allyl-isonipecotinic acid n-butyl ester, 1- [2-(N-allyl-anilino)-ethyl]-4-allyl-isonipecotinic acid ethyl ester and 1-(Z-anilinoethyl)-4-allylisonipecotinic acid ethyl ester, as follows:
  • Healthy cats of normal weight are narcotized with a suitable narcotic.
  • aprobarbital Doses of 30 65 mg./kg. of aprobarbital are applied intraperitoneally to obtain a relatively superficial narcosis. About 45 minutes after the injection of the narcotic, the preparation of the Nervus laryngeus superior is started, by fitting on an irritation-electrode.
  • An apparatus manufactured by GRASS Medical Instruments, Type SD 5, allowing irritation of the aforesaid nerve with rectangular current-impulses of any desired frequency and intensity is connected to the electrode.
  • the irritation-frequency applied is 5 cycles at an irritation-intensity between 0.5 and 3 volts.
  • the irritation-duration is about 8 seconds and the interval between two irritations is about 120 seconds.
  • a Marey capsule is used for the registrations of the cough reflexes.
  • a respiration-cannula is introduced through the oral cavity down to the glottic chink.
  • the compound to be tested is injected intravenously in the form of a 1% aqueous solution of its fuma
  • I-(S-phenylpropyl) 4-allyl-isonipecotinic acid n-butyl ester shows in this test at doses of about 0.5 mg./kg. to about 1.0 mg./kg. excellent antitussive activity.
  • 1-[2-(N-allyl-anilino)-ethyl]-4- allyl-isonipecotinic acid ethyl ester and 1-(2-anilinoethyl)- 4-allyl-isonipecotinic acid ethyl ester also administered as their fumarates exhibit valuable antitussive activity at doses of e.g. 0.5 and 1.0 mg./kg. respectively.
  • R represents alkyl having 7 to 9 carbon atoms
  • R represents lower alkyl, particularly of 1-n-octyl-4-isonipecotinic acid ethyl ester as well as of 1-(4-phenylbutyl)-4-allyl-isonipecotinic acid ethyl ester, 1-(3-phenylpropyl)-4-allyl-isonipecotinic acid n-butyl ester, 1-[2-allyl-anilino)-ethyl]-4-allyl-isonipecotinic acid ethyl ester and of 1-(2-anilinoethyl)-4-allylisonipecotinic acid ethyl ester, render these compounds well suited for the production of an antitussive effect as well as for the treatment of tussive irritation and cough in a mammal which comprises administering orally, rectally or parent
  • the piperidine derivatives of the Formula I and their acid addition salts can be produced starting from isonipecotinic acid alkyl esters substituted in the 1-position by the group R They may be produced by reacting an alkali metal compound of an isonipecotinic acid ester corresponding to the general Formula II wherein X represents an alkali metal ion, particularly a lithium ion, and
  • R and R have the meanings given in Formula I, in an inert organic solvent, with a reactive ester of allyl alcohol and, if desired, the resulting compound of Formula I is converted into an addition salt with an inorganic or organic acid.
  • Halides such as the bromide, iodide and chloride, also alkane sulphonic acid esters and arene sulphonic acid esters such as methane sulphonic acid ester or p-toluene sulphonic acid ester are used in particular as reactive esters of allyl alcohol.
  • a suitable reaction medium for the main reaction is, e.g. a mixture of anhydrous diethyl ether or tetrahydrofuran with 1,2-dimethoxyethane (ethylene glycol dimethyl ether).
  • the alkali metal compounds of Formula II are produced in situ from other suitable alkali metal compounds.
  • Triphenylmethyl lithium which is particularly suitable as such is preferably also formed in situ from another organic lithium compound such as phenyl lithium, e.g. by adding a solution of triphenylmethane in 1,2-dimethoxyethane to phenyl lithium produced in the known way and kept in diethyl ether.
  • tripheynlmethyl lithium produces intensively coloured solutions, both its formation and the amount used by the isonipecotinic acid ester of Formula II which is subsequently added, can easily be observed.
  • triphenylmethyl lithium also, e.g. triphenylmethyl sodium or potassium can be used.
  • the steps in the process according to the invention are generally slightly exothermic and can be performed at room temperature or slightly raised tempera ture. Depending on the starting materials and amounts thereof used, if necessary, the reaction mixture should also be able to be cooled.
  • a number of 1-substituted isonipecotinic acid alkyl esters of Formula II are known and others can be produced analogously to those known in a simple manner.
  • such starting materials are obtained by quaternising lower isonipecotinic acid alkyl esters with halogen compounds of the Formula III R -Hal (III) wherein Hal represents chlorine, bromine or iodine, and
  • R has the meaning :given in Formula I, and then catalytically hydrogenating, e.g. in the presence of rhodium-aluminium oxide catalysts. More general is the reaction of a lower isonipecotinic acid alkyl ester with a halide of the general Formula III or with a corresponding methane sulphonic acid or p-toluene sulphonic acid ester.
  • Another process for producing compounds of Formula I and their salts with inorganic and organic acids consists in reacting a compound of the Formula IV H (IV) wherein R has the meaning given in Formula I, with a reactive ester of a compound of the general Formula V wherein R has the meaning given in Formula I.
  • the reaction is performed at room temperature or at a moderately elevated temperature in a suitable organic solvent such as ethanol, acetone, ethyl acetate or dimethyl formamide.
  • the reaction is accelreated by the addition of acid binding agents such as potassium carbonate and/ or potassium iodide.
  • acid binding agents such as potassium carbonate and/ or potassium iodide.
  • Suitable reactive esters are, in particular, esters of hydrogen halic acids such as bromides, chlorides and iodides, also arylsulphonic acid esters, e.g. p-toluene sulphonic acid esters.
  • the piperidine derivatives of Formula I obtained as above are then converted in the usual way into their addition salts with inorganic and organic acids.
  • the acid desired as salt component or a solution thereof is added to a solution of a piperidine derivative of Formula I in an organic solvent such as diethyl ether, methanol or ethanol and the salt which precipitates either direct or after addition of a second organic liquid such as diethyl ether or methanol, is isolated.
  • the salts to be used as active ingredients crystallise well and are not or are only slightly hygroscopic.
  • piperidine derivatives of Formula I and their pharmaceutically acceptable acid addition salts are administered to mammals orally, rectally or parenterally.
  • the daily dosages of the free bases or of pharmaceutically acceptable salts thereof will, of course, vary with the mammal under treatment and may, for example, range between about 1 mg. and about 100 mg.
  • Suitable dosage units of the therapeutical compositions according to the invention such as drages (sugar coated tablets), capsules, tablets, suppositories or ampoules, preferably contain 0.5- 50 mg. of piperidine derivative of the Formula I or a pharmaceutically acceptable acid addition salt thereof.
  • lozenges and forms not made up in oral single dosages are used in particular for the treatment of coughs, e.g. cough syrups and drops prepared with the usual auxiliaries.
  • Dosage units for oral administration preferably contain between 1% and 90% of a piperidine derivative of the Formula I or a pharmaceutically acceptable acid addition salt thereof as active substance. They are produced by combining the active substance with, e.g. solid pulverulent carriers such as lactose, saccharose, sorbitol, mannitol; starches such as potato starch, maize starch or amylopectin, also laminaria powder or citrus pulp powder;
  • cellulose derivatives or gelatine optionally with the addition of lubricants such as magnesium or calcium stearate or polyethylene glycols of suitable molecular weights, to form tablets or drage cores.
  • lubricants such as magnesium or calcium stearate or polyethylene glycols of suitable molecular weights
  • the latter are coated, e.g. With concentrated sugar solutions which can contain, e.g. gum arabic, talcum and/or titanium dioxide, or with a lacquer dissolved in easily volatile organic solvents or mixtures of solvents.
  • Dyestuffs can be added to these coatings, e.g. to distinguish between different dosages of active substance.
  • Other suitable dosage units for oral administration are hard gelatine capsules as well as soft, closed capsules made of gelatine and a softener such as glycerine.
  • the former contain the active substance preferably as granulate in admixture with lubricants such as talcum or magnesium stearate and, optionally, stabilising agents such as sodium metabisulphite or ascorbic acid.
  • lubricants such as talcum or magnesium stearate
  • stabilising agents such as sodium metabisulphite or ascorbic acid.
  • the active substance is preferably dissolved or suspended in suitable liquids such as liquid polyethylene glycols, to which stabilising agents can also be added.
  • dosage units for rectal administration are suppositories which consist of a combination of a piperidine derivative of Formula I or a suitable salt thereof with a neutral fatty foundation, or also gelatine rectal capsules which contain a combination of the active substance with polyethylene glycols of suitable molecular weight.
  • Ampoules for parenteral, particularly intramuscular, also intravenous, administration preferably contain a water soluble salt of a piperidine derivative of the general Formula I as active substance in a concentration of, preferably, 0.55%, in aqueous solution, optionally together with suitable stabilising agents and buffer substances.
  • Ether is added to the residue and the ether solution obtained is extracted with dilute hydrochloric acid.
  • the acid extracts are made alkaline and extracted exhaustively with chloroform and the chloroform extracts are dried and concentrated.
  • the residue is taken up in ether, the ether solution is dried and concentrated and the residue is distilled.
  • the l-(3-phenylpropyl)-4-allyl isonipecotinic acid ethyl ester boils at 178/0.01 torr.
  • the oil is dissolved in ether and 95% of the theoretical amount of fumaric acid is added.
  • the fumarate is filtered off under suction and recrystallised from isopropanol.
  • the 1-(3-phenylpropyl)-4-allyl ionipecotinic acid ethyl ester fumarate melts at 138.
  • B.P. 172-182/0.09 torr fumarate M.P. 146-147"; 1-(3-phenylpropyl)-4-allyl-isonipecotinic acid isopropyl ester, B.P. 140-l50/0.01 torr, hydrochloride M.P.
  • the l-substituted isonipecotinic acid alkyl ester needed as starting materials for the production of the above compounds can be produced, e.g., as follows:
  • EXAMPLE 2 1.1 g. of 4-allyl-isonipecotinic acid ethyl ester, 2.2 g. of 2-phenylethyl bromide, 5 g. of sodium carbonate 0.1 g. of sodium iodide in 40 ml. of acetone are refluxed for 18 hours. The reaction mixture is then filtered, the filter residue is Washed with acetone, the filtrate is concentrated and the residue is distilled under high vacuum. The 1-(2- phenylethyl)-4-allyl-isonipecotinic acid ethyl ester boils at -130/ 0.01 torr. The fumarate produced therefrom melts at 138.
  • 4-allyl-isonipecotinic acid ethyl ester needed as starting material is produced as follows:
  • the other low alkyl esters of 4-allyl-isonipecotinic acid can also be produced analogously to (a) and (b).
  • An analgesic pharmaceutical composition in dosage unit form consisting essentially of (1) an amount of between 0.5 mg. and about 50 mg. of
  • H30 CH C OH, (5111 oo-o-n,
  • R represents 2 anilinoethyl or Z-(N-allylanilino)-ethyl and References Cited UNITED STATES PATENTS 8/1967 Kuhnis et al. 260-2943 OTHER REFERENCES Janssen et al., Journal of Medicinal and Pharmaceutical Chemistry, vol. 2, No. 1 (1960) pp. 31-45.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Hydrogenated Pyridines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

THERAPEUTICAL COMPOSITIONS CONTAINING 1-SUBSTITUTED 4ALLYL-ISONIPECOTINIC ACID LOWER ALKYL ESTERS OR PHARMACEUTICALLY ACCEPTABLE ACID ADDITION SALTS THEREOF, WHICH HAVE USEFUL ANALGESIC AND ANTITUSSIVE PROPERTIES AND A METHOD OF TREATING PAIN AS WELL AS A METHOD OF PRODUCING AN ANTITUSSIVE EFFCT, IN MAMMALS. ILLUSTRATIVE EMBODIMENTS ARE THERAPEUTICAL COMPOSITIONS CONTAINING 1-(3PHENYLPRPYL)-4-ALLYL-ISONIPECOTINIC ACID ETHYL ESTER AND 1-N-OCTYL-4-ALLYL-ISONIPECOTINIC ACID ETHYL ESTER.

Description

United States Patent US. Cl. 424267 4 Claims ABSTRACT OF THE DISCLOSURE Therapeutical compositions containing l-substituted 4- allyl-isonipecotinic acid lower alkyl esters or pharmaceutically acceptable acid addition salts thereof, which have useful analgesic and antitussive properties and a method of treating pain as Well as a method of producing an antitussive effect, in mammals. Illustrative embodiments are therapeutical compositions containing l-(3- phenylpropyl)-4-allyl-isonipecotinic acid ethyl ester and l-n-octyl-4allyl-isonipecotinic acid ethyl ester.
CROSS-REFERENCE This is a continuation-in-part of Ser. No. 652,040 filed July 10, 1967, now US. Patent No. 3,523,949.
DETAILED DISCLOSURE This invention relates to therapeutical compositions consisting essentially of (l) a l-substituted 4-allyl-isonipecotinic acid lower alkyl ester or a pharmaceutically acceptable acid addition salt thereof and (2) a pharmaceutical carrier. Furthermore, the invention pertains to a method of treating pain as well as to a method of producing an antitussive effect, in mammals.
The therapeutical compositions of the present invention are characterised by a content of a compound of the formula wherein R represents alkyl having 7 to 9 carbon atoms, phenylalkyl having at most 4 carbon atoms in the alkyl moiety, Z-(N-alkanoyl-anilino)-ethyl having at most 4 carbon atoms in the alkanoyl moiety, 2-anilinoethyl, Z-(N-allylanilino)-ethyl, 2-phenoxyethyl, Z-benzoylethyl or cinnamyl, and
R represents lower alkyl,
or a pharmaceutically acceptable acid addition salt thereof.
The term lower alkyl as used herein per se means saturated monovalent aliphatic groups of the general formula 'C H wherein m designates an integer of less than S and is inclusive for both straight and branched chain groups. Illustrative of such alkyl groups are e.g. methyl, ethyl, n-propyl, isopropyl, nbutyl, isobutyl or tert. butyl.
It has now been found that the above compounds and their pharmaceutically acceptable acid addition salts unexpectedly exhibit valuable pharmacological properties,
3,629,426 Patented Dec. 21, 1971 "ice in particular analgesic and antitussive activity with, at the same time, a favorable therapeutical index. These pharmacological properties render the inventive compounds and their acid addition salts well suited for the treatment, relief and removal, of pain of various origins as well as for the production of an antitussive effect and the treatment of tussive irritation and cough, in mammals, and thus for the use as active ingredients in the therapeutical compositions according to the invention.
The analgesic activity is particularly marked in those of the inventive compounds wherein in the above Formula R represents phenylalkyl having at most 4 carbon atoms in the alkyl moiety or Z-anilinoethyl, and R represents lower alkyl, especially in those compounds wherein R represents phenylethyl, phenylpropyl or 2-anilinoethyl, and R represents ethyl, whereas the antitussive activity, although possessed by all of the inventive compounds, is especially pronounced in those compounds of the invention wherein in the above formula R represents alkyl having 7 to 9 carbon atoms, and R represents lower alkyl as well as the specific compounds 1-(3-phenylpropyl)-4- allyl-isonipecotinic acid n-butyl ester, l-(4-phenylibutyl)- 4-allyl-isonipecotinic acid ethyl ester, 1-[2-(N-allylanilino)-ethyl]-4-al1yl-isonipecotinic acid ethyl ester and 1-(2-anilino-ethyl)-4-allyl-isonipecotinic acid ethyl ester.
The aforementioned group of compounds wherein, in the above formula, R represents alkyl having 7 to 9' carbon atoms, phenylalkyl having at most 4 carbon atoms in the alkyl moiety, 2-(N-allyl-anilino)-ethyl or 2-anilinoethyl, and R represents lower alkyl, as Well as their pharmaceutically acceptable acid addition salts, are especially preferred, for use in the therapeutical compositions of the present invention.
Particular examples of compositions forming the preferred embodiment of the invention and which show analgesic activity to a favorable degree are those which contain 1-(Z-phenylethyl)-4-allyl-isonipecotinic acid ethyl ester, 1-(3-phenylpropyl)-4-allyl-isonipecotinic acid ethyl ester, and 1-(Z-anilinoethyl)-4-allyl-isonipecotinic acid ethyl ester, While examples of compositions which are distinguished by pronounced antitussive activity are particularly those which contain 1-n-octyl-4-allyl-isonipecotinic acid ethyl ester, as well as 1-(3-phenylpropyl)-4 allyl-isonipecotinic acid n-butyl ester, 1-(4-phenylbutyl)- 4-allyl-isonipecotinic acid ether ester, I-[Z-N-allyl-anilino)-ethyl]-4-allyl-isonipecotinic acid ethyl ester, and 1- (Z-anilinoethyl)4-allyl-isonipecotinic acid ethyl ester.
The analgesics activity of the compounds used is determined e.g. according to the method of F. Gross, Helvet. Physiol. Acta 5, C 31 (1947) with the apparatus of Friebel and may illustratively be demonstrated, for instance, for 1-(3-phenylpropyl)-4-allyl-isonipecotinic acid ethyl ester and 1-(2-anilinoethyl)-4-allyl-isonipecotinic acid ester as follows:
The apparatus comprises an electrically heated lamp which is placed in the focus of a semi-elliptical metal, concave mirror. Under the mirror, on a turn-table, there are located 10 small Plexiglas cages each holding a white mouse in such a position that the mouse-tail rests stretched out in a small groove on a Plexiglas plate. The turn-table can be turned so that the mouse-tails one after the other come to be placed into the second focus of the elliptical mirror. Pain is induced by the convergent heat radiation from the mirror and the time is measured from the moment when the heat reaches the mouse-tail till the moment at which the mouse twitches its tail. 7
Two series of 10 mice each are tested prior to the administration of the test compound, and the normal reaction time for each mouse is recorded. Then the test compound is administered either by intraperitoneal injection or orally and the reaction times after the injection are 3 recorded, thus enabling determination of the intensity and the duration of the analgesic effect of the test compound administered.
1-(3 phenylpropyl) 4 allyl-isonipecotinic acid ethyl ester, used in form of its fumarate, exhibits in this test during 60 minutes an average increase of 50% in the threshold of irritation (prolongation of reaction time) at doses of about 6 mg./kg. i.p. or 65 mg./kg. p.o., while having at the same time a favorable therapeutical index: the toxicity value LD of this compound in mice is 530 mg./kg. p.o. In the same test 1-(2-anilinoethyl)-4allylisonipecotinic acid ethyl ester fumarate exhibited, during 60 minutes, an average increase of 50% in the irritation threshold, at doses of about 5 mg./kg. i.p.
On account of their favorable pharmacological, in particular analgesic properties, the compounds wherein in the above formula R represents phenylethyl, phenylpropyl, or 2-anilinoethyl and R represents ethyl, especially 1-(3- phenyl-propyl)-4-allylisonipecotinic acid ethyl ester, '1- (2-phenyl-ethyl)-4-allyl-isonipecotinic acid ethyl ester and 1-(2-anilinoethyl)-4-allyl-isonipecotinic acid ethyl ester, are particularly suitable for the treatment, relief or removal, of pain which comprises administering orally, rectally or parenterally to a mammal requiring such treatment an analgesically effective amount of such compound or of a pharmaceutically acceptable acid addition salt thereof.
The antitussive activity of the compound used is determined e.g. according to R. Domenjoz, Archiv fur experimentelle Pathologie und Pharmakologie 215, 19-24 (1952) and may illustratively be demonstrated, for instance, for 1-(3-phenylpropyl)-4-allyl-isonipecotinic acid n-butyl ester, 1- [2-(N-allyl-anilino)-ethyl]-4-allyl-isonipecotinic acid ethyl ester and 1-(Z-anilinoethyl)-4-allylisonipecotinic acid ethyl ester, as follows:
Healthy cats of normal weight are narcotized with a suitable narcotic.
Doses of 30 65 mg./kg. of aprobarbital are applied intraperitoneally to obtain a relatively superficial narcosis. About 45 minutes after the injection of the narcotic, the preparation of the Nervus laryngeus superior is started, by fitting on an irritation-electrode. An apparatus manufactured by GRASS Medical Instruments, Type SD 5, allowing irritation of the aforesaid nerve with rectangular current-impulses of any desired frequency and intensity is connected to the electrode. The irritation-frequency applied is 5 cycles at an irritation-intensity between 0.5 and 3 volts. The irritation-duration is about 8 seconds and the interval between two irritations is about 120 seconds. For the registrations of the cough reflexes, a Marey capsule is used. A respiration-cannula is introduced through the oral cavity down to the glottic chink. The compound to be tested is injected intravenously in the form of a 1% aqueous solution of its fumarate.
I-(S-phenylpropyl) 4-allyl-isonipecotinic acid n-butyl ester, used in form of its fumarate, shows in this test at doses of about 0.5 mg./kg. to about 1.0 mg./kg. excellent antitussive activity. 1-[2-(N-allyl-anilino)-ethyl]-4- allyl-isonipecotinic acid ethyl ester and 1-(2-anilinoethyl)- 4-allyl-isonipecotinic acid ethyl ester also administered as their fumarates exhibit valuable antitussive activity at doses of e.g. 0.5 and 1.0 mg./kg. respectively.
The favorable pharmacological, especially antitussive properties of the compounds wherein R represents alkyl having 7 to 9 carbon atoms, and R represents lower alkyl, particularly of 1-n-octyl-4-isonipecotinic acid ethyl ester as well as of 1-(4-phenylbutyl)-4-allyl-isonipecotinic acid ethyl ester, 1-(3-phenylpropyl)-4-allyl-isonipecotinic acid n-butyl ester, 1-[2-allyl-anilino)-ethyl]-4-allyl-isonipecotinic acid ethyl ester and of 1-(2-anilinoethyl)-4-allylisonipecotinic acid ethyl ester, render these compounds well suited for the production of an antitussive effect as well as for the treatment of tussive irritation and cough in a mammal which comprises administering orally, rectally or parenterally to said mammal an antitussively ef- 4 fective amount of such a compound or of a pharmaceutically acceptable acid addition salt thereof.
The piperidine derivatives of the Formula I and their acid addition salts can be produced starting from isonipecotinic acid alkyl esters substituted in the 1-position by the group R They may be produced by reacting an alkali metal compound of an isonipecotinic acid ester corresponding to the general Formula II wherein X represents an alkali metal ion, particularly a lithium ion, and
R and R have the meanings given in Formula I, in an inert organic solvent, with a reactive ester of allyl alcohol and, if desired, the resulting compound of Formula I is converted into an addition salt with an inorganic or organic acid.
Halides such as the bromide, iodide and chloride, also alkane sulphonic acid esters and arene sulphonic acid esters such as methane sulphonic acid ester or p-toluene sulphonic acid ester are used in particular as reactive esters of allyl alcohol. A suitable reaction medium for the main reaction is, e.g. a mixture of anhydrous diethyl ether or tetrahydrofuran with 1,2-dimethoxyethane (ethylene glycol dimethyl ether). The alkali metal compounds of Formula II are produced in situ from other suitable alkali metal compounds. Triphenylmethyl lithium, which is particularly suitable as such is preferably also formed in situ from another organic lithium compound such as phenyl lithium, e.g. by adding a solution of triphenylmethane in 1,2-dimethoxyethane to phenyl lithium produced in the known way and kept in diethyl ether. As tripheynlmethyl lithium produces intensively coloured solutions, both its formation and the amount used by the isonipecotinic acid ester of Formula II which is subsequently added, can easily be observed. Instead of triphenylmethyl lithium, also, e.g. triphenylmethyl sodium or potassium can be used. The steps in the process according to the invention are generally slightly exothermic and can be performed at room temperature or slightly raised tempera ture. Depending on the starting materials and amounts thereof used, if necessary, the reaction mixture should also be able to be cooled.
A number of 1-substituted isonipecotinic acid alkyl esters of Formula II are known and others can be produced analogously to those known in a simple manner. For example, such starting materials are obtained by quaternising lower isonipecotinic acid alkyl esters with halogen compounds of the Formula III R -Hal (III) wherein Hal represents chlorine, bromine or iodine, and
R has the meaning :given in Formula I, and then catalytically hydrogenating, e.g. in the presence of rhodium-aluminium oxide catalysts. More general is the reaction of a lower isonipecotinic acid alkyl ester with a halide of the general Formula III or with a corresponding methane sulphonic acid or p-toluene sulphonic acid ester.
Another process for producing compounds of Formula I and their salts with inorganic and organic acids consists in reacting a compound of the Formula IV H (IV) wherein R has the meaning given in Formula I, with a reactive ester of a compound of the general Formula V wherein R has the meaning given in Formula I. The reaction is performed at room temperature or at a moderately elevated temperature in a suitable organic solvent such as ethanol, acetone, ethyl acetate or dimethyl formamide.
If desired, the reaction is accelreated by the addition of acid binding agents such as potassium carbonate and/ or potassium iodide. Suitable reactive esters are, in particular, esters of hydrogen halic acids such as bromides, chlorides and iodides, also arylsulphonic acid esters, e.g. p-toluene sulphonic acid esters.
If desired, the piperidine derivatives of Formula I obtained as above are then converted in the usual way into their addition salts with inorganic and organic acids. For example, the acid desired as salt component or a solution thereof is added to a solution of a piperidine derivative of Formula I in an organic solvent such as diethyl ether, methanol or ethanol and the salt which precipitates either direct or after addition of a second organic liquid such as diethyl ether or methanol, is isolated.
Instead of the free bases, pharmaceutically acceptable acid addition salts thereof can be used as active ingredients in the therapeutical compositions according to the invention i.e. salts with those acids the anions of which, in the usual dosages, have either none or a desirable pharmacological action in themselves. In addition, it is of advantage if the salts to be used as active ingredients crystallise well and are not or are only slightly hygroscopic. Hydrochloric acid, hydrobrornic acid, sulfuric acid, phosphoric acid, methane sulfonic acid, etha-ne sulfonic acid, fl-hydroxyethane sulfonic acid, acetic acid, malic acid, tartaric acid, citric acid, lactic acid, salicylic acid, fumaric acid, malei-c acid, benzoic acid, salicylic acid, phenylacetic acid, mandelic acid, embonic acid or 1,S-naphthalenedisulfonic acid, for example, can be used for salt formation with piperidine derivatives of Formula I.
As mentioned above, the piperidine derivatives of Formula I and their pharmaceutically acceptable acid addition salts are administered to mammals orally, rectally or parenterally.
The daily dosages of the free bases or of pharmaceutically acceptable salts thereof will, of course, vary with the mammal under treatment and may, for example, range between about 1 mg. and about 100 mg. Suitable dosage units of the therapeutical compositions according to the invention such as drages (sugar coated tablets), capsules, tablets, suppositories or ampoules, preferably contain 0.5- 50 mg. of piperidine derivative of the Formula I or a pharmaceutically acceptable acid addition salt thereof.
Also lozenges and forms not made up in oral single dosages are used in particular for the treatment of coughs, e.g. cough syrups and drops prepared with the usual auxiliaries.
Dosage units for oral administration preferably contain between 1% and 90% of a piperidine derivative of the Formula I or a pharmaceutically acceptable acid addition salt thereof as active substance. They are produced by combining the active substance with, e.g. solid pulverulent carriers such as lactose, saccharose, sorbitol, mannitol; starches such as potato starch, maize starch or amylopectin, also laminaria powder or citrus pulp powder;
cellulose derivatives or gelatine, optionally with the addition of lubricants such as magnesium or calcium stearate or polyethylene glycols of suitable molecular weights, to form tablets or drage cores. The latter are coated, e.g. With concentrated sugar solutions which can contain, e.g. gum arabic, talcum and/or titanium dioxide, or with a lacquer dissolved in easily volatile organic solvents or mixtures of solvents. Dyestuffs can be added to these coatings, e.g. to distinguish between different dosages of active substance. Other suitable dosage units for oral administration are hard gelatine capsules as well as soft, closed capsules made of gelatine and a softener such as glycerine. The former contain the active substance preferably as granulate in admixture with lubricants such as talcum or magnesium stearate and, optionally, stabilising agents such as sodium metabisulphite or ascorbic acid. In soft capsules the active substance is preferably dissolved or suspended in suitable liquids such as liquid polyethylene glycols, to which stabilising agents can also be added.
Examples of dosage units for rectal administration are suppositories which consist of a combination of a piperidine derivative of Formula I or a suitable salt thereof with a neutral fatty foundation, or also gelatine rectal capsules which contain a combination of the active substance with polyethylene glycols of suitable molecular weight.
Ampoules for parenteral, particularly intramuscular, also intravenous, administration preferably contain a water soluble salt of a piperidine derivative of the general Formula I as active substance in a concentration of, preferably, 0.55%, in aqueous solution, optionally together with suitable stabilising agents and buffer substances.
The following prescriptions further illustrate the pro duction of tablets, drages, syrups and drops:
(a) 10.0 g. of active substance, e.g. l-(3-phenylpropyl)- 4-allyl isonipecotinic acid ethyl ester fumarate, 30.0 g. of lactose, and 5.0 g. of highly dispersed silicic acid are mixed, the mixture is moistened with a solution of 5.0 g. gelatine and 7.5 g. of glycerine in distilled water and granulated through a sieve. The granulate is dried, sieved and carefully mixed with 3.5 g. of potato starch, 3.5 g. of talcum and 0.5 g. of magnesium stearate. The mixture is pressed into 1,000 tablets each weighing 6.5 mg. and containing 10 mg. of active substance.
(b) 5.0 g. of active substance, e.g. l(2-phenylethyl)- 4-allyl isonipecotinic acid ethyl ester fumarate, 15.0 g. of lactose and 20.0 g. of starch are mixed, the mixture is moistened with a solution of 5.0 g. of gelatine and 7.5 g. of glycerine in distilled water and granulated through a sieve. The granulate is dried, sieved and carefully mixed with 3.5 g. of talcum and 0.5 g. of magnesium stearate. The mixture is pressed into 1,000 drage cores. These are then coated with a concentrated syrup made from 26.660 g. of crystallised saccharose, 17.500 g. of talcum, 1.000 g. of shellac, 3.750 g. of gum arabic, 1.000 g. of highly dispersed silicic acid and 0.090 g. of dyestuff and dried. The drages obtained each weigh mg. and contain 5 mg. of active substance.
(c) 20 g. of l-(3-phenylpropyl)-4-allyl-isonipecotinic acid n-butyl ester fumarate, 42 g. of p-hydroxybenzoic acid methyl ester, 18 g. of p-hydroxybenzoic acid propyl ester and 5,000 g. of crystallized sugar and also any flavoring desired are dissolved in distilled water up to 10 liters to give a cough-syrup.
(d) To produce drops for the treatment of coughs, 500 g. of 1-n-octyl-4-allyl-isonipecotinic acid ethyl ester fumarate, 10 g. of ascorbic acid, sweetener, e.g. 5 g. of sodium cyclamate, flavoring as desired and 2,500 g. of sorbitol (70%) are dissolved in distilled water up to 10 liters.
The following non-limitative examples further illustrate the invention. The temperatures are given in degrees centigrade, percentages are given by weight.
7 EXAMPLE 1 11.0 g. of bromobenzene in 100 ml. of abs. ether are placed in a 350 ml. four-necked flask and 0.93 g. of lithium wire cut into small pieces and washed with petroleum ether are added while stirring under an atmosphere of nitrogen whereupon the ether begins to boil. After the reaction has subsided, the mixture is refluxed for another 2 /2 hours. 17.1 g. of triphenylmethane in 80 ml. of abs. 1,2-dimethoxyethane are poured all at once into the solution of phenyl lithium obtained whereupon, due to the formation of the triphenylmethyl lithium, the solution turns deep red coloured and gently boils. After stirring for 20 minutes at room temperature, 18.3 g. of l-(3- phenylpropyl)-isonipecotinic acid ethyl ester in 20 ml. of abs. ether are added at 28. The temperature of the solution slightly rises and it loses its deep red colour. It is stirred for 10 minutes at room temperature and then 8.45 g. of allylbromide in 20 ml. of abs. ether are added all at once. The mixture is stirred for 2 /2 hours at room temperature whereupon it turns yellow and lithium bromide precipitates. 10 ml. of water are then added to the reaction mixture and it is evaporated in a rotary evaporator. Ether is added to the residue and the ether solution obtained is extracted with dilute hydrochloric acid. The acid extracts are made alkaline and extracted exhaustively with chloroform and the chloroform extracts are dried and concentrated. The residue is taken up in ether, the ether solution is dried and concentrated and the residue is distilled. The l-(3-phenylpropyl)-4-allyl isonipecotinic acid ethyl ester boils at 178/0.01 torr. The oil is dissolved in ether and 95% of the theoretical amount of fumaric acid is added. The fumarate is filtered off under suction and recrystallised from isopropanol. The 1-(3-phenylpropyl)-4-allyl ionipecotinic acid ethyl ester fumarate melts at 138.
The following compounds are produced analogously: 1-n-heptyl-4-allyl-isonipecotinic acid ethyl ester; 1-n-octyl-4allyl-isonipecotinic acid ethyl ester, B.P. 130- 140/0.01 torr, fumarate M.P. 147-148; l-n-nonyl-4-allyl-isonipecotinic acid ethyl ester; 1benzyl-4-allyl-isonipecotinic acid ethyl ester, B.P. 135- l43/0.4 torr, hydrochloride M.P. 148; 1-(Z-phenylethyl)-4-allyl-isonipecotinic acid ethyl ester,
B.P. 125-130/0.0l torr, fumarate 138; 1-(Z-phenoxyethyl)-4-allyl-isonipecotinic acid ethyl ester,
B.P. 186-193/1.0 torr, fumarate M.P. 107-108"; 1-(3-phenylpropyl)-4-allyl-isonipecotinic acid methyl ester, B.P. 130150/0.01 torr, fumarate M.P. 181-182; 1-(3-phenylpropyl)-4-allyl-isonipecotinic acid propyl ester,
B.P. 145-l50/0.01 torr, fumarate M.P. 138-139"; 1-(3-phenylpropyl)-4-allyl-isonipecotinic acid butyl ester,
B.P. 172-182/0.09 torr, fumarate M.P. 146-147"; 1-(3-phenylpropyl)-4-allyl-isonipecotinic acid isopropyl ester, B.P. 140-l50/0.01 torr, hydrochloride M.P.
163-165 1-(2-phenylpropyl)-4-allyl-isonipecotinic acid ethyl ester,
B.P. 124-136/0.03 torr, fumarate M.P. 114-116;
1- 2- (N-propionyl-anilino -ethyl] -4-allyl-isonipecotinic acid ethyl ester;
1-[2-(N-allyl-anilino)-ethyl]-4-allyl-isonipecotinic acid ethyl ester;
1-cinnamyl-4-allyl-isonipecotinic acid ethyl ester, B.P.
143-152/0.01 torr, fumarate M.P. 133-134;
1-(4-phenylbutyl)-4-allyl-isonipecotinic acid ethyl ester,
B.P. 136-147/0.01 torr, fumarate M.P. 101-102".
The l-substituted isonipecotinic acid alkyl ester needed as starting materials for the production of the above compounds can be produced, e.g., as follows:
(a) 20 g. of isonipecotinic acid ethyl ester and 75.5 g. of 3-phenylpropyl bromide in 100 ml. of ethanol are refluxed for 5 hours. The ethanol is then evaporated off in vacuo, the residue is dissolved in water and the aqueous solution is extracted three times with ether. On evaporating the aqueous solution in vacuo and finally under high vacuum, the ethyl ester or 4-carboxy-1-(3-phenylpropyl)- pyridinium bromide remains.
(b) 24.1 g. of the above quaternary salt in 200 ml. of ethanol are hydrogenated at room temperature under 3-4 atm. pressure in the presence of rhodium-aluminum oxide catalyst (5% Rh.). The catalyst is then filtered off and the filtrate is evaporated. The residue is covered with chloroform and made alkaline with concentrated sodium hydroxide solution. The chloroform is removed and the aqueous phase is exhaustively extracted with chloroform. The combined chloroform solutions are Washed with saturated sodium chloride solution, dried and concentrated and the residue is distilled under high vacuum. The 1-(3- phenylpropyl)-isonipecotinic acid ethyl ester boils at l30-132/0.08 torr.
EXAMPLE 2 1.1 g. of 4-allyl-isonipecotinic acid ethyl ester, 2.2 g. of 2-phenylethyl bromide, 5 g. of sodium carbonate 0.1 g. of sodium iodide in 40 ml. of acetone are refluxed for 18 hours. The reaction mixture is then filtered, the filter residue is Washed with acetone, the filtrate is concentrated and the residue is distilled under high vacuum. The 1-(2- phenylethyl)-4-allyl-isonipecotinic acid ethyl ester boils at -130/ 0.01 torr. The fumarate produced therefrom melts at 138.
The following are produced analogously:
1 [2 (N propionyl anilino) ethyl] 4 allyl isonipecotinic acid ethyl ester;
1-(2-anilinoethyl)-4-allyl-isonopecotinic acid ethyl ester;
l-(Z-benzoylethyl)-4-allylisonipecotinic acid ethyl ester;
1-(3-phenylpropyl)-4-allyl-isonipecotinic acid ethyl ester,
B.P. 178/0.01 torr, fumarate M.P. 138;
1-n-octyl-4-allyl-isonipecotinic acid ethyl ester, B.P.
140/0.01 torr, fumarate M.P. 147148;
and all other compounds listed in Example 1.
4-allyl-isonipecotinic acid ethyl ester needed as starting material is produced as follows:
(a) 2.03 g. of lithium wire cut out into small pieces are added to 22.8 g. of bromobenzene in 180 ml. of anhydrous ether in a 750 ml. four-necked flask, the addition being made under an atmosphere of nitrogen. The ether begins to boil. After the reaction has diminished, the mixture is refluxed for another 2 /2 hours. 35.4 g. of triphenylmethane in 150 ml. of abs. 1,2-dimethoxyethane are added all at once to the solution of phenyl lithium obtained whereupon, due to the formation of triphenylmethyl lithium, the solution turns deep red and gently boils. After stirring for 20 minutes at room temperature, 42.3 g. of 1-benzyloxycarbonyl-isonipecotinic acid ethyl ester in 50 ml. of anhydrous ether are added at 28. (This ethyl ester is produced by reacting isonipecotinic acid ethyl ester with chloroformic acid benzyl ester in the presence of 1 N sodium bicarbonate solution). The solution loses its deep red color and the temperature slightly rises. It is stirred for 10 minutes at room temperature and then 18.0 g. of allyl bromide in 40 ml. of anhydrous ether are added at once. The mixture is stirred at room temperature for 2 /2 hours whereupon it turns yellowish and lithium bromide precipitates. 40 ml. of water are then added to the reaction mixture which is then evaporated almost to dryness in a rotary evaporator. The residue is taken up in 50 ml. of ether and the ether solution obtained is extracted three times with 2 N hydrochloric acid. The ether solution is dried and concentrated and the residue is left to stand overnight whereupon the triphenylmethane crystallises out. The whole mixture is then suspended in cold methanol, the triphenylmethane is filtered off under suction and the residue is distilled under high vacuum. Thel-benzyloxycarbonyl-4-allyl-isonipecotinic acid ethyl ester passes over at 192/0.07 torr.
(b) 8.0 g. of l-benzyloxycarbonyl-4-allyl-isonipecotinic acid ethyl ester are stirred-in a 100ml. round flask by means of a magnetic stirrer with 40 ml. of a saturated solution of hydrobromic acid in glacial acetic acid and 9 ml. of anhydrous ether. The initial strong development of carbon dioxide gradually diminishes. The reaction solution is then evaporated in a rotary evaporator and the residue is taken up in 6 N hydrochloric acid. The hydrochloric acid solution is extracted with ether, then made alkaline with concentrated ammonia while cooling and extracted with chloroform. The chloroform solution is dried, concentrated and the 4 allyl-isonipecotinic acid ethyl ester which remains is immediately further reacted.
The other low alkyl esters of 4-allyl-isonipecotinic acid can also be produced analogously to (a) and (b).
What is claimed is:
1. An analgesic pharmaceutical composition in dosage unit form consisting essentially of (1) an amount of between 0.5 mg. and about 50 mg. of
a compound of the formula:
H30=CH C OH, (5111 oo-o-n,
wherein R represents 2 anilinoethyl or Z-(N-allylanilino)-ethyl and References Cited UNITED STATES PATENTS 8/1967 Kuhnis et al. 260-2943 OTHER REFERENCES Janssen et al., Journal of Medicinal and Pharmaceutical Chemistry, vol. 2, No. 1 (1960) pp. 31-45.
ALBERT T. MEYERS, Primary Examiner A. J. ROBINSON, Assistant Examiner 73 3 UNITED STATES PATENT OFFICE CERTIFICATE OF CORRECTION Patent 3,629,426 Dated December El 1971 Inventor) Hans Herbert Kuhnis et al 7 It is certified that error appears in the above-identified patent and that said Letters Patent are hereby corrected as shown below:
Column 9, claim 1, the right-hand side of the structural formula should read v CO"O"R2 5 CH. 2 N 1 R Signed and sealed this 20th day of June 1972.
(SEAL) Attest:
EDWARD M.FLETGHER,JR. ROBERT GOTISCHALK Attesting Officer Commissioner of Patents
US778844A 1966-07-13 1968-11-25 Therapeutical compositions containing piperidine derivatives Expired - Lifetime US3629426A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH1019266 1966-07-13

Publications (1)

Publication Number Publication Date
US3629426A true US3629426A (en) 1971-12-21

Family

ID=4360409

Family Applications (1)

Application Number Title Priority Date Filing Date
US778844A Expired - Lifetime US3629426A (en) 1966-07-13 1968-11-25 Therapeutical compositions containing piperidine derivatives

Country Status (10)

Country Link
US (1) US3629426A (en)
AT (5) AT273128B (en)
BE (1) BE701275A (en)
DK (1) DK116999B (en)
ES (4) ES342932A1 (en)
FR (1) FR6814M (en)
GB (1) GB1205041A (en)
GR (1) GR37587B (en)
NL (1) NL6709700A (en)
SE (1) SE329614B (en)

Also Published As

Publication number Publication date
ES342928A1 (en) 1968-10-16
AT273127B (en) 1969-08-11
AT273128B (en) 1969-08-11
AT273125B (en) 1969-08-11
NL6709700A (en) 1968-01-15
DK116999B (en) 1970-03-09
ES342932A1 (en) 1968-10-16
BE701275A (en) 1968-01-12
SE329614B (en) 1970-10-19
AT273120B (en) 1969-08-11
FR6814M (en) 1969-03-24
ES342930A1 (en) 1968-10-16
GR37587B (en) 1969-06-21
ES342929A1 (en) 1968-10-16
GB1205041A (en) 1970-09-09
AT273126B (en) 1969-08-11

Similar Documents

Publication Publication Date Title
US3433791A (en) Endoethano nor oripavines and nor thebaines
US4299838A (en) Tryptophan derivatives having an increased effect on the central nervous system
IE44166B1 (en) Nortropine benzilate derivatives
US4730042A (en) Compounds 1 or 3-hydroxy-4-benzyl-6-methyl-7-(4-isopropylamino-butoxy)-1,3-dihydro[3,4-C]pyridine and 2-methyl-3-(4-isopropyl-aminobutoxy)-4-(1'-morphilinomethyl)-5-hydroxymethyl-6-benzyl pyridine, useful for treating cardiac arrhythmias
US3456060A (en) Therapeutic compositions containing piperidine derivatives and methods of treating cough and pain therewith
JPH01238583A (en) Novel xanthine derivative, its production and pharmaceutical composition containing said compound
US3217011A (en) 1-(indolyglyoxalyl)-piperidines
IL32889A (en) Pyrido(4,3-b)indole derivatives,their preparation and pharmaceutical compositions containing them
US3629426A (en) Therapeutical compositions containing piperidine derivatives
US3574232A (en) 3-aminoalkyl-1-phenyl-indolines
RU2484094C1 (en) Crystals of prasugrel hydrobromate
US3523949A (en) 4-allyl-1-(2-anilinoethyl)-4-carbalkoxy-piperidines
US4279914A (en) Thrombocyte aggregation inhibiting composition and methods
US3579512A (en) 1-(4-piperidyl)-butanones
JPS58188879A (en) Cyproheptadine-3-carboxylic acid and ester of structurally related compound
US3586678A (en) Isonipecotic acid derivatives
US3684803A (en) 1,4,4-substituted piperidine derivatives
US3579513A (en) 1-(1-substituted-4-acetonyl-4-piperidyl)-1-butanones
US3679799A (en) Piperdine derivatives in an antitussive composition and method
US3551431A (en) Isonipecotonitriles
RU1836330C (en) Method for obtaining polyhydroxy benzyloxypropanol amines
US3737538A (en) Antitussive compositions and method with isonipecotic acid derivatives
US3485835A (en) 2-benzoyl-3-tertiaryamino alkoxy benzofuran derivatives
US4337260A (en) Imidazopyridine-spiro-piperidine compounds
US3855283A (en) Levo 1-amino-3-chloro-2-propanol and acid addition salts thereof